Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 98 (25): 14649-14654

Copyright © 2001 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / NEUROBIOLOGY

Function of GB1 and GB2 subunits in G protein coupling of GABAB receptors

Marta Margeta-Mitrovic, Yuh Nung Jan, and Lily Yeh Jan*

The Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94143

Contributed by Lily Yeh Jan

Accepted for publication October 17, 2001.

Abstract: Many G protein-coupled receptors (GPCRs) have recently been shown to dimerize, and it was suggested that dimerization may be a prerequisite for G protein coupling. {gamma}-aminobutyric acid type B (GABAB) receptors (GPCRs for GABA, a major inhibitory neurotransmitter in the brain) are obligate heterodimers of homologous GB1 and GB2 subunits, neither of which is functional on its own. This feature of GABAB receptors allowed us to examine which of the eight intracellular segments of the heterodimeric receptor were important for G protein activation. Replacing any of the three intracellular loops of GB2 with their GB1 counterparts resulted in nonfunctional receptors. The deletion of the complete GB2 C terminus significantly attenuated the receptor function; however, the proximal 36 residues were sufficient for reconstitution of wild type-like receptor activity. In contrast, the GB1 C terminus could be deleted and GB1 intracellular loops replaced with their GB2 or mGluR1 equivalents without affecting the receptor function. In addition, a large portion of the GB1 i2 loop could be replaced with a random coil peptide without any functional consequences. Thus, GB2 intracellular segments are solely responsible for specific coupling of GABAB receptors to their physiologic effectors, Gi and G protein-activated K+ channels. These findings strongly support a model in which a single GPCR monomer is sufficient for all of the specific G protein contacts.


* To whom reprint requests should be addressed. E-mail: gkw{at}itsa.ucsf.edu.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Sushi domains confer distinct trafficking profiles on GABAB receptors.
S. Hannan, M. E. Wilkins, and T. G. Smart (2012)
PNAS 109, 12171-12176
   Abstract »    Full Text »    PDF »
GABAB Receptor Complex as a Potential Target for Tumor Therapy.
X. Jiang, L. Su, Q. Zhang, C. He, Z. Zhang, P. Yi, and J. Liu (2012)
Journal of Histochemistry & Cytochemistry 60, 269-279
   Abstract »    Full Text »    PDF »
Functional Homomers and Heteromers of Dopamine D2L and D3 Receptors Co-exist at the Cell Surface.
C. Pou, C. Mannoury la Cour, L. A. Stoddart, M. J. Millan, and G. Milligan (2012)
J. Biol. Chem. 287, 8864-8878
   Abstract »    Full Text »    PDF »
Compartmentalization of the GABAB Receptor Signaling Complex Is Required for Presynaptic Inhibition at Hippocampal Synapses.
T. Laviv, I. Vertkin, Y. Berdichevsky, H. Fogel, I. Riven, B. Bettler, P. A. Slesinger, and I. Slutsky (2011)
J. Neurosci. 31, 12523-12532
   Abstract »    Full Text »    PDF »
{gamma}-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit.
S. Hannan, M. E. Wilkins, E. Dehghani-Tafti, P. Thomas, S. M. Baddeley, and T. G. Smart (2011)
J. Biol. Chem. 286, 24324-24335
   Abstract »    Full Text »    PDF »
Revealing protein oligomerization and densities in situ using spatial intensity distribution analysis.
A. G. Godin, S. Costantino, L.-E. Lorenzo, J. L. Swift, M. Sergeev, A. Ribeiro-da-Silva, Y. De Koninck, and P. W. Wiseman (2011)
PNAS 108, 7010-7015
   Abstract »    Full Text »    PDF »
Phosphorylation-dependent C-terminal Binding of 14-3-3 Proteins Promotes Cell Surface Expression of HIV Co-receptor GPR15.
Y. Okamoto and S. Shikano (2011)
J. Biol. Chem. 286, 7171-7181
   Abstract »    Full Text »    PDF »
Allosteric Modulation of Family C G-Protein-Coupled Receptors: from Molecular Insights to Therapeutic Perspectives.
S. Urwyler (2011)
Pharmacol. Rev. 63, 59-126
   Abstract »    Full Text »    PDF »
Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation.
C. Monnier, H. Tu, E. Bourrier, C. Vol, L. Lamarque, E. Trinquet, J.-P. Pin, and P. Rondard (2011)
EMBO J. 30, 32-42
   Abstract »    Full Text »    PDF »
A Novel Bioassay for Detecting GPCR Heterodimerization: Transactivation of Beta 2 Adrenergic Receptor by Bradykinin Receptor.
K. K. V. Haack, M. R. Tougas, K. T. Jones, S. S. El-Dahr, H. Radhakrishna, and N. A. McCarty (2010)
J Biomol Screen 15, 251-260
   Abstract »    Full Text »    PDF »
GABAB Receptor Activation Protects Neurons from Apoptosis via IGF-1 Receptor Transactivation.
H. Tu, C. Xu, W. Zhang, Q. Liu, P. Rondard, J.-P. Pin, and J. Liu (2010)
J. Neurosci. 30, 749-759
   Abstract »    Full Text »    PDF »
Direct Detection of the Interaction between Recombinant Soluble Extracellular Regions in the Heterodimeric Metabotropic {gamma}-Aminobutyric Acid Receptor.
R. Nomura, Y. Suzuki, A. Kakizuka, and H. Jingami (2008)
J. Biol. Chem. 283, 4665-4673
   Abstract »    Full Text »    PDF »
A novel GIP receptor splice variant influences GIP sensitivity of pancreatic {beta}-cells in obese mice.
N. Harada, Y. Yamada, K. Tsukiyama, C. Yamada, Y. Nakamura, E. Mukai, A. Hamasaki, X. Liu, K. Toyoda, Y. Seino, et al. (2008)
Am J Physiol Endocrinol Metab 294, E61-E68
   Abstract »    Full Text »    PDF »
Lateral Diffusion of the GABAB Receptor Is Regulated by the GABAB2 C Terminus.
A. M. Pooler and R. A. J. McIlhinney (2007)
J. Biol. Chem. 282, 25349-25356
   Abstract »    Full Text »    PDF »
Complex Formation with the Type B {gamma}-Aminobutyric Acid Receptor Affects the Expression and Signal Transduction of the Extracellular Calcium-sensing Receptor: STUDIES WITH HEK-293 CELLS AND NEURONS.
W. Chang, C. Tu, Z. Cheng, L. Rodriguez, T.-H. Chen, M. Gassmann, B. Bettler, M. Margeta, L. Y. Jan, and D. Shoback (2007)
J. Biol. Chem. 282, 25030-25040
   Abstract »    Full Text »    PDF »
Common Structural Requirements for Heptahelical Domain Function in Class A and Class C G Protein-coupled Receptors.
V. Binet, B. Duthey, J. Lecaillon, C. Vol, J. Quoyer, G. Labesse, J.-P. Pin, and L. Prezeau (2007)
J. Biol. Chem. 282, 12154-12163
   Abstract »    Full Text »    PDF »
GABAB Receptor Association with the PDZ Scaffold Mupp1 Alters Receptor Stability and Function.
S. Balasubramanian, S. R. Fam, and R. A. Hall (2007)
J. Biol. Chem. 282, 4162-4171
   Abstract »    Full Text »    PDF »
Ts65Dn, a Mouse Model of Down Syndrome, Exhibits Increased GABAB-Induced Potassium Current.
T. K. Best, R. J. Siarey, and Z. Galdzicki (2007)
J Neurophysiol 97, 892-900
   Abstract »    Full Text »    PDF »
Point Mutations in the Transmembrane Region of GABAB2 Facilitate Activation by the Positive Modulator N,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) in the Absence of the GABAB1 Subunit.
D. S. Dupuis, D. Relkovic, L. Lhuillier, J. Mosbacher, and K. Kaupmann (2006)
Mol. Pharmacol. 70, 2027-2036
   Abstract »    Full Text »    PDF »
Oligomerization of the Yeast {alpha}-Factor Receptor: IMPLICATIONS FOR DOMINANT NEGATIVE EFFECTS OF MUTANT RECEPTORS.
A. U. Gehret, A. Bajaj, F. Naider, and M. E. Dumont (2006)
J. Biol. Chem. 281, 20698-20714
   Abstract »    Full Text »    PDF »
Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy.
S. M. Pontier, N. Lahaie, R. Ginham, F. St-Gelais, H. Bonin, D. J. Bell, H. Flynn, L.-E. Trudeau, J. McIlhinney, J. H. White, et al. (2006)
EMBO J. 25, 2698-2709
   Abstract »    Full Text »    PDF »
Heterodimers of {alpha}1B- and {alpha}1D-Adrenergic Receptors Form a Single Functional Entity.
C. Hague, S. E. Lee, Z. Chen, S. C. Prinster, R. A. Hall, and K. P. Minneman (2006)
Mol. Pharmacol. 69, 45-55
   Abstract »    Full Text »    PDF »
Coupling of GABAB receptor GABAB2 subunit to G proteins: evidence from Xenopus oocyte and baby hamster kidney cell expression system.
Y. Uezono, M. Kanaide, M. Kaibara, R. Barzilai, N. Dascal, K. Sumikawa, and K. Taniyama (2006)
Am J Physiol Cell Physiol 290, C200-C207
   Abstract »    Full Text »    PDF »
The RXR-Type Endoplasmic Reticulum-Retention/Retrieval Signal of GABAB1 Requires Distant Spacing from the Membrane to Function.
M. Gassmann, C. Haller, Y. Stoll, S. A. Aziz, B. Biermann, J. Mosbacher, K. Kaupmann, and B. Bettler (2005)
Mol. Pharmacol. 68, 137-144
   Abstract »    Full Text »    PDF »
Activation of Metabotropic Glutamate Receptor 1 Dimers Requires Glutamate Binding in Both Subunits.
P. J. Kammermeier and J. Yun (2005)
J. Pharmacol. Exp. Ther. 312, 502-508
   Abstract »    Full Text »    PDF »
The Vomeronasal Receptor V2R2 Does Not Require Escort Molecules for Expression in Heterologous Systems.
L. Silvotti, G. Giannini, and R. Tirindelli (2005)
Chem Senses 30, 1-8
   Abstract »    Full Text »    PDF »
Cooperative Conformational Changes in a G-protein-coupled Receptor Dimer, the Leukotriene B4 Receptor BLT1.
D. Mesnier and J.-L. Baneres (2004)
J. Biol. Chem. 279, 49664-49670
   Abstract »    Full Text »    PDF »
Different functional roles of T1R subunits in the heteromeric taste receptors.
H. Xu, L. Staszewski, H. Tang, E. Adler, M. Zoller, and X. Li (2004)
PNAS 101, 14258-14263
   Abstract »    Full Text »    PDF »
The Heptahelical Domain of GABAB2 Is Activated Directly by CGP7930, a Positive Allosteric Modulator of the GABAB Receptor.
V. Binet, C. Brajon, L. Le Corre, F. Acher, J.-P. Pin, and L. Prezeau (2004)
J. Biol. Chem. 279, 29085-29091
   Abstract »    Full Text »    PDF »
Redistribution of GABAB(1) Protein and Atypical GABAB Responses in GABAB(2)-Deficient Mice.
M. Gassmann, H. Shaban, R. Vigot, G. Sansig, C. Haller, S. Barbieri, Y. Humeau, V. Schuler, M. Muller, B. Kinzel, et al. (2004)
J. Neurosci. 24, 6086-6097
   Abstract »    Full Text »    PDF »
Molecular Structure and Physiological Functions of GABAB Receptors.
B. Bettler, K. Kaupmann, J. Mosbacher, and M. Gassmann (2004)
Physiol Rev 84, 835-867
   Abstract »    Full Text »    PDF »
Probing Receptor Structure/Function with Chimeric G-Protein-Coupled Receptors.
D. Yin, S. Gavi, H.-y. Wang, and C. C. Malbon (2004)
Mol. Pharmacol. 65, 1323-1332
   Abstract »    Full Text »    PDF »
Role of the calcium-sensing receptor in parathyroid gland physiology.
R. A. Chen and W. G. Goodman (2004)
Am J Physiol Renal Physiol 286, F1005-F1011
   Abstract »    Full Text »    PDF »
Hetero-oligomerization between GABAA and GABAB Receptors Regulates GABAB Receptor Trafficking.
S. Balasubramanian, J. A. Teissere, D. V. Raju, and R. A. Hall (2004)
J. Biol. Chem. 279, 18840-18850
   Abstract »    Full Text »    PDF »
Molecular Determinants Involved in the Allosteric Control of Agonist Affinity in the GABAB Receptor by the GABAB2 Subunit.
J. Liu, D. Maurel, S. Etzol, I. Brabet, H. Ansanay, J.-P. Pin, and P. Rondard (2004)
J. Biol. Chem. 279, 15824-15830
   Abstract »    Full Text »    PDF »
Cell Surface Expression of {alpha}1D-Adrenergic Receptors Is Controlled by Heterodimerization with {alpha}1B-Adrenergic Receptors.
C. Hague, M. A. Uberti, Z. Chen, R. A. Hall, and K. P. Minneman (2004)
J. Biol. Chem. 279, 15541-15549
   Abstract »    Full Text »    PDF »
Locking the Dimeric GABAB G-Protein-Coupled Receptor in Its Active State.
J. Kniazeff, P.-P. Saintot, C. Goudet, J. Liu, A. Charnet, G. Guillon, and J.-P. Pin (2004)
J. Neurosci. 24, 370-377
   Abstract »    Full Text »    PDF »
G Protein-Coupled Receptor Oligomerization: Implications for G Protein Activation and Cell Signaling.
G. E. Breitwieser (2004)
Circ. Res. 94, 17-27
   Abstract »    Full Text »    PDF »
Subcellular Localization of Metabotropic GABAB Receptor Subunits GABAB1a/b and GABAB2 in the Rat Hippocampus.
A. Kulik, I. Vida, R. Lujan, C. A. Haas, G. Lopez-Bendito, R. Shigemoto, and M. Frotscher (2003)
J. Neurosci. 23, 11026-11035
   Abstract »    Full Text »    PDF »
Subtype-Specific Dimerization of {alpha}1-Adrenoceptors: Effects on Receptor Expression and Pharmacological Properties.
M. A. Uberti, R. A. Hall, and K. P. Minneman (2003)
Mol. Pharmacol. 64, 1379-1390
   Abstract »    Full Text »    PDF »
Dimers of Class A G Protein-coupled Receptors Function via Agonist-mediated Trans-activation of Associated G Proteins.
J. J. Carrillo, J. Pediani, and G. Milligan (2003)
J. Biol. Chem. 278, 42578-42587
   Abstract »    Full Text »    PDF »
Matching Accessories.
S. M. Foord (2003)
Sci. STKE 2003, pe25
   Abstract »    Full Text »    PDF »
Calcium Sensing Receptor Activation by a Calcimimetic Suggests a Link between Cooperativity and Intracellular Calcium Oscillations.
S. Miedlich, L. Gama, and G. E. Breitwieser (2002)
J. Biol. Chem. 277, 49691-49699
   Abstract »    Full Text »    PDF »
No Ligand Binding in the GB2 Subunit of the GABAB Receptor Is Required for Activation and Allosteric Interaction between the Subunits.
J. Kniazeff, T. Galvez, G. Labesse, and J.-P. Pin (2002)
J. Neurosci. 22, 7352-7361
   Abstract »    Full Text »    PDF »
The Intracellular Loops of the GB2 Subunit Are Crucial for G-Protein Coupling of the Heteromeric {gamma}-Aminobutyrate B Receptor.
M. Havlickova, L. Prezeau, B. Duthey, B. Bettler, J.-P. Pin, and J. Blahos (2002)
Mol. Pharmacol. 62, 343-350
   Abstract »    Full Text »    PDF »
Ligand-induced signal transduction within heterodimeric GABAB receptor.
M. Margeta-Mitrovic, Y. N. Jan, and L. Y. Jan (2001)
PNAS 98, 14643-14648
   Abstract »    Full Text »    PDF »
Ligand-induced signal transduction within heterodimeric GABAB receptor.
M. Margeta-Mitrovic, Y. N. Jan, and L. Y. Jan (2001)
PNAS 98, 14643-14648
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882