Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 98 (20): 11032-11038

Copyright © 2001 by the National Academy of Sciences.

Colloquium Paper


Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans

Erin L. Peckol*, Emily R. Troemel{dagger}, and Cornelia I. Bargmann{ddagger}

Howard Hughes Medical Institute, Programs in Developmental Biology, Neuroscience, and Genetics, Departments of Anatomy and Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0452

Abstract: Changes in the environment cause both short-term and long-term changes in an animal's behavior. Here we show that specific sensory experiences cause changes in chemosensory receptor gene expression that may alter sensory perception in the nematode Caenorhabditis elegans. Three predicted chemosensory receptor genes expressed in the ASI chemosensory neurons, srd-1, str-2, and str-3, are repressed by exposure to the dauer pheromone, a signal of crowding. Repression occurs at pheromone concentrations below those that induce formation of the alternative dauer larva stage, suggesting that exposure to pheromones can alter the chemosensory behaviors of non-dauer animals. In addition, ASI expression of srd-1, but not str-2 and str-3, is induced by sensory activity of the ASI neurons. Expression of two receptor genes is regulated by developmental entry into the dauer larva stage. srd-1 expression in ASI neurons is repressed in dauer larvae. str-2 expression in dauer animals is induced in the ASI neurons, but repressed in the AWC neurons. The ASI and AWC neurons remodel in the dauer stage, and these results suggest that their sensory specificity changes as well. We suggest that experience-dependent changes in chemosensory receptor gene expression may modify olfactory behaviors.

* Present address: Project Biotech, The University of Arizona, Tucson, AZ 85721.

{dagger} Present address: Renovis Pharmaceuticals, South San Francisco, CA 94080.

{ddagger} To whom reprint requests should be addressed. E-mail: cori{at}

This paper was presented at the Inaugural Arthur M. Sackler Colloquium of the National Academy of Sciences, "Neural Signaling," held February 15–17, 2001, at the National Academy of Sciences in Washington, DC.

Degeneracy and Neuromodulation among Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in Caenorhabditis elegans.
M. Beverly, S. Anbil, and P. Sengupta (2011)
J. Neurosci. 31, 11718-11727
   Abstract »    Full Text »    PDF »
Glia delimit shape changes of sensory neuron receptive endings in C. elegans.
C. Procko, Y. Lu, and S. Shaham (2011)
Development 138, 1371-1381
   Abstract »    Full Text »    PDF »
Olfactory Plasticity Is Regulated by Pheromonal Signaling in Caenorhabditis elegans.
K. Yamada, T. Hirotsu, M. Matsuki, R. A. Butcher, M. Tomioka, T. Ishihara, J. Clardy, H. Kunitomo, and Y. Iino (2010)
Science 329, 1647-1650
   Abstract »    Full Text »    PDF »
The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons.
B. J. Lesch and C. I. Bargmann (2010)
Genes & Dev. 24, 1802-1815
   Abstract »    Full Text »    PDF »
Dauer pheromone and G-protein signaling modulate the coordination of intraflagellar transport kinesin motor proteins in C. elegans.
J. Burghoorn, M. P. J. Dekkers, S. Rademakers, T. de Jong, R. Willemsen, P. Swoboda, and G. Jansen (2010)
J. Cell Sci. 123, 2077-2084
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans TRPV Channels Function in a Modality-Specific Pathway to Regulate Response to Aberrant Sensory Signaling.
M. J. Ezak, E. Hong, A. Chaparro-Garcia, and D. M. Ferkey (2010)
Genetics 185, 233-244
   Abstract »    Full Text »    PDF »
Two Chemoreceptors Mediate Developmental Effects of Dauer Pheromone in C. elegans.
K. Kim, K. Sato, M. Shibuya, D. M. Zeiger, R. A. Butcher, J. R. Ragains, J. Clardy, K. Touhara, and P. Sengupta (2009)
Science 326, 994-998
   Abstract »    Full Text »    PDF »
Intraflagellar Transport/Hedgehog-Related Signaling Components Couple Sensory Cilium Morphology and Serotonin Biosynthesis in Caenorhabditis elegans.
M. Moussaif and J. Y. Sze (2009)
J. Neurosci. 29, 4065-4075
   Abstract »    Full Text »    PDF »
Maintaining a stochastic neuronal cell fate decision.
D. Vasiliauskas, R. Johnston, and C. Desplan (2009)
Genes & Dev. 23, 385-390
   Abstract »    Full Text »    PDF »
The EGL-4 PKG Acts With KIN-29 Salt-Inducible Kinase and Protein Kinase A to Regulate Chemoreceptor Gene Expression and Sensory Behaviors in Caenorhabditis elegans.
A. M. van der Linden, S. Wiener, Y.-j. You, K. Kim, L. Avery, and P. Sengupta (2008)
Genetics 180, 1475-1491
   Abstract »    Full Text »    PDF »
C. elegans dauer formation and the molecular basis of plasticity.
N. Fielenbach and A. Antebi (2008)
Genes & Dev. 22, 2149-2165
   Abstract »    Full Text »    PDF »
Genetic Screens for Caenorhabditis elegans Mutants Defective in Left/Right Asymmetric Neuronal Fate Specification.
S. Sarin, M. M. O'Meara, E. B. Flowers, C. Antonio, R. J. Poole, D. Didiano, R. J. Johnston Jr., S. Chang, S. Narula, and O. Hobert (2007)
Genetics 176, 2109-2130
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans Integrates the Signals of Butanone and Food to Enhance Chemotaxis to Butanone.
I. Torayama, T. Ishihara, and I. Katsura (2007)
J. Neurosci. 27, 741-750
   Abstract »    Full Text »    PDF »
KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC.
A. M. van der Linden, K. M. Nolan, and P. Sengupta (2007)
EMBO J. 26, 358-370
   Abstract »    Full Text »    PDF »
Noncell- and Cell-Autonomous G-Protein-Signaling Converges With Ca2+/Mitogen-Activated Protein Kinase Signaling to Regulate str-2 Receptor Gene Expression in Caenorhabditis elegans.
H. Lans and G. Jansen (2006)
Genetics 173, 1287-1299
   Abstract »    Full Text »    PDF »
Regulation of chemosensory and GABAergic motor neuron development by the C. elegans Aristaless/Arx homolog alr-1.
T. Melkman and P. Sengupta (2005)
Development 132, 1935-1949
   Abstract »    Full Text »    PDF »
The DAF-7 TGF-beta signaling pathway regulates chemosensory receptor gene expression in C. elegans.
K. M. Nolan, T. R. Sarafi-Reinach, J. G. Horne, A. M. Saffer, and P. Sengupta (2002)
Genes & Dev. 16, 3061-3073
   Abstract »    Full Text »    PDF »
Exploring the Envelope: Systematic Alteration in the Sex-Determination System of the Nematode Caenorhabditis elegans.
J. Hodgkin (2002)
Genetics 162, 767-780
   Abstract »    Full Text »    PDF »
Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding.
A. N. Fox, R. J. Pitts, H. M. Robertson, J. R. Carlson, and L. J. Zwiebel (2001)
PNAS 98, 14693-14697
   Abstract »    Full Text »    PDF »
Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding.
A. N. Fox, R. J. Pitts, H. M. Robertson, J. R. Carlson, and L. J. Zwiebel (2001)
PNAS 98, 14693-14697
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882