Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 98 (22): 12742-12747

Copyright © 2001 by the National Academy of Sciences.

From the Cover


BIOLOGICAL SCIENCES / NEUROBIOLOGY

Regulation of NMDA receptors by cyclin-dependent kinase-5

Bing-Sheng Li*, Miao-Kun Sun{dagger}, Lei Zhang{ddagger}, Satoru Takahashi§, Wu Ma, Lucia Vinade||, Ashok B. Kulkarni§, Roscoe O. Brady**, and Harish C. Pant*,{ddagger}{ddagger}

*Laboratory of Neurochemistry, {dagger}Laboratory of Adaptive Systems, and ||Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892; {ddagger}Behavioral Endocrinology Branch, National Institute of Mental Health, and §Functional Genomics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375; and **Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892

Contributed by Roscoe O. Brady

Accepted for publication August 14, 2001.

Abstract: Members of the N-methyl-D-aspartate (NMDA) class of glutamate receptors (NMDARs) are critical for development, synaptic transmission, learning and memory; they are targets of pathological disorders in the central nervous system. NMDARs are phosphorylated by both serine/threonine and tyrosine kinases. Here, we demonstrate that cyclin dependent kinase-5 (Cdk5) associates with and phosphorylates NR2A subunits at Ser-1232 in vitro and in intact cells. Moreover, we show that roscovitine, a selective Cdk5 inhibitor, blocks both long-term potentiation induction and NMDA-evoked currents in rat CA1 hippocampal neurons. These results suggest that Cdk5 plays a key role in synaptic transmission and plasticity through its up-regulation of NMDARs.


{ddagger}{ddagger} To whom reprint requests should be addressed at: Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 36, Rm 4D24, 9000 Rockville Pike, Bethesda, MD 20892-4130. E-mail: panth{at}ninds.nih.gov.

See commentary on page 12323.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cyclin-dependent Kinase 5 (Cdk5) Regulates the Function of CLOCK Protein by Direct Phosphorylation.
Y. Kwak, J. Jeong, S. Lee, Y.-U. Park, S.-A. Lee, D.-H. Han, J.-H. Kim, T. Ohshima, K. Mikoshiba, Y.-H. Suh, et al. (2013)
J. Biol. Chem. 288, 36878-36889
   Abstract »    Full Text »    PDF »
CDK5 interacts with Slo and affects its surface expression and kinetics through direct phosphorylation.
J.-P. Bai, A. Surguchev, P. Joshi, L. Gross, and D. Navaratnam (2012)
Am J Physiol Cell Physiol 302, C766-C780
   Abstract »    Full Text »    PDF »
Chemical modulation of memory formation in larval zebrafish.
M. A. Wolman, R. A. Jain, L. Liss, and M. Granato (2011)
PNAS 108, 15468-15473
   Abstract »    Full Text »    PDF »
Glutamate Receptor Ion Channels: Structure, Regulation, and Function.
S. F. Traynelis, L. P. Wollmuth, C. J. McBain, F. S. Menniti, K. M. Vance, K. K. Ogden, K. B. Hansen, H. Yuan, S. J. Myers, and R. Dingledine (2010)
Pharmacol. Rev. 62, 405-496
   Abstract »    Full Text »    PDF »
Basolateral Amygdala Cdk5 Activity Mediates Consolidation and Reconsolidation of Memories for Cocaine Cues.
F.-q. Li, Y.-x. Xue, J.-s. Wang, Q. Fang, Y.-q. Li, W.-L. Zhu, Y.-y. He, J.-f. Liu, L.-f. Xue, Y. Shaham, et al. (2010)
J. Neurosci. 30, 10351-10359
   Abstract »    Full Text »    PDF »
Intracellular Redox State Alters NMDA Receptor Response during Aging through Ca2+/Calmodulin-Dependent Protein Kinase II.
K. Bodhinathan, A. Kumar, and T. C. Foster (2010)
J. Neurosci. 30, 1914-1924
   Abstract »    Full Text »    PDF »
Essential Role of Cytoplasmic cdk5 and Prx2 in Multiple Ischemic Injury Models, In Vivo.
J. Rashidian, M. W. Rousseaux, K. Venderova, D. Qu, S. M. Callaghan, M. Phillips, R. J. Bland, M. J. During, Z. Mao, R. S. Slack, et al. (2009)
J. Neurosci. 29, 12497-12505
   Abstract »    Full Text »    PDF »
Estrogen-dependent facilitation on spinal reflex potentiation involves the Cdk5/ERK1/2/NR2B cascade in anesthetized rats.
H.-Y. Peng, G.-D. Chen, K.-C. Tung, Y.-W. Chien, C.-Y. Lai, M.-C. Hsieh, C.-H. Chiu, C.-H. Lai, S.-D. Lee, and T.-B. Lin (2009)
Am J Physiol Endocrinol Metab 297, E416-E426
   Abstract »    Full Text »    PDF »
Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity.
C. Maestre, M. Delgado-Esteban, J. C. Gomez-Sanchez, J. P. Bolanos, and A. Almeida (2008)
EMBO J. 27, 2736-2745
   Abstract »    Full Text »    PDF »
Cdk5 Regulates the Phosphorylation of Tyrosine 1472 NR2B and the Surface Expression of NMDA Receptors.
S. Zhang, L. Edelmann, J. Liu, J. E. Crandall, and M. A. Morabito (2008)
J. Neurosci. 28, 415-424
   Abstract »    Full Text »    PDF »
CDK-5 Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Cord of Caenorhabditis elegans.
P. Juo, T. Harbaugh, G. Garriga, and J. M. Kaplan (2007)
Mol. Biol. Cell 18, 3883-3893
   Abstract »    Full Text »    PDF »
Regulation of Protein Phosphatase Inhibitor-1 by Cyclin-dependent Kinase 5.
C. Nguyen, A. Nishi, J. W. Kansy, J. Fernandez, K. Hayashi, F. Gillardon, H. C. Hemmings Jr., A. C. Nairn, and J. A. Bibb (2007)
J. Biol. Chem. 282, 16511-16520
   Abstract »    Full Text »    PDF »
Phosphatidylinositol-4,5-Bisphosphate Regulates NMDA Receptor Activity through {alpha}-Actinin.
I. E. Michailidis, T. D. Helton, V. I. Petrou, T. Mirshahi, M. D. Ehlers, and D. E. Logothetis (2007)
J. Neurosci. 27, 5523-5532
   Abstract »    Full Text »    PDF »
Phosphorylation of Adult Type Sept5 (CDCrel-1) by Cyclin-dependent Kinase 5 Inhibits Interaction with Syntaxin-1.
M. Taniguchi, M. Taoka, M. Itakura, A. Asada, T. Saito, M. Kinoshita, M. Takahashi, T. Isobe, and S.-i. Hisanaga (2007)
J. Biol. Chem. 282, 7869-7876
   Abstract »    Full Text »    PDF »
Effects of Glycogen Synthase Kinase 3beta and Cyclin-Dependent Kinase 5 Inhibitors on Morphine-Induced Analgesia and Tolerance in Rats.
J. R. Parkitna, I. Obara, A. Wawrzczak-Bargiela, W. Makuch, B. Przewlocka, and R. Przewlocki (2006)
J. Pharmacol. Exp. Ther. 319, 832-839
   Abstract »    Full Text »    PDF »
Cyclin-dependent kinase 5 activity regulates pain signaling.
T. K. Pareek, J. Keller, S. Kesavapany, H. C. Pant, M. J. Iadarola, R. O. Brady, and A. B. Kulkarni (2006)
PNAS 103, 791-796
   Abstract »    Full Text »    PDF »
Roscovitine Triggers Excitotoxicity in Cultured Granule Neurons by Enhancing Glutamate Release.
E. A. Monaco III and M. L. Vallano (2005)
Mol. Pharmacol. 68, 1331-1342
   Abstract »    Full Text »    PDF »
Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice.
A. K. Y. Fu, F. C. F. Ip, W.-Y. Fu, J. Cheung, J. H. Wang, W.-H. Yung, and N. Y. Ip (2005)
PNAS 102, 15224-15230
   Abstract »    Full Text »    PDF »
Regulation of NMDA Receptors by Neuregulin Signaling in Prefrontal Cortex.
Z. Gu, Q. Jiang, A. K. Y. Fu, N. Y. Ip, and Z. Yan (2005)
J. Neurosci. 25, 4974-4984
   Abstract »    Full Text »    PDF »
A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons.
Y.-L. Zheng, S. Kesavapany, M. Gravell, R. S. Hamilton, M. Schubert, N. Amin, W. Albers, P. Grant, and H. C. Pant (2005)
EMBO J. 24, 209-220
   Abstract »    Full Text »    PDF »
Cdk5 and Trio modulate endocrine cell exocytosis.
X. Xin, F. Ferraro, N. Back, B. A. Eipper, and R. E. Mains (2004)
J. Cell Sci. 117, 4739-4748
   Abstract »    Full Text »    PDF »
Reelin and Cyclin-Dependent Kinase 5-Dependent Signals Cooperate in Regulating Neuronal Migration and Synaptic Transmission.
U. Beffert, E. J. Weeber, G. Morfini, J. Ko, S. T. Brady, L.-H. Tsai, J. D. Sweatt, and J. Herz (2004)
J. Neurosci. 24, 1897-1906
   Abstract »    Full Text »    PDF »
Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum.
K. Chergui, P. Svenningsson, and P. Greengard (2004)
PNAS 101, 2191-2196
   Abstract »    Full Text »    PDF »
Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex.
J. P. Tyszkiewicz, Z. Gu, X. Wang, X. Cai, and Z. Yan (2004)
J. Physiol. 554, 765-777
   Abstract »    Full Text »    PDF »
Cyclin-Dependent Kinase 5 Phosphorylates the N-Terminal Domain of the Postsynaptic Density Protein PSD-95 in Neurons.
M. A. Morabito, M. Sheng, and L.-H. Tsai (2004)
J. Neurosci. 24, 865-876
   Abstract »    Full Text »    PDF »
Intracellular Domains of NMDA Receptor Subtypes Are Determinants for Long-Term Potentiation Induction.
G. Kohr, V. Jensen, H. J. Koester, A. L. A. Mihaljevic, J. K. Utvik, A. Kvello, O. P. Ottersen, P. H. Seeburg, R. Sprengel, and O. Hvalby (2003)
J. Neurosci. 23, 10791-10799
   Abstract »    Full Text »    PDF »
Cyclin-dependent Kinase-5 Is Involved in Neuregulin-dependent Activation of Phosphatidylinositol 3-Kinase and Akt Activity Mediating Neuronal Survival.
B.-S. Li, W. Ma, H. Jaffe, Y. Zheng, S. Takahashi, L. Zhang, A. B. Kulkarni, and H. C. Pant (2003)
J. Biol. Chem. 278, 35702-35709
   Abstract »    Full Text »    PDF »
The Cyclin-Dependent Kinase 5 Activators p35 and p39 Interact with the alpha -Subunit of Ca2+/Calmodulin-Dependent Protein Kinase II and alpha -Actinin-1 in a Calcium-Dependent Manner.
R. Dhavan, P. L. Greer, M. A. Morabito, L. R. Orlando, and L.-H. Tsai (2002)
J. Neurosci. 22, 7879-7891
   Abstract »    Full Text »    PDF »
Pctaire1 Interacts with p35 and Is a Novel Substrate for Cdk5/p35.
K. Cheng, Z. Li, W.-Y. Fu, J. H. Wang, A. K. Y. Fu, and N. Y. Ip (2002)
J. Biol. Chem. 277, 31988-31993
   Abstract »    Full Text »    PDF »
Cyclin-Dependent Kinase 5 Is Required for Associative Learning.
A. Fischer, F. Sananbenesi, C. Schrick, J. Spiess, and J. Radulovic (2002)
J. Neurosci. 22, 3700-3707
   Abstract »    Full Text »    PDF »
Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons.
Z. Yan, P. Chi, J. A Bibb, T. A Ryan, and P. Greengard (2002)
J. Physiol. 540, 761-770
   Abstract »    Full Text »    PDF »
Telling tails.
M. B. Kennedy and P. Manzerra (2001)
PNAS 98, 12323-12324
   Full Text »    PDF »
Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons.
Z. Yan, P. Chi, J. A Bibb, T. A Ryan, and P. Greengard (2002)
J. Physiol. 540, 761-770
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882