Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 98 (5): 2323-2328

Copyright © 2001 by the National Academy of Sciences.


Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α- and {gamma}-mediated gene expression via liver fatty acid binding protein: A signaling path to the nucleus

Christian Wolfrum*, Carola M. Borrmann{dagger}, Torsten Börchers{ddagger}, and Friedrich Spener*,§

*Department of Biochemistry, University of Münster, Wilhelm-Klemm-Strasse 2, 48149 Münster, Germany; {dagger}Division of Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; and {ddagger}Institute of Chemical and Biochemical Sensor Research, Mendelstrasse 7, 48149 Münster, Germany

Accepted for publication December 26, 2000.

Received for publication February 29, 2000.

Abstract: Peroxisome proliferator-activated receptor α (PPARα) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARα colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARα. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARα and PPAR{gamma} but not with PPARβ and retinoid X receptor-α by protein–protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARα and PPAR{gamma} transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARα and PPAR{gamma} agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes.

§ To whom reprint requests should be addressed. E-mail: spener{at}

Communicated by Tibor Farkas, Hungarian Academy of Sciences, Szeged, Hungary

Characterization of genome-wide transcriptional changes in liver and adipose tissues of ZDF (fa/fa) rats fed R-{alpha}-lipoic acid by next-generation sequencing.
A. Pashaj, X. Yi, M. Xia, S. Canny, J.-J. M. Riethoven, and R. Moreau (2013)
Physiol Genomics 45, 1136-1143
   Abstract »    Full Text »    PDF »
Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPAR{alpha}-regulated {beta}-oxidative enzymes.
A. D. Petrescu, H. Huang, G. G. Martin, A. L. McIntosh, S. M. Storey, D. Landrock, A. B. Kier, and F. Schroeder (2013)
Am J Physiol Gastrointest Liver Physiol 304, G241-G256
   Abstract »    Full Text »    PDF »
Triglyceride-Rich Lipoprotein Regulates APOB48 Receptor Gene Expression in Human THP-1 Monocytes and Macrophages.
B. Bermudez, S. Lopez, L. M. Varela, A. Ortega, Y. M. Pacheco, W. Moreda, R. Moreno-Luna, R. Abia, and F. J. G. Muriana (2012)
J. Nutr. 142, 227-232
   Abstract »    Full Text »    PDF »
Fatty Acid Induced Remodeling within the Human Liver Fatty Acid-binding Protein.
A. Sharma and A. Sharma (2011)
J. Biol. Chem. 286, 31924-31928
   Abstract »    Full Text »    PDF »
Novel Functions of Lipid-binding Protein 5 in Caenorhabditis elegans Fat Metabolism.
M. Xu, H.-J. Joo, and Y.-K. Paik (2011)
J. Biol. Chem. 286, 28111-28118
   Abstract »    Full Text »    PDF »
Brain Fatty Acid-binding Protein and {omega}-3/{omega}-6 Fatty Acids: MECHANISTIC INSIGHT INTO MALIGNANT GLIOMA CELL MIGRATION.
R. Mita, M. J. Beaulieu, C. Field, and R. Godbout (2010)
J. Biol. Chem. 285, 37005-37015
   Abstract »    Full Text »    PDF »
Glucose regulates fatty acid binding protein interaction with lipids and peroxisome proliferator-activated receptor {alpha}.
H. A. Hostetler, M. Balanarasimha, H. Huang, M. S. Kelzer, A. Kaliappan, A. B. Kier, and F. Schroeder (2010)
J. Lipid Res. 51, 3103-3116
   Abstract »    Full Text »    PDF »
Transcriptional profiling reveals divergent roles of PPAR{alpha} and PPAR{beta}/{delta} in regulation of gene expression in mouse liver.
L. M. Sanderson, M. V. Boekschoten, B. Desvergne, M. Muller, and S. Kersten (2010)
Physiol Genomics 41, 42-52
   Abstract »    Full Text »    PDF »
Nuclear receptors and hepatic lipidogenic enzyme response to a dyslipidemic sucrose-rich diet and its reversal by fish oil n-3 polyunsaturated fatty acids.
G. J. Hein, A. M. Bernasconi, M. A. Montanaro, M. Pellon-Maison, G. Finarelli, A. Chicco, Y. B. Lombardo, and R. R. Brenner (2010)
Am J Physiol Endocrinol Metab 298, E429-E439
   Abstract »    Full Text »    PDF »
Hypercholesterolemia Induces Side-Specific Phenotypic Changes and Peroxisome Proliferator-Activated Receptor-{gamma} Pathway Activation in Swine Aortic Valve Endothelium.
M. A. Guerraty, G. R. Grant, J. W. Karanian, O. A. Chiesa, W. F. Pritchard, and P. F. Davies (2010)
Arterioscler Thromb Vasc Biol 30, 225-231
   Abstract »    Full Text »    PDF »
Peroxisome Proliferator-Activated Receptor {beta}/{delta} (PPAR{beta}/{delta}) but Not PPAR{alpha} Serves as a Plasma Free Fatty Acid Sensor in Liver.
L. M. Sanderson, T. Degenhardt, A. Koppen, E. Kalkhoven, B. Desvergne, M. Muller, and S. Kersten (2009)
Mol. Cell. Biol. 29, 6257-6267
   Abstract »    Full Text »    PDF »
L-FABP directly interacts with PPAR{alpha} in cultured primary hepatocytes.
H. A. Hostetler, A. L. McIntosh, B. P. Atshaves, S. M. Storey, H. R. Payne, A. B. Kier, and F. Schroeder (2009)
J. Lipid Res. 50, 1663-1675
   Abstract »    Full Text »    PDF »
Structural and functional analysis of fatty acid-binding proteins.
J. Storch and L. McDermott (2009)
J. Lipid Res. 50, S126-S131
   Abstract »    Full Text »    PDF »
Liver Fatty Acid-Binding Protein Gene-Ablated Female Mice Exhibit Increased Age-Dependent Obesity.
G. G. Martin, B. P. Atshaves, A. L. McIntosh, J. T. Mackie, A. B. Kier, and F. Schroeder (2008)
J. Nutr. 138, 1859-1865
   Abstract »    Full Text »    PDF »
Glucose Directly Links to Lipid Metabolism through High Affinity Interaction with Peroxisome Proliferator-activated Receptor {alpha}.
H. A. Hostetler, H. Huang, A. B. Kier, and F. Schroeder (2008)
J. Biol. Chem. 283, 2246-2254
   Abstract »    Full Text »    PDF »
Regulation of Dendritic Cell Function and T Cell Priming by the Fatty Acid-Binding Protein aP2.
M. S. Rolph, T. R. Young, B. O. V. Shum, C. Z. Gorgun, C. Schmitz-Peiffer, I. A. Ramshaw, G. S. Hotamisligil, and C. R. Mackay (2006)
J. Immunol. 177, 7794-7801
   Abstract »    Full Text »    PDF »
Gene Expression Profiles in Fathead Minnow Exposed to 2,4-DNT: Correlation with Toxicity in Mammals.
H. Wintz, L. J. Yoo, A. Loguinov, Y.-Y. Wu, J. A. Steevens, R. D. Holland, R. D. Beger, E. J. Perkins, O. Hughes, and C. D. Vulpe (2006)
Toxicol. Sci. 94, 71-82
   Abstract »    Full Text »    PDF »
Unbound Free Fatty Acids and Heart-Type Fatty Acid-Binding Protein: Diagnostic Assays and Clinical Applications.
H. M.E. Azzazy, M. M.A.L. Pelsers, and R. H. Christenson (2006)
Clin. Chem. 52, 19-29
   Abstract »    Full Text »    PDF »
Ileal Bile Acid-binding Protein, Functionally Associated with the Farnesoid X Receptor or the Ileal Bile Acid Transporter, Regulates Bile Acid Activity in the Small Intestine.
M. Nakahara, N. Furuya, K. Takagaki, T. Sugaya, K. Hirota, A. Fukamizu, T. Kanda, H. Fujii, and R. Sato (2005)
J. Biol. Chem. 280, 42283-42289
   Abstract »    Full Text »    PDF »
Fatty Acid Regulation of Hepatic Gene Transcription.
D. B. Jump, D. Botolin, Y. Wang, J. Xu, B. Christian, and O. Demeure (2005)
J. Nutr. 135, 2503-2506
   Abstract »    Full Text »    PDF »
Fatty Acids Induce L-CPT I Gene Expression through a PPAR{alpha}-Independent Mechanism in Rat Hepatoma Cells.
C. Le May, M. Cauzac, C. Diradourian, D. Perdereau, J. Girard, A.-F. Burnol, and J.-P. Pegorier (2005)
J. Nutr. 135, 2313-2319
   Abstract »    Full Text »    PDF »
Nuclear localization of leukotriene A4 hydrolase in type II alveolar epithelial cells in normal and fibrotic lung.
T. G. Brock, Y.-J. Lee, E. Maydanski, T. L. Marburger, M. Luo, R. Paine III, and M. Peters-Golden (2005)
Am J Physiol Lung Cell Mol Physiol 289, L224-L232
   Abstract »    Full Text »    PDF »
Effect of branched-chain fatty acid on lipid dynamics in mice lacking liver fatty acid binding protein gene.
B. P. Atshaves, A. L. McIntosh, H. R. Payne, J. Mackie, A. B. Kier, and F. Schroeder (2005)
Am J Physiol Cell Physiol 288, C543-C558
   Abstract »    Full Text »    PDF »
R. M. Hagan, J. Worner-Gibbs, and D. C. Wilton (2005)
J. Biol. Chem. 280, 1782-1789
   Abstract »    Full Text »    PDF »
Estrogen-related Receptor {alpha} (ERR{alpha}) Is a Transcriptional Regulator of Apolipoprotein A-IV and Controls Lipid Handling in the Intestine.
J. C. Carrier, G. Deblois, C. Champigny, E. Levy, and V. Giguere (2004)
J. Biol. Chem. 279, 52052-52058
   Abstract »    Full Text »    PDF »
Disruption of Hepatic Lipid Homeostasis in Mice after Amiodarone Treatment Is Associated with Peroxisome Proliferator-Activated Receptor-{alpha}Target Gene Activation.
T. C. McCarthy, P. T. Pollak, E. A. Hanniman, and C. J. Sinal (2004)
J. Pharmacol. Exp. Ther. 311, 864-873
   Abstract »    Full Text »    PDF »
Control of Gene Expression by Fatty Acids.
J.-P. Pegorier, C. L. May, and J. Girard (2004)
J. Nutr. 134, 2444S-2449S
   Abstract »    Full Text »    PDF »
Fatty Acid Binding Proteins--The Evolutionary Crossroads of Inflammatory and Metabolic Responses.
L. Makowski and G. S. Hotamisligil (2004)
J. Nutr. 134, 2464S-2468S
   Abstract »    Full Text »    PDF »
Identification of genes contributing to the obese yellow Avy phenotype: caloric restriction, genotype, diet x genotype interactions.
J. Kaput, K. G. Klein, E. J. Reyes, W. A. Kibbe, C. A. Cooney, B. Jovanovic, W. J. Visek, and G. L. Wolff (2004)
Physiol Genomics 18, 316-324
   Abstract »    Full Text »    PDF »
Localization and regulation of SR-BI in membrane rafts of HepG2 cells.
D. Rhainds, P. Bourgeois, G. Bourret, K. Huard, L. Falstrault, and L. Brissette (2004)
J. Cell Sci. 117, 3095-3105
   Abstract »    Full Text »    PDF »
Role of fatty acids in adipocyte growth and development.
M. J. Azain (2004)
J Anim Sci 82, 916-924
   Abstract »    Full Text »    PDF »
Decreased Hepatic Triglyceride Accumulation and Altered Fatty Acid Uptake in Mice with Deletion of the Liver Fatty Acid-binding Protein Gene.
E. P. Newberry, Y. Xie, S. Kennedy, X. Han, K. K. Buhman, J. Luo, R. W. Gross, and N. O. Davidson (2003)
J. Biol. Chem. 278, 51664-51672
   Abstract »    Full Text »    PDF »
Physical and Functional Interaction of Acyl-CoA-binding Protein with Hepatocyte Nuclear Factor-4{alpha}.
A. D. Petrescu, H. R. Payne, A. Boedecker, H. Chao, R. Hertz, J. Bar-Tana, F. Schroeder, and A. B. Kier (2003)
J. Biol. Chem. 278, 51813-51824
   Abstract »    Full Text »    PDF »
Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B4 synthetic capacity.
M. Luo, S. M. Jones, M. Peters-Golden, and T. G. Brock (2003)
PNAS 100, 12165-12170
   Abstract »    Full Text »    PDF »
Chemopreventive n-3 fatty acids activate RXR{alpha} in colonocytes.
Y.-Y. Fan, T. E. Spencer, N. Wang, M. P. Moyer, and R. S. Chapkin (2003)
Carcinogenesis 24, 1541-1548
   Abstract »    Full Text »    PDF »
Enzymatically Modified LDL Induces Cathepsin H in Human Monocytes: Potential Relevance in Early Atherogenesis.
S.-R. Han, A. Momeni, K. Strach, P. Suriyaphol, D. Fenske, K. Paprotka, S. I. Hashimoto, M. Torzewski, S. Bhakdi, and M. Husmann (2003)
Arterioscler Thromb Vasc Biol 23, 661-667
   Abstract »    Full Text »    PDF »
PPARalpha /gamma ragaglitazar eliminates fatty liver and enhances insulin action in fat-fed rats in the absence of hepatomegaly.
J.-M. Ye, M. A. Iglesias, D. G. Watson, B. Ellis, L. Wood, P. B. Jensen, R. V. Sorensen, P. J. Larsen, G. J. Cooney, K. Wassermann, et al. (2003)
Am J Physiol Endocrinol Metab 284, E531-E540
   Abstract »    Full Text »    PDF »
PPAR{beta} regulates vitamin A metabolism-related gene expression in hepatic stellate cells undergoing activation.
K. Hellemans, K. Rombouts, E. Quartier, A. S. Dittie, A. Knorr, L. Michalik, V. Rogiers, F. Schuit, W. Wahli, and A. Geerts (2003)
J. Lipid Res. 44, 280-295
   Abstract »    Full Text »    PDF »
Liver Fatty Acid-binding Protein Targets Fatty Acids to the Nucleus: REAL TIME CONFOCAL AND MULTIPHOTON FLUORESCENCE IMAGING IN LIVING CELLS.
H. Huang, O. Starodub, A. McIntosh, A. B. Kier, and F. Schroeder (2002)
J. Biol. Chem. 277, 29139-29151
   Abstract »    Full Text »    PDF »
Selective Cooperation between Fatty Acid Binding Proteins and Peroxisome Proliferator-Activated Receptors in Regulating Transcription.
N.-S. Tan, N. S. Shaw, N. Vinckenbosch, P. Liu, R. Yasmin, B. Desvergne, W. Wahli, and N. Noy (2002)
Mol. Cell. Biol. 22, 5114-5127
   Abstract »    Full Text »    PDF »
Ligand Specificity and Conformational Dependence of the Hepatic Nuclear Factor-4alpha (HNF-4alpha ).
A. D. Petrescu, R. Hertz, J. Bar-Tana, F. Schroeder, and A. B. Kier (2002)
J. Biol. Chem. 277, 23988-23999
   Abstract »    Full Text »    PDF »
Influence of Peroxisome Proliferator-activated Receptor {alpha} Agonists on the Intracellular Turnover and Secretion of Apolipoprotein (Apo) B-100 and ApoB-48.
D. Linden, K. Lindberg, J. Oscarsson, C. Claesson, L. Asp, L. Li, M. Gustafsson, J. Boren, and S.-O. Olofsson (2002)
J. Biol. Chem. 277, 23044-23053
   Abstract »    Full Text »    PDF »
Differential Regulation of Vascular Endothelial Growth Factor Expression by Peroxisome Proliferator-activated Receptors in Bladder Cancer Cells.
S. Fauconnet, I. Lascombe, E. Chabannes, G.-L. Adessi, B. Desvergne, W. Wahli, and H. Bittard (2002)
J. Biol. Chem. 277, 23534-23543
   Abstract »    Full Text »    PDF »
Pleiotropic Actions of Peroxisome Proliferator-Activated Receptors in Lipid Metabolism and Atherosclerosis.
O. Barbier, I. P. Torra, Y. Duguay, C. Blanquart, J.-C. Fruchart, C. Glineur, and B. Staels (2002)
Arterioscler Thromb Vasc Biol 22, 717-726
   Abstract »    Full Text »    PDF »
The Peroxisome Proliferator-induced Cytosolic Type I Acyl-CoA Thioesterase (CTE-I) Is a Serine-Histidine-Aspartic Acid alpha /beta Hydrolase.
K. Huhtinen, J. O'Byrne, P. J. G. Lindquist, J. A. Contreras, and S. E. H. Alexson (2002)
J. Biol. Chem. 277, 3424-3432
   Abstract »    Full Text »    PDF »
Nuclear Receptors and Lipid Physiology: Opening the X-Files.
A. Chawla, J. J. Repa, R. M. Evans, and D. J. Mangelsdorf (2001)
Science 294, 1866-1870
   Abstract »    Full Text »    PDF »
Cytochrome P450 and Vascular Homeostasis.
I. Fleming (2001)
Circ. Res. 89, 753-762
   Abstract »    Full Text »    PDF »
Effects of fatty acids and growth hormone on liver fatty acid binding protein and PPAR{alpha} in rat liver.
L. Carlsson, D. Linden, M. Jalouli, and J. Oscarsson (2001)
Am J Physiol Endocrinol Metab 281, E772-E781
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882