Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 98 (20): 11598-11603

Copyright © 2001 by the National Academy of Sciences.


A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus

Lindsey D. Mayo David B. Donner*

Department of Microbiology and Immunology, Indiana University School of Medicine, and the Walther Oncology Center, Indianapolis, IN 46202

Received for publication April 11, 2001.

Abstract: The Mdm2 oncoprotein promotes cell survival and cell cycle progression by inhibiting the p53 tumor suppressor protein. To regulate p53, Mdm2 must gain nuclear entry, and the mechanism that induces this is now identified. Mitogen-induced activation of phosphatidylinositol 3-kinase (PI3-kinase) and its downstream target, the Akt/PKB serine-threonine kinase, results in phosphorylation of Mdm2 on serine 166 and serine 186. Phosphorylation on these sites is necessary for translocation of Mdm2 from the cytoplasm into the nucleus. Pharmacological blockade of PI3-kinase/Akt signaling or expression of dominant-negative PI3-kinase or Akt inhibits nuclear entry of Mdm2, increases cellular levels of p53, and augments p53 transcriptional activity. Expression of constitutively active Akt promotes nuclear entry of Mdm2, diminishes cellular levels of p53, and decreases p53 transcriptional activity. Mutation of the Akt phosphorylation sites in Mdm2 produces a mutant protein that is unable to enter the nucleus and increases p53 activity. The demonstration that PI3-kinase/Akt signaling affects Mdm2 localization provides insight into how this pathway, which is inappropriately activated in many malignancies, affects the function of p53.

* To whom reprint requests should be addressed at: The Walther Oncology Center, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202. E-mail: ddonner{at}

Edited by Pedro M. Cuatrecasas, University of California at San Diego, School of Medicine, Rancho Santa Fe, CA, and approved July 3, 2001

This paper was submitted directly (Track II) to the PNAS office.

See commentary on page 10983.

The Diarylheptanoid Hirsutenone Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin via Modulation of Apoptosis-inducing Factor and X-linked Inhibitor of Apoptosis.
L. Farrand, J. Y. Kim, S. Byun, A. Im-aram, J. Lee, J.-Y. Suh, K.-W. Lee, H. J. Lee, and B. K. Tsang (2014)
J. Biol. Chem. 289, 1723-1731
   Abstract »    Full Text »    PDF »
HDM2 Regulation by AURKA Promotes Cell Survival in Gastric Cancer.
V. Sehdev, A. Katsha, J. Arras, D. Peng, M. Soutto, J. Ecsedy, A. Zaika, A. Belkhiri, and W. El-Rifai (2014)
Clin. Cancer Res. 20, 76-86
   Abstract »    Full Text »    PDF »
The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancer.
M. Heger, R. F. van Golen, M. Broekgaarden, and M. C. Michel (2013)
Pharmacol. Rev. 66, 222-307
   Abstract »    Full Text »    PDF »
Notch1 Is Required for Kras-Induced Lung Adenocarcinoma and Controls Tumor Cell Survival via p53.
S. Licciulli, J. L. Avila, L. Hanlon, S. Troutman, M. Cesaroni, S. Kota, B. Keith, M. C. Simon, E. Pure, F. Radtke, et al. (2013)
Cancer Res. 73, 5974-5984
   Abstract »    Full Text »    PDF »
Candidate Tumor Suppressor and pVHL Partner Jade-1 Binds and Inhibits AKT in Renal Cell Carcinoma.
L. Zeng, M. Bai, A. K. Mittal, W. El-Jouni, J. Zhou, D. M. Cohen, M. I. Zhou, and H. T. Cohen (2013)
Cancer Res. 73, 5371-5380
   Abstract »    Full Text »    PDF »
Inhibition of Protein Synthesis Alters Protein Degradation through Activation of Protein Kinase B (AKT).
C.-L. Dai, J. Shi, Y. Chen, K. Iqbal, F. Liu, and C.-X. Gong (2013)
J. Biol. Chem. 288, 23875-23883
   Abstract »    Full Text »    PDF »
Telmisartan Exerts Pleiotropic Effects in Endothelial Cells and Promotes Endothelial Cell Quiescence and Survival.
M. Siragusa and W. C. Sessa (2013)
Arterioscler Thromb Vasc Biol 33, 1852-1860
   Abstract »    Full Text »    PDF »
MOZ increases p53 acetylation and premature senescence through its complex formation with PML.
S. Rokudai, O. Laptenko, S. M. Arnal, Y. Taya, I. Kitabayashi, and C. Prives (2013)
PNAS 110, 3895-3900
   Abstract »    Full Text »    PDF »
The TP53 signaling network in mammals and worms.
A. K. Jolliffe and W. B. Derry (2013)
Briefings in Functional Genomics 12, 129-141
   Abstract »    Full Text »    PDF »
Glioma is formed by active Akt1 alone and promoted by active Rac1 in transgenic zebrafish.
I. H. Jung, G. L. Leem, D. E. Jung, M. H. Kim, E. Y. Kim, S. H. Kim, H.-C. Park, and S. W. Park (2013)
Neuro Oncology 15, 290-304
   Abstract »    Full Text »    PDF »
Igf2 pathway dependency of the Trp53 developmental and tumour phenotypes.
V. L. Haley, D. J. Barnes, I. Sandovici, M. Constancia, C. F. Graham, F. Pezzella, C. Buhnemann, E. J. Carter, and A. B. Hassan (2012)
EMBO Mol Med. 4, 705-718
   Abstract »    Full Text »    PDF »
AKT-dependent phosphorylation of Niban regulates nucleophosmin- and MDM2-mediated p53 stability and cell apoptosis.
H. Ji, Z. Ding, D. Hawke, D. Xing, B.-H. Jiang, G. B. Mills, and Z. Lu (2012)
EMBO Rep. 13, 554-560
   Abstract »    Full Text »    PDF »
Involvement of Phosphoinositide 3-Kinase and PTEN Protein in Mechanism of Activation of TRPC6 Protein in Vascular Smooth Muscle Cells.
M. Monet, N. Francoeur, and G. Boulay (2012)
J. Biol. Chem. 287, 17672-17681
   Abstract »    Full Text »    PDF »
Overexpression of SKI Oncoprotein Leads to p53 Degradation through Regulation of MDM2 Protein Sumoylation.
B. Ding, Y. Sun, and J. Huang (2012)
J. Biol. Chem. 287, 14621-14630
   Abstract »    Full Text »    PDF »
Matrix Metalloproteinase-9 Regulates Survival of Neurons in Newborn Hippocampus.
S. Murase and R. D. McKay (2012)
J. Biol. Chem. 287, 12184-12194
   Abstract »    Full Text »    PDF »
Identification of Akt Interaction Protein PHF20/TZP That Transcriptionally Regulates p53.
S. Park, D. Kim, H. C. Dan, H. Chen, J. R. Testa, and J. Q. Cheng (2012)
J. Biol. Chem. 287, 11151-11163
   Abstract »    Full Text »    PDF »
Dual Roles of MDM2 in the Regulation of p53: Ubiquitination Dependent and Ubiquitination Independent Mechanisms of MDM2 Repression of p53 Activity.
D. Shi and W. Gu (2012)
Genes & Cancer 3, 240-248
   Abstract »    Full Text »    PDF »
The Roles of MDM2 and MDMX Phosphorylation in Stress Signaling to p53.
J. Chen (2012)
Genes & Cancer 3, 274-282
   Abstract »    Full Text »    PDF »
The Many Faces of MDM2 Binding Partners.
M. F. Riley and G. Lozano (2012)
Genes & Cancer 3, 226-239
   Abstract »    Full Text »    PDF »
MDM2 Regulates Vascular Endothelial Growth Factor mRNA Stabilization in Hypoxia.
S. Zhou, L. Gu, J. He, H. Zhang, and M. Zhou (2011)
Mol. Cell. Biol. 31, 4928-4937
   Abstract »    Full Text »    PDF »
(3-Chloroacetyl)-indole, a Novel Allosteric AKT Inhibitor, Suppresses Colon Cancer Growth In Vitro and In Vivo.
D. J. Kim, K. Reddy, M. O. Kim, Y. Li, J. Nadas, Y.-Y. Cho, J.-E. Kim, J.-H. Shim, N. R. Song, A. Carper, et al. (2011)
Cancer Prevention Research 4, 1842-1851
   Abstract »    Full Text »    PDF »
Induction of Apoptotic Genes by a p73-Phosphatase and Tensin Homolog (p73-PTEN) Protein Complex in Response to Genotoxic Stress.
J. A. Lehman, D. L. Waning, C. N. Batuello, R. Cipriano, M. P. Kadakia, and L. D. Mayo (2011)
J. Biol. Chem. 286, 36631-36640
   Abstract »    Full Text »    PDF »
Protein localization in disease and therapy.
M.-C. Hung and W. Link (2011)
J. Cell Sci. 124, 3381-3392
   Abstract »    Full Text »    PDF »
Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia.
A. Gutierrez, R. Grebliunaite, H. Feng, E. Kozakewich, S. Zhu, F. Guo, E. Payne, M. Mansour, S. E. Dahlberg, D. S. Neuberg, et al. (2011)
J. Exp. Med. 208, 1595-1603
   Abstract »    Full Text »    PDF »
Two-phase dynamics of p53 in the DNA damage response.
X.-P. Zhang, F. Liu, and W. Wang (2011)
PNAS 108, 8990-8995
   Abstract »    Full Text »    PDF »
The p53-HDM2 gene-gene polymorphism interaction is associated with the development of missed abortion.
Y. Fang, B. Kong, Q. Yang, D. Ma, and X. Qu (2011)
Hum. Reprod. 26, 1252-1258
   Abstract »    Full Text »    PDF »
p53 in the CNS: Perspectives on Development, Stem Cells, and Cancer.
S. M. Mendrysa, S. Ghassemifar, and R. Malek (2011)
Genes & Cancer 2, 431-442
   Abstract »    Full Text »    PDF »
The Multifunctional Ca2+/Calmodulin-dependent Kinase II {delta} (CaMKII{delta}) Controls Neointima Formation after Carotid Ligation and Vascular Smooth Muscle Cell Proliferation through Cell Cycle Regulation by p21.
W. Li, H. Li, P. N. Sanders, P. J. Mohler, J. Backs, E. N. Olson, M. E. Anderson, and I. M. Grumbach (2011)
J. Biol. Chem. 286, 7990-7999
   Abstract »    Full Text »    PDF »
Negative Regulation of p53 by the Long Isoform of ErbB3 Binding Protein Ebp1 in Brain Tumors.
C. K. Kim, T. L. X. Nguyen, K. M. Joo, D.-H. Nam, J. Park, K.-H. Lee, S.-W. Cho, and J.-Y. Ahn (2010)
Cancer Res. 70, 9730-9741
   Abstract »    Full Text »    PDF »
RGS-GAIP-Interacting Protein Controls Breast Cancer Progression.
L. Wang, J. S. Lau, C. R. Patra, Y. Cao, S. Bhattacharya, S. Dutta, D. Nandy, E. Wang, C. N. Rupasinghe, P. Vohra, et al. (2010)
Mol. Cancer Res. 8, 1591-1600
   Abstract »    Full Text »    PDF »
Protein S Protects Neurons from Excitotoxic Injury by Activating the TAM Receptor Tyro3-Phosphatidylinositol 3-Kinase-Akt Pathway through Its Sex Hormone-Binding Globulin-Like Region.
Z. Zhong, Y. Wang, H. Guo, A. Sagare, J. A. Fernandez, R. D. Bell, T. M. Barrett, J. H. Griffin, R. S. Freeman, and B. V. Zlokovic (2010)
J. Neurosci. 30, 15521-15534
   Abstract »    Full Text »    PDF »
Coordination between Cell Cycle Progression and Cell Fate Decision by the p53 and E2F1 Pathways in Response to DNA Damage.
X.-P. Zhang, F. Liu, and W. Wang (2010)
J. Biol. Chem. 285, 31571-31580
   Abstract »    Full Text »    PDF »
Activation of Murine Double Minute 2 by Akt in Mammary Epithelium Delays Mammary Involution and Accelerates Mammary Tumorigenesis.
X. Cheng, W. Xia, J.-Y. Yang, J. L. Hsu, J.-Y. Lang, C.-K. Chou, Y. Du, H.-L. Sun, S. L. Wyszomierski, G. B. Mills, et al. (2010)
Cancer Res. 70, 7684-7689
   Abstract »    Full Text »    PDF »
S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response.
K. P. Lai, W. F. Leong, J. F. L. Chau, D. Jia, L. Zeng, H. Liu, L. He, A. Hao, H. Zhang, D. Meek, et al. (2010)
EMBO J. 29, 2994-3006
   Abstract »    Full Text »    PDF »
Akt pathway is hypoactivated by synergistic actions of diabetes mellitus and hypercholesterolemia resulting in advanced coronary artery disease.
D. Hamamdzic, R. S. Fenning, D. Patel, E. R. Mohler III, K. A. Orlova, A. C. Wright, R. Llano, M. G. Keane, R. P. Shannon, M. J. Birnbaum, et al. (2010)
Am J Physiol Heart Circ Physiol 299, H699-H706
   Abstract »    Full Text »    PDF »
Akt-phosphorylated Mitogen-activated Kinase-activating Death Domain Protein (MADD) Inhibits TRAIL-induced Apoptosis by Blocking Fas-associated Death Domain (FADD) Association with Death Receptor 4.
P. Li, S. Jayarama, L. Ganesh, D. Mordi, R. Carr, P. Kanteti, N. Hay, and B. S. Prabhakar (2010)
J. Biol. Chem. 285, 22713-22722
   Abstract »    Full Text »    PDF »
Caffeine Confers Radiosensitization of PTEN-Deficient Malignant Glioma Cells by Enhancing Ionizing Radiation-Induced G1 Arrest and Negatively Regulating Akt Phosphorylation.
B. Sinn, G. Tallen, G. Schroeder, B. Grassl, J. Schulze, V. Budach, and I. Tinhofer (2010)
Mol. Cancer Ther. 9, 480-488
   Abstract »    Full Text »    PDF »
Myeloid progenitor cells lacking p53 exhibit delayed up-regulation of Puma and prolonged survival after cytokine deprivation.
A. M. Jabbour, C. P. Daunt, B. D. Green, S. Vogel, L. Gordon, R. S. Lee, N. Silke, R. B. Pearson, C. J. Vandenberg, P. N. Kelly, et al. (2010)
Blood 115, 344-352
   Abstract »    Full Text »    PDF »
Akt is activated in chronic lymphocytic leukemia cells and delivers a pro-survival signal: the therapeutic potential of Akt inhibition.
J. Zhuang, S. F. Hawkins, M. A. Glenn, K. Lin, G. G. Johnson, A. Carter, J. C. Cawley, and A. R. Pettitt (2010)
Haematologica 95, 110-118
   Abstract »    Full Text »    PDF »
Suppression of Hypoxia-Inducible Factor 2{alpha} Restores p53 Activity via Hdm2 and Reverses Chemoresistance of Renal Carcinoma Cells.
A. M. Roberts, I. R. Watson, A. J. Evans, D. A. Foster, M. S. Irwin, and M. Ohh (2009)
Cancer Res. 69, 9056-9064
   Abstract »    Full Text »    PDF »
Influence of zinc deficiency on Akt-Mdm2-p53 and Akt-p21 signaling axes in normal and malignant human prostate cells.
C.-T. Han, N. W. Schoene, and K. Y. Lei (2009)
Am J Physiol Cell Physiol 297, C1188-C1199
   Abstract »    Full Text »    PDF »
The E3 Ligase TRAF6 Regulates Akt Ubiquitination and Activation.
W.-L. Yang, J. Wang, C.-H. Chan, S.-W. Lee, A. D. Campos, B. Lamothe, L. Hur, B. C. Grabiner, X. Lin, B. G. Darnay, et al. (2009)
Science 325, 1134-1138
   Abstract »    Full Text »    PDF »
Preimplantation Embryo Development in the Mouse Requires the Latency of TRP53 Expression, Which Is Induced by a Ligand-Activated PI3 Kinase/AKT/MDM2-Mediated Signaling Pathway (Reprinted with Correction).
X.L. Jin, V. Chandrakanthan, H.D. Morgan, and C. O'Neill (2009)
Biol Reprod 81, 233-242
   Abstract »    Full Text »    PDF »
Notch Activation Induces Akt Signaling via an Autocrine Loop to Prevent Apoptosis in Breast Epithelial Cells.
O. Meurette, S. Stylianou, R. Rock, G. M. Collu, A. P. Gilmore, and K. Brennan (2009)
Cancer Res. 69, 5015-5022
   Abstract »    Full Text »    PDF »
Ligation of cancer cell surface GRP78 with antibodies directed against its COOH-terminal domain up-regulates p53 activity and promotes apoptosis.
U. K. Misra, Y. Mowery, S. Kaczowka, and S. V. Pizzo (2009)
Mol. Cancer Ther. 8, 1350-1362
   Abstract »    Full Text »    PDF »
Nuclear and mitochondrial signalling Akts in cardiomyocytes.
S. Miyamoto, M. Rubio, and M. A. Sussman (2009)
Cardiovasc Res 82, 272-285
   Abstract »    Full Text »    PDF »
A Novel Function for p53: Regulation of Growth Cone Motility through Interaction with Rho Kinase.
Q. Qin, M. Baudry, G. Liao, A. Noniyev, J. Galeano, and X. Bi (2009)
J. Neurosci. 29, 5183-5192
   Abstract »    Full Text »    PDF »
Preimplantation Embryo Development in the Mouse Requires the Latency of TRP53 Expression, Which Is Induced by a Ligand-Activated PI3 Kinase/AKT/MDM2-Mediated Signaling Pathway.
X. L. Jin, V. Chandrakanthan, H. D. Morgan, and C. O'Neill (2009)
Biol Reprod 80, 286-294
   Abstract »    Full Text »    PDF »
Sprouty 2 Regulates DNA Damage-induced Apoptosis in Ras-transformed Human Fibroblasts.
P. Lito, B. D. Mets, D. M. Appledorn, V. M. Maher, and J. J. McCormick (2009)
J. Biol. Chem. 284, 848-854
   Abstract »    Full Text »    PDF »
Decoy Receptor 3 Expression in AsPC-1 Human Pancreatic Adenocarcinoma Cells via the Phosphatidylinositol 3-Kinase-, Akt-, and NF-{kappa}B-Dependent Pathway.
P.-H. Chen and C.-R. Yang (2008)
J. Immunol. 181, 8441-8449
   Abstract »    Full Text »    PDF »
Erlotinib Attenuates Homologous Recombinational Repair of Chromosomal Breaks in Human Breast Cancer Cells.
L. Li, H. Wang, E. S. Yang, C. L. Arteaga, and F. Xia (2008)
Cancer Res. 68, 9141-9146
   Abstract »    Full Text »    PDF »
Regulation of Akt signaling by O-GlcNAc in euglycemia.
Y. A. Soesanto, B. Luo, D. Jones, R. Taylor, J. S. Gabrielsen, G. Parker, and D. A. McClain (2008)
Am J Physiol Endocrinol Metab 295, E974-E980
   Abstract »    Full Text »    PDF »
Statins Use a Novel Nijmegen Breakage Syndrome-1-Dependent Pathway to Accelerate DNA Repair in Vascular Smooth Muscle Cells.
M. Mahmoudi, I. Gorenne, J. Mercer, N. Figg, T. Littlewood, and M. Bennett (2008)
Circ. Res. 103, 717-725
   Abstract »    Full Text »    PDF »
Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-{kappa}B and p53 modulation.
S. Monteghirfo, F. Tosetti, C. Ambrosini, S. Stigliani, S. Pozzi, F. Frassoni, G. Fassina, S. Soverini, A. Albini, and N. Ferrari (2008)
Mol. Cancer Ther. 7, 2692-2702
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3-kinase signaling in mammalian preimplantation embryo development.
C. O'Neill (2008)
Reproduction 136, 147-156
   Abstract »    Full Text »    PDF »
Elevated Levels of Oncogenic Protein Kinase Pim-1 Induce the p53 Pathway in Cultured Cells and Correlate with Increased Mdm2 in Mantle Cell Lymphoma.
C. Hogan, C. Hutchison, L. Marcar, D. Milne, M. Saville, J. Goodlad, N. Kernohan, and D. Meek (2008)
J. Biol. Chem. 283, 18012-18023
   Abstract »    Full Text »    PDF »
p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK.
K. A. Boehme, R. Kulikov, and C. Blattner (2008)
PNAS 105, 7785-7790
   Abstract »    Full Text »    PDF »
Phosphorylation of MDMX Mediated by Akt Leads to Stabilization and Induces 14-3-3 Binding.
V. Lopez-Pajares, M. M. Kim, and Z.-M. Yuan (2008)
J. Biol. Chem. 283, 13707-13713
   Abstract »    Full Text »    PDF »
The potential roles for embryotrophic ligands in preimplantation embryo development.
C. O'Neill (2008)
Hum. Reprod. Update 14, 275-288
   Abstract »    Full Text »    PDF »
Silencing Bcl-2 in models of mantle cell lymphoma is associated with decreases in cyclin D1, nuclear factor-{kappa}B, p53, bax, and p27 levels.
C. A. Tucker, A. I. Kapanen, G. Chikh, B. G. Hoffman, A. H. Kyle, I. M. Wilson, D. Masin, R. D. Gascoyne, M. Bally, and R. J. Klasa (2008)
Mol. Cancer Ther. 7, 749-758
   Abstract »    Full Text »    PDF »
AKT-sensitive or insensitive pathways of toxicity in glial cells and neurons in Drosophila models of Huntington's disease.
J.-C. Lievens, M. Iche, M. Laval, C. Faivre-Sarrailh, and S. Birman (2008)
Hum. Mol. Genet. 17, 882-894
   Abstract »    Full Text »    PDF »
An Actin-Binding Protein Girdin Regulates the Motility of Breast Cancer Cells.
P. Jiang, A. Enomoto, M. Jijiwa, T. Kato, T. Hasegawa, M. Ishida, T. Sato, N. Asai, Y. Murakumo, and M. Takahashi (2008)
Cancer Res. 68, 1310-1318
   Abstract »    Full Text »    PDF »
Mechanisms underlying p53 regulation of PIK3CA transcription in ovarian surface epithelium and in ovarian cancer.
A. Astanehe, D. Arenillas, W. W. Wasserman, P. C. K. Leung, S. E. Dunn, B. R. Davies, G. B. Mills, and N. Auersperg (2008)
J. Cell Sci. 121, 664-674
   Abstract »    Full Text »    PDF »
AKT signaling promotes derivation of embryonic germ cells from primordial germ cells.
T. Kimura, M. Tomooka, N. Yamano, K. Murayama, S. Matoba, H. Umehara, Y. Kanai, and T. Nakano (2008)
Development 135, 869-879
   Abstract »    Full Text »    PDF »
Regulation of Angiogenic Factors by HDM2 in Renal Cell Carcinoma.
V. A. Carroll and M. Ashcroft (2008)
Cancer Res. 68, 545-552
   Abstract »    Full Text »    PDF »
Epidermal Growth Factor Receptor Pathway Analysis Identifies Amphiregulin as a Key Factor for Cisplatin Resistance of Human Breast Cancer Cells.
N. Eckstein, K. Servan, L. Girard, D. Cai, G. von Jonquieres, U. Jaehde, M. U. Kassack, A. F. Gazdar, J. D. Minna, and H.-D. Royer (2008)
J. Biol. Chem. 283, 739-750
   Abstract »    Full Text »    PDF »
A Vascular Targeted Pan Phosphoinositide 3-Kinase Inhibitor Prodrug, SF1126, with Antitumor and Antiangiogenic Activity.
J. R. Garlich, P. De, N. Dey, J. D. Su, X. Peng, A. Miller, R. Murali, Y. Lu, G. B. Mills, V. Kundra, et al. (2008)
Cancer Res. 68, 206-215
   Abstract »    Full Text »    PDF »
The Oncoprotein SS18-SSX1 Promotes p53 Ubiquitination and Degradation by Enhancing HDM2 Stability.
P. D'Arcy, W. Maruwge, B. A. Ryan, and B. Brodin (2008)
Mol. Cancer Res. 6, 127-138
   Abstract »    Full Text »    PDF »
The Structure of a Human p110{alpha}/p85{alpha} Complex Elucidates the Effects of Oncogenic PI3K{alpha} Mutations.
C.-H. Huang, D. Mandelker, O. Schmidt-Kittler, Y. Samuels, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, S. B. Gabelli, and L. M. Amzel (2007)
Science 318, 1744-1748
   Abstract »    Full Text »    PDF »
p53 Is a Key Molecular Target of Ursodeoxycholic Acid in Regulating Apoptosis.
J. D. Amaral, R. E. Castro, S. Sola, C. J. Steer, and C. M. P. Rodrigues (2007)
J. Biol. Chem. 282, 34250-34259
   Abstract »    Full Text »    PDF »
Growth inhibition of non-small-cell lung carcinoma by BN/GRP antagonist is linked with suppression of K-Ras, COX-2, and pAkt.
F. Hohla, A. V. Schally, C. A. Kanashiro, S. Buchholz, B. Baker, C. Kannadka, A. Moder, E. Aigner, C. Datz, and G. Halmos (2007)
PNAS 104, 18671-18676
   Abstract »    Full Text »    PDF »
Respiratory Syncytial Virus Decreases p53 Protein to Prolong Survival of Airway Epithelial Cells.
D. J. Groskreutz, M. M. Monick, T. O. Yarovinsky, L. S. Powers, D. E. Quelle, S. M. Varga, D. C. Look, and G. W. Hunninghake (2007)
J. Immunol. 179, 2741-2747
   Abstract »    Full Text »    PDF »
Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse beta-cells.
S. Pugazhenthi, L. Akhov, G. Selvaraj, M. Wang, and J. Alam (2007)
Am J Physiol Endocrinol Metab 293, E645-E655
   Abstract »    Full Text »    PDF »
OSU-03012, a Novel Celecoxib Derivative, Is Cytotoxic to Myeloma Cells and Acts through Multiple Mechanisms.
S. Zhang, A. Suvannasankha, C. D. Crean, V. L. White, A. Johnson, C.-S. Chen, and S. S. Farag (2007)
Clin. Cancer Res. 13, 4750-4758
   Abstract »    Full Text »    PDF »
Molecular Pathways for Cancer Angioprevention.
A. Albini, D. M. Noonan, and N. Ferrari (2007)
Clin. Cancer Res. 13, 4320-4325
   Abstract »    Full Text »    PDF »
Regulation of the Pro-apoptotic Scaffolding Protein POSH by Akt.
T. R. Lyons, J. Thorburn, P. W. Ryan, A. Thorburn, S. M. Anderson, and C. K. Kassenbrock (2007)
J. Biol. Chem. 282, 21987-21997
   Abstract »    Full Text »    PDF »
PTEN, more than the AKT pathway.
C. Blanco-Aparicio, O. Renner, J. F. M. Leal, and A. Carnero (2007)
Carcinogenesis 28, 1379-1386
   Abstract »    Full Text »    PDF »
G{alpha}12/13 Basally Regulates p53 through Mdm4 Expression.
M.-S. Kim, S. M. Lee, W. D. Kim, S. H. Ki, A. Moon, C. H. Lee, and S. G. Kim (2007)
Mol. Cancer Res. 5, 473-484
   Abstract »    Full Text »    PDF »
Antiproliferative Autoantigen CDA1 Transcriptionally Up-regulates p21Waf1/Cip1 by Activating p53 and MEK/ERK1/2 MAPK Pathways.
Y. Tu, W. Wu, T. Wu, Z. Cao, R. Wilkins, B.-H. Toh, M. E. Cooper, and Z. Chai (2007)
J. Biol. Chem. 282, 11722-11731
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinase Kinase Inhibition Enhances Nuclear Proapoptotic Function of p53 in Acute Myelogenous Leukemia Cells.
K. Kojima, M. Konopleva, I. J. Samudio, V. Ruvolo, and M. Andreeff (2007)
Cancer Res. 67, 3210-3219
   Abstract »    Full Text »    PDF »
MDM2 Splice Variants Predominantly Localize to the Nucleoplasm Mediated by a COOH-Terminal Nuclear Localization Signal.
K. Schuster, L. Fan, and L. C. Harris (2007)
Mol. Cancer Res. 5, 403-412
   Abstract »    Full Text »    PDF »
Met acts on Mdm2 via mTOR to signal cell survival during development.
A. Moumen, S. Patane, A. Porras, R. Dono, and F. Maina (2007)
Development 134, 1443-1451
   Abstract »    Full Text »    PDF »
Twist Transcriptionally Up-regulates AKT2 in Breast Cancer Cells Leading to Increased Migration, Invasion, and Resistance to Paclitaxel.
G. Z. Cheng, J. Chan, Q. Wang, W. Zhang, C. D. Sun, and L.-H. Wang (2007)
Cancer Res. 67, 1979-1987
   Abstract »    Full Text »    PDF »
Curcumin, a Dietary Component, Has Anticancer, Chemosensitization, and Radiosensitization Effects by Down-regulating the MDM2 Oncogene through the PI3K/mTOR/ETS2 Pathway.
M. Li, Z. Zhang, D. L. Hill, H. Wang, and R. Zhang (2007)
Cancer Res. 67, 1988-1996
   Abstract »    Full Text »    PDF »
The Akt inhibitor deguelin, is an angiopreventive agent also acting on the NF-{kappa}B pathway.
R. Dell'Eva, C. Ambrosini, S. Minghelli, D. M. Noonan, A. Albini, and N. Ferrari (2007)
Carcinogenesis 28, 404-413
   Abstract »    Full Text »    PDF »
MEK-ERK-mediated Phosphorylation of Mdm2 at Ser-166 in Hepatocytes: Mdm2 IS ACTIVATED IN RESPONSE TO INHIBITED Akt SIGNALING.
M. Malmlof, E. Roudier, J. Hogberg, and U. Stenius (2007)
J. Biol. Chem. 282, 2288-2296
   Abstract »    Full Text »    PDF »
Nutlin3 Blocks Vascular Endothelial Growth Factor Induction by Preventing the Interaction between Hypoxia Inducible Factor 1{alpha} and Hdm2.
G. A. LaRusch, M. W. Jackson, J. D. Dunbar, R. S. Warren, D. B. Donner, and L. D. Mayo (2007)
Cancer Res. 67, 450-454
   Abstract »    Full Text »    PDF »
Activation of p53-Dependent Growth Suppression in Human Cells by Mutations in PTEN or PIK3CA.
J.-S. Kim, C. Lee, C. L. Bonifant, H. Ressom, and T. Waldman (2007)
Mol. Cell. Biol. 27, 662-677
   Abstract »    Full Text »    PDF »
Human MDM2 Isoforms Translated Differentially on Constitutive versus p53-Regulated Transcripts Have Distinct Functions in the p53/MDM2 and TSG101/MDM2 Feedback Control Loops.
T.-H. Cheng and S. N. Cohen (2007)
Mol. Cell. Biol. 27, 111-119
   Abstract »    Full Text »    PDF »
MDM2 Is Required for Suppression of Apoptosis by Activated Akt1 in Salivary Acinar Cells.
K. H. Limesand, K. L. Schwertfeger, and S. M. Anderson (2006)
Mol. Cell. Biol. 26, 8840-8856
   Abstract »    Full Text »    PDF »
Regulation of the Ring Finger E3 Ligase Siah2 by p38 MAPK.
A. Khurana, K. Nakayama, S. Williams, R. J. Davis, T. Mustelin, and Z. Ronai (2006)
J. Biol. Chem. 281, 35316-35326
   Abstract »    Full Text »    PDF »
Statins induce mammalian target of rapamycin (mTOR)-mediated inhibition of Akt signaling and sensitize p53-deficient cells to cytostatic drugs..
E. Roudier, O. Mistafa, and U. Stenius (2006)
Mol. Cancer Ther. 5, 2706-2715
   Abstract »    Full Text »    PDF »
PYK2 mediates anti-apoptotic AKT signaling in response to benzo[a]pyrene diol epoxide in mammary epithelial cells.
A. D. Burdick, I. D. Ivnitski-Steele, F. T. Lauer, and S. W. Burchiel (2006)
Carcinogenesis 27, 2331-2340
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882