Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 98 (23): 13049-13054

Copyright © 2001 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / CELL BIOLOGY

A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell

Thomas C. Rich*, Kent A. Fagan{dagger}, Tonia E. Tse*, Jerome Schaack{ddagger}, Dermot M. F. Cooper{dagger}, and Jeffrey W. Karpen*,§

Departments of *Physiology and Biophysics, {dagger}Pharmacology, and {ddagger}Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262

Received for publication July 23, 2001.

Abstract: cAMP, the classical second messenger, regulates many diverse cellular functions. The primary effector of cAMP signals, protein kinase A, differentially phosphorylates hundreds of cellular targets. Little is known, however, about the spatial and temporal nature of cAMP signals and their information content. Thus, it is largely unclear how cAMP, in response to different stimuli, orchestrates such a wide variety of cellular responses. Previously, we presented evidence that cAMP is produced in subcellular compartments near the plasma membrane, and that diffusion of cAMP from these compartments to the bulk cytosol is hindered. Here we report that a uniform extracellular stimulus initiates distinct cAMP signals within different cellular compartments. By using cyclic nucleotide-gated ion channels engineered as cAMP biosensors, we found that prostaglandin E1 stimulation of human embryonic kidney cells caused a transient increase in cAMP concentration near the membrane. Interestingly, in the same time frame, the total cellular cAMP rose to a steady level. The decline in cAMP levels near the membrane was prevented by pretreatment with phosphodiesterase inhibitors. These data demonstrate that spatially and temporally distinct cAMP signals can coexist within simple cells.


§ To whom reprint requests should be addressed at: Department of Physiology and Biophysics, Box C-240, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262. E-mail: jeffrey.karpen{at}uchsc.edu.

Edited by Bertil Hille, University of Washington, Seattle, WA, and approved September 5, 2001

This paper was submitted directly (Track II) to the PNAS office.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Inactivation of the Carney complex gene 1 (PRKAR1A) alters spatiotemporal regulation of cAMP and cAMP-dependent protein kinase: a study using genetically encoded FRET-based reporters.
L. Cazabat, B. Ragazzon, A. Varin, M. Potier-Cartereau, C. Vandier, D. Vezzosi, M. Risk-Rabin, A. Guellich, J. Schittl, P. Lechene, et al. (2014)
Hum. Mol. Genet. 23, 1163-1174
   Abstract »    Full Text »    PDF »
Perspectives on: Cyclic nucleotide microdomains and signaling specificity.
J. W. Karpen (2014)
J. Gen. Physiol. 143, 5-7
   Full Text »    PDF »
Perspectives on: Cyclic nucleotide microdomains and signaling specificity: Mechanisms of cyclic AMP compartmentation revealed by computational models.
J. J. Saucerman, E. C. Greenwald, and R. Polanowska-Grabowska (2014)
J. Gen. Physiol. 143, 39-48
   Full Text »    PDF »
Perspectives on: Cyclic nucleotide microdomains and signaling specificity: Cyclic AMP compartments and signaling specificity: Role of cyclic nucleotide phosphodiesterases.
M. Conti, D. Mika, and W. Richter (2014)
J. Gen. Physiol. 143, 29-38
   Full Text »    PDF »
Perspectives on: Cyclic nucleotide microdomains and signaling specificity: Can we decipher the information content contained within cyclic nucleotide signals?.
T. C. Rich, K. J. Webb, and S. J. Leavesley (2014)
J. Gen. Physiol. 143, 17-27
   Full Text »    PDF »
Role of phosphodiesterases in the shaping of sub-plasma-membrane cAMP oscillations and pulsatile insulin secretion.
G. Tian, J. Sagetorp, Y. Xu, H. Shuai, E. Degerman, and A. Tengholm (2012)
J. Cell Sci. 125, 5084-5095
   Abstract »    Full Text »    PDF »
A-kinase anchoring proteins regulate compartmentalized cAMP signaling in airway smooth muscle.
S. J. Horvat, D. A. Deshpande, H. Yan, R. A. Panettieri, J. Codina, T. D. DuBose Jr., W. Xin, T. C. Rich, and R. B. Penn (2012)
FASEB J 26, 3670-3679
   Abstract »    Full Text »    PDF »
Quantification of high-specificity cyclic diguanylate signaling.
J. P. Massie, E. L. Reynolds, B. J. Koestler, J.-P. Cong, M. Agostoni, and C. M. Waters (2012)
PNAS 109, 12746-12751
   Abstract »    Full Text »    PDF »
All Preconditioning-Related G Protein-Coupled Receptors Can Be Demonstrated in the Rabbit Cardiomyocyte.
W. Xin, X. Yang, T. C. Rich, T. Krieg, R. Barrington, M. V. Cohen, and J. M. Downey (2012)
Journal of Cardiovascular Pharmacology and Therapeutics 17, 190-198
   Abstract »    Full Text »    PDF »
Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling.
M. J. Lohse, S. Nuber, and C. Hoffmann (2012)
Pharmacol. Rev. 64, 299-336
   Abstract »    Full Text »    PDF »
Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells.
W. P. Feinstein, B. Zhu, S. J. Leavesley, S. L. Sayner, and T. C. Rich (2012)
Am J Physiol Cell Physiol 302, C839-C852
   Abstract »    Full Text »    PDF »
How uniform is cAMP signaling? Focus on "Systems analysis of GLP-1 receptor signaling in pancreatic {beta}-cells".
R. D. Harvey (2011)
Am J Physiol Cell Physiol 301, C775-C776
   Full Text »    PDF »
Inactivation of Multidrug Resistance Proteins Disrupts Both Cellular Extrusion and Intracellular Degradation of cAMP.
M. Xie, T. C. Rich, C. Scheitrum, M. Conti, and W. Richter (2011)
Mol. Pharmacol. 80, 281-293
   Abstract »    Full Text »    PDF »
Emerging themes of cAMP regulation of the pulmonary endothelial barrier.
S. L. Sayner (2011)
Am J Physiol Lung Cell Mol Physiol 300, L667-L678
   Abstract »    Full Text »    PDF »
PDE4D and PDE4B Function in Distinct Subcellular Compartments in Mouse Embryonic Fibroblasts.
B. E. Blackman, K. Horner, J. Heidmann, D. Wang, W. Richter, T. C. Rich, and M. Conti (2011)
J. Biol. Chem. 286, 12590-12601
   Abstract »    Full Text »    PDF »
Radixin Assembles cAMP Effectors Epac and PKA into a Functional cAMP Compartment: ROLE IN cAMP-DEPENDENT CELL PROLIFERATION.
D. Hochbaum, G. Barila, F. Ribeiro-Neto, and D. L. Altschuler (2011)
J. Biol. Chem. 286, 859-866
   Abstract »    Full Text »    PDF »
The N Terminus of Phosphodiesterase TbrPDEB1 of Trypanosoma brucei Contains the Signal for Integration into the Flagellar Skeleton.
E. Luginbuehl, D. Ryter, J. Schranz-Zumkehr, M. Oberholzer, S. Kunz, and T. Seebeck (2010)
Eukaryot. Cell 9, 1466-1475
   Abstract »    Full Text »    PDF »
Cell Specific Dopamine Modulation of the Transient Potassium Current in the Pyloric Network by the Canonical D1 Receptor Signal Transduction Cascade.
H. Zhang, E. W. Rodgers, W.-D. C. Krenz, M. C. Clark, and D. J. Baro (2010)
J Neurophysiol 104, 873-884
   Abstract »    Full Text »    PDF »
Type 4 Phosphodiesterase Plays Different Integrating Roles in Different Cellular Domains in Pyramidal Cortical Neurons.
L. R. V. Castro, N. Gervasi, E. Guiot, L. Cavellini, V. O. Nikolaev, D. Paupardin-Tritsch, and P. Vincent (2010)
J. Neurosci. 30, 6143-6151
   Abstract »    Full Text »    PDF »
Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells.
S. Wachten, N. Masada, L.-J. Ayling, A. Ciruela, V. O. Nikolaev, M. J. Lohse, and D. M. F. Cooper (2010)
J. Cell Sci. 123, 95-106
   Abstract »    Full Text »    PDF »
Ca2+ entry via {alpha}1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium.
S. Wu, M.-Y. Jian, Y.-C. Xu, C. Zhou, A.-B. Al-Mehdi, W. Liedtke, H.-S. Shin, and M. I. Townsley (2009)
Am J Physiol Lung Cell Mol Physiol 297, L650-L657
   Abstract »    Full Text »    PDF »
Mapping the Regulator of G Protein Signaling 4 (RGS4): Presynaptic and Postsynaptic Substrates for Neuroregulation in Prefrontal Cortex.
C. D. Paspalas, L. D. Selemon, and A. F. T. Arnsten (2009)
Cereb Cortex 19, 2145-2155
   Abstract »    Full Text »    PDF »
Supramolecular Assemblies and Localized Regulation of Voltage-Gated Ion Channels.
S. Dai, D. D. Hall, and J. W. Hell (2009)
Physiol Rev 89, 411-452
   Abstract »    Full Text »    PDF »
Spatial Distribution of Protein Kinase A Activity during Cell Migration Is Mediated by A-kinase Anchoring Protein AKAP Lbc.
A. A. Paulucci-Holthauzen, L. A. Vergara, L. J. Bellot, D. Canton, J. D. Scott, and K. L. O'Connor (2009)
J. Biol. Chem. 284, 5956-5967
   Abstract »    Full Text »    PDF »
Spatiotemporal Dynamics of {beta}-Adrenergic cAMP Signals and L-Type Ca2+ Channel Regulation in Adult Rat Ventricular Myocytes: Role of Phosphodiesterases.
J. Leroy, A. Abi-Gerges, V. O. Nikolaev, W. Richter, P. Lechene, J.-L. Mazet, M. Conti, R. Fischmeister, and G. Vandecasteele (2008)
Circ. Res. 102, 1091-1100
   Abstract »    Full Text »    PDF »
Roles of GRK and PDE4 Activities in the Regulation of {beta}2 Adrenergic Signaling.
W. Xin, T. M. Tran, W. Richter, R. B. Clark, and T. C. Rich (2008)
J. Gen. Physiol. 131, 349-364
   Abstract »    Full Text »    PDF »
Signaling from {beta}1- and {beta}2-adrenergic receptors is defined by differential interactions with PDE4.
W. Richter, P. Day, R. Agrawal, M. D. Bruss, S. Granier, Y. L. Wang, S. G. F. Rasmussen, K. Horner, P. Wang, T. Lei, et al. (2008)
EMBO J. 27, 384-393
   Abstract »    Full Text »    PDF »
Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation.
J. Creighton, B. Zhu, M. Alexeyev, and T. Stevens (2008)
J. Cell Sci. 121, 110-119
   Abstract »    Full Text »    PDF »
Dynamic Regulation, Desensitization, and Cross-talk in Discrete Subcellular Microdomains during beta2-Adrenoceptor and Prostanoid Receptor cAMP Signaling.
D. Willoughby, G. S. Baillie, M. J. Lynch, A. Ciruela, M. D. Houslay, and D. M. F. Cooper (2007)
J. Biol. Chem. 282, 34235-34249
   Abstract »    Full Text »    PDF »
Organization and Ca2+ Regulation of Adenylyl Cyclases in cAMP Microdomains.
D. Willoughby and D. M. F. Cooper (2007)
Physiol Rev 87, 965-1010
   Abstract »    Full Text »    PDF »
cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes.
S. Warrier, G. Ramamurthy, R. L. Eckert, V. O. Nikolaev, M. J. Lohse, and R. D. Harvey (2007)
J. Physiol. 580, 765-776
   Abstract »    Full Text »    PDF »
Expression of the cAMP-Phosphodiesterase PDE4D Isoforms and Age-Related Changes in Follicle-Stimulating Hormone-Stimulated PDE4 Activities in Immature Rat Sertoli Cells.
G. Levallet, J. Levallet, H. Bouraima-Lelong, and P.-J. Bonnamy (2007)
Biol Reprod 76, 794-803
   Abstract »    Full Text »    PDF »
Dynamics of Protein Kinase A Signaling at the Membrane, in the Cytosol, and in the Nucleus of Neurons in Mouse Brain Slices.
N. Gervasi, R. Hepp, L. Tricoire, J. Zhang, B. Lambolez, D. Paupardin-Tritsch, and P. Vincent (2007)
J. Neurosci. 27, 2744-2750
   Abstract »    Full Text »    PDF »
Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent K+ channels in cerebellar neurons.
J. Ster, F. De Bock, N. C. Guerineau, A. Janossy, S. Barrere-Lemaire, J. L. Bos, J. Bockaert, and L. Fagni (2007)
PNAS 104, 2519-2524
   Abstract »    Full Text »    PDF »
Cyclic Nucleotide Phosphodiesterase (PDE) Inhibitors: Novel Therapeutic Agents for Progressive Renal Disease.
J. Cheng and J. P. Grande (2007)
Experimental Biology and Medicine 232, 38-51
   Abstract »    Full Text »    PDF »
Cellular mechanisms underlying prostaglandin-induced transient cAMP signals near the plasma membrane of HEK-293 cells.
T. C. Rich, W. Xin, C. Mehats, K. A. Hassell, L. A. Piggott, X. Le, J. W. Karpen, and M. Conti (2007)
Am J Physiol Cell Physiol 292, C319-C331
   Abstract »    Full Text »    PDF »
PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases.
A. Terrin, G. Di Benedetto, V. Pertegato, Y.-F. Cheung, G. Baillie, M. J. Lynch, N. Elvassore, A. Prinz, F. W. Herberg, M. D. Houslay, et al. (2006)
J. Cell Biol. 175, 441-451
   Abstract »    Full Text »    PDF »
Kinetics of ion channel modulation by cAMP in rat hippocampal neurones.
B. Lancaster, H. Hu, B. Gibb, and J. F. Storm (2006)
J. Physiol. 576, 403-417
   Abstract »    Full Text »    PDF »
Compartmentation of Cyclic Nucleotide Signaling in the Heart: The Role of Cyclic Nucleotide Phosphodiesterases.
R. Fischmeister, L. R.V. Castro, A. Abi-Gerges, F. Rochais, J. Jurevicius, J. Leroy, and G. Vandecasteele (2006)
Circ. Res. 99, 816-828
   Abstract »    Full Text »    PDF »
Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes.
J. J. Saucerman, J. Zhang, J. C. Martin, L. X. Peng, A. E. Stenbit, R. Y. Tsien, and A. D. McCulloch (2006)
PNAS 103, 12923-12928
   Abstract »    Full Text »    PDF »
Molecules Involved in the Modulation of Rapid Cell Death in Xanthomonas.
K. K. Raju, S. Gautam, and A. Sharma (2006)
J. Bacteriol. 188, 5408-5416
   Abstract »    Full Text »    PDF »
Natriuretic Peptides and Nitric Oxide Stimulate cGMP Synthesis in Different Cellular Compartments.
L. A. Piggott, K. A. Hassell, Z. Berkova, A. P. Morris, M. Silberbach, and T. C. Rich (2006)
J. Gen. Physiol. 128, 3-14
   Abstract »    Full Text »    PDF »
Beyond the dogma: novel {beta}2-adrenoceptor signalling in the airways..
M. A. Giembycz and R. Newton (2006)
Eur. Respir. J. 27, 1286-1306
   Abstract »    Full Text »    PDF »
Second Messenger Pas de Deux: The Coordinated Dance Between Calcium and cAMP.
L. N. Borodinsky and N. C. Spitzer (2006)
Sci. STKE 2006, pe22
   Abstract »    Full Text »    PDF »
An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics.
D. Willoughby, W. Wong, J. Schaack, J. D. Scott, and D. M. F. Cooper (2006)
EMBO J. 25, 2051-2061
   Abstract »    Full Text »    PDF »
A Specific Pattern of Phosphodiesterases Controls the cAMP Signals Generated by Different Gs-Coupled Receptors in Adult Rat Ventricular Myocytes.
F. Rochais, A. Abi-Gerges, K. Horner, F. Lefebvre, D. M.F. Cooper, M. Conti, R. Fischmeister, and G. Vandecasteele (2006)
Circ. Res. 98, 1081-1088
   Abstract »    Full Text »    PDF »
Monitoring of cAMP Synthesis and Degradation in Living Cells.
V. O. Nikolaev and M. J. Lohse (2006)
Physiology 21, 86-92
   Abstract »    Full Text »    PDF »
Differential regulation of endothelial exocytosis of P-selectin and von Willebrand factor by protease-activated receptors and cAMP.
J. H. Cleator, W. Q. Zhu, D. E. Vaughan, and H. E. Hamm (2006)
Blood 107, 2736-2744
   Abstract »    Full Text »    PDF »
Soluble Adenylyl Cyclase Reveals the Significance of cAMP Compartmentation on Pulmonary Microvascular Endothelial Cell Barrier.
S. L. Sayner, M. Alexeyev, C. W. Dessauer, and T. Stevens (2006)
Circ. Res. 98, 675-681
   Abstract »    Full Text »    PDF »
Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP.
D. Willoughby and D. M. F. Cooper (2006)
J. Cell Sci. 119, 828-836
   Abstract »    Full Text »    PDF »
Termination of cAMP signals by Ca2+ and G{alpha}i via extracellular Ca2+ sensors: a link to intracellular Ca2+ oscillations.
A. Gerbino, W. C. Ruder, S. Curci, T. Pozzan, M. Zaccolo, and A. M. Hofer (2005)
J. Cell Biol. 171, 303-312
   Abstract »    Full Text »    PDF »
PKA-Dependent and PKA-Independent Pathways for cAMP-Regulated Exocytosis.
S. Seino and T. Shibasaki (2005)
Physiol Rev 85, 1303-1342
   Abstract »    Full Text »    PDF »
Phosphodiesterase 4D Forms a cAMP Diffusion Barrier at the Apical Membrane of the Airway Epithelium.
A. P. Barnes, G. Livera, P. Huang, C. Sun, W. K. O'Neal, M. Conti, M. J. Stutts, and S. L. Milgram (2005)
J. Biol. Chem. 280, 7997-8003
   Abstract »    Full Text »    PDF »
Introduction: Overview of Pathways and Networks and GPCR Signaling.
R. Iyengar (2005)
Sci. STKE 2005, tr4
   Abstract »    Full Text »    PDF »
Real-time Monitoring of the PDE2 Activity of Live Cells: HORMONE-STIMULATED cAMP HYDROLYSIS IS FASTER THAN HORMONE-STIMULATED cAMP SYNTHESIS.
V. O. Nikolaev, S. Gambaryan, S. Engelhardt, U. Walter, and M. J. Lohse (2005)
J. Biol. Chem. 280, 1716-1719
   Abstract »    Full Text »    PDF »
Phosphodiesterase 4D is required for {beta}2 adrenoceptor subtype-specific signaling in cardiac myocytes.
Y. Xiang, F. Naro, M. Zoudilova, S.-L. C. Jin, M. Conti, and B. Kobilka (2005)
PNAS 102, 909-914
   Abstract »    Full Text »    PDF »
Negative Feedback Exerted by cAMP-dependent Protein Kinase and cAMP Phosphodiesterase on Subsarcolemmal cAMP Signals in Intact Cardiac Myocytes: AN IN VIVO STUDY USING ADENOVIRUS-MEDIATED EXPRESSION OF CNG CHANNELS.
F. Rochais, G. Vandecasteele, F. Lefebvre, C. Lugnier, H. Lum, J.-L. Mazet, D. M. F. Cooper, and R. Fischmeister (2004)
J. Biol. Chem. 279, 52095-52105
   Abstract »    Full Text »    PDF »
Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments.
L. M. DiPilato, X. Cheng, and J. Zhang (2004)
PNAS 101, 16513-16518
   Abstract »    Full Text »    PDF »
Paradoxical cAMP-Induced Lung Endothelial Hyperpermeability Revealed by Pseudomonas aeruginosa ExoY.
S. L. Sayner, D. W. Frank, J. King, H. Chen, J. VandeWaa, and T. Stevens (2004)
Circ. Res. 95, 196-203
   Abstract »    Full Text »    PDF »
Fluorescence Resonance Energy Transfer-Based Analysis of cAMP Dynamics in Live Neonatal Rat Cardiac Myocytes Reveals Distinct Functions of Compartmentalized Phosphodiesterases.
M. Mongillo, T. McSorley, S. Evellin, A. Sood, V. Lissandron, A. Terrin, E. Huston, A. Hannawacker, M. J. Lohse, T. Pozzan, et al. (2004)
Circ. Res. 95, 67-75
   Abstract »    Full Text »    PDF »
Kinetics of a Cellular Nitric Oxide/cGMP/Phosphodiesterase-5 Pathway.
E. Mo, H. Amin, I. H. Bianco, and J. Garthwaite (2004)
J. Biol. Chem. 279, 26149-26158
   Abstract »    Full Text »    PDF »
Discrete Intracellular Signaling Domains of Soluble Adenylyl Cyclase: Camps of cAMP?.
R. A. Bundey and P. A. Insel (2004)
Sci. STKE 2004, pe19
   Abstract »    Full Text »    PDF »
Modeling Interactions Between Electrical Activity and Second-Messenger Cascades in Aplysia Neuron R15.
X. Yu, J. H. Byrne, and D. A. Baxter (2004)
J Neurophysiol 91, 2297-2311
   Abstract »    Full Text »    PDF »
Functional Role of Lipid Raft Microdomains in Cyclic Nucleotide-Gated Channel Activation.
J. D. Brady, T. C. Rich, X. Le, K. Stafford, C. J. Fowler, L. Lynch, J. W. Karpen, R. L. Brown, and J. R. Martens (2004)
Mol. Pharmacol. 65, 503-511
   Abstract »    Full Text »    PDF »
Bicarbonate-responsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain.
J. H. Zippin, J. Farrell, D. Huron, M. Kamenetsky, K. C. Hess, D. A. Fischman, L. R. Levin, and J. Buck (2004)
J. Cell Biol. 164, 527-534
   Abstract »    Full Text »    PDF »
Modeling {beta}-Adrenergic Control of Cardiac Myocyte Contractility in Silico.
J. J. Saucerman, L. L. Brunton, A. P. Michailova, and A. D. McCulloch (2003)
J. Biol. Chem. 278, 47997-48003
   Abstract »    Full Text »    PDF »
What Is the Role of {beta}-Adrenergic Signaling in Heart Failure?.
M. J. Lohse, S. Engelhardt, and T. Eschenhagen (2003)
Circ. Res. 93, 896-906
   Abstract »    Full Text »    PDF »
Angiotensin blocks substance P release from renal sensory nerves by inhibiting PGE2-mediated activation of cAMP.
U. C. Kopp, M. Z. Cicha, and L. A. Smith (2003)
Am J Physiol Renal Physiol 285, F472-F483
   Abstract »    Full Text »    PDF »
Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following {beta}2-adrenergic stimulation of ICa,L in frog ventricular myocytes.
J. Jurevicius, V A. Skeberdis, and R. Fischmeister (2003)
J. Physiol. 551, 239-252
   Abstract »    Full Text »    PDF »
Antagonistic Modulation of a Hyperpolarization-Activated Cl- Current in Aplysia Sensory Neurons by SCPB and FMRFamide.
N. Buttner and S. A. Siegelbaum (2003)
J Neurophysiol 90, 586-598
   Abstract »    Full Text »    PDF »
Targeting of Protein Kinase A by Muscle A Kinase-anchoring Protein (mAKAP) Regulates Phosphorylation and Function of the Skeletal Muscle Ryanodine Receptor.
M. L. Ruehr, M. A. Russell, D. G. Ferguson, M. Bhat, J. Ma, D. S. Damron, J. D. Scott, and M. Bond (2003)
J. Biol. Chem. 278, 24831-24836
   Abstract »    Full Text »    PDF »
HCO-3-dependent soluble adenylyl cyclase activates cystic fibrosis transmembrane conductance regulator in corneal endothelium.
X. C. Sun, C.-B. Zhai, M. Cui, Y. Chen, L. R. Levin, J. Buck, and J. A. Bonanno (2003)
Am J Physiol Cell Physiol 284, C1114-C1122
   Abstract »    Full Text »    PDF »
Cyclic AMP-specific PDE4 Phosphodiesterases as Critical Components of Cyclic AMP Signaling.
M. Conti, W. Richter, C. Mehats, G. Livera, J.-Y. Park, and C. Jin (2003)
J. Biol. Chem. 278, 5493-5496
   Full Text »    PDF »
Coordinate regulation of membrane cAMP by Ca2+-inhibited adenylyl cyclase and phosphodiesterase activities.
J. R. Creighton, N. Masada, D. M. F. Cooper, and T. Stevens (2003)
Am J Physiol Lung Cell Mol Physiol 284, L100-L107
   Abstract »    Full Text »    PDF »
Dimerization of the Type 4 cAMP-specific Phosphodiesterases Is Mediated by the Upstream Conserved Regions (UCRs).
W. Richter and M. Conti (2002)
J. Biol. Chem. 277, 40212-40221
   Abstract »    Full Text »    PDF »
Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase.
D. L. Cioffi, T. M. Moore, J. Schaack, J. R. Creighton, D. M.F. Cooper, and T. Stevens (2002)
J. Cell Biol. 157, 1267-1278
   Abstract »    Full Text »    PDF »
The many dimensions of cAMP signaling.
J. H. Schwartz (2001)
PNAS 98, 13482-13484
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882