Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 98 (6): 3168-3173

Copyright © 2001 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / CELL BIOLOGY

Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain

Zongming Zhang*,{dagger}, Jisen Tang*,{dagger}, Svetlana Tikunova{ddagger}, J. David Johnson{ddagger},§, Zhangguo Chen*,{dagger}, Ning Qin, Alexander Dietrich||, Enrico Stefani||, Lutz Birnbaumer||, and Michael Xi Zhu*,{dagger},**

*Neurobiotechnology Center and Departments of {dagger}Neuroscience and {ddagger}Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210; Department of Pharmacology, University of Kentucky, Lexington, KY 40506; and ||Department of Anesthesiology, University of California, Los Angeles, CA 90095

Contributed by Lutz Birnbaumer

Accepted for publication December 29, 2000.

Abstract: Mammalian homologues of Drosophila Trp form plasma membrane channels that mediate Ca2+ influx in response to activation of phospholipase C and internal Ca2+ store depletion. Previous studies showed that human Trp3 is activated by inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) and identified interacting domains, one on Trp and two on IP3R. We now find that Trp3 binds Ca2+-calmodulin (Ca2+/CaM) at a site that overlaps with the IP3R binding domain. Using patch-clamp recordings from inside-out patches, we further show that Trp3 has a high intrinsic activity that is suppressed by Ca2+/CaM under resting conditions, and that Trp3 is activated by the following: a Trp-binding peptide from IP3R that displaces CaM from Trp3, a myosin light chain kinase Ca2+/CaM binding peptide that prevents CaM from binding to Trp3, and calmidazolium, an inactivator of Ca2+/CaM. We conclude that inhibition of the inhibitory action of CaM is a key step of Trp3 channel activation by IP3Rs.


§ Deceased January 21, 2000.

** To whom reprint requests should be addressed at: Neurobiotechnology Center, Ohio State University, 168 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210. E-mail: zhu.55{at}osu.edu.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Alternative Splicing of the TRPC3 Ion Channel Calmodulin/IP3 Receptor-Binding Domain in the Hindbrain Enhances Cation Flux.
Y. Kim, A. C. Y. Wong, J. M. Power, S. F. Tadros, M. Klugmann, A. J. Moorhouse, P. P. Bertrand, and G. D. Housley (2012)
J. Neurosci. 32, 11414-11423
   Abstract »    Full Text »    PDF »
Inositol trisphosphate receptors in smooth muscle cells.
D. Narayanan, A. Adebiyi, and J. H. Jaggar (2012)
Am J Physiol Heart Circ Physiol 302, H2190-H2210
   Abstract »    Full Text »    PDF »
Molecular determinants of PKA-dependent inhibition of TRPC5 channel.
T. S. Sung, J. P. Jeon, B. J. Kim, C. Hong, S. Y. Kim, J. Kim, J. H. Jeon, H. J. Kim, C. K. Suh, S. J. Kim, et al. (2011)
Am J Physiol Cell Physiol 301, C823-C832
   Abstract »    Full Text »    PDF »
Ca2+-Dependent Desensitization of TRPV2 Channels Is Mediated by Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate.
J. Mercado, A. Gordon-Shaag, W. N. Zagotta, and S. E. Gordon (2010)
J. Neurosci. 30, 13338-13347
   Abstract »    Full Text »    PDF »
Isoform-Selective Physical Coupling of TRPC3 Channels to IP3 Receptors in Smooth Muscle Cells Regulates Arterial Contractility.
A. Adebiyi, G. Zhao, D. Narayanan, C. M. Thomas-Gatewood, J. P. Bannister, and J. H. Jaggar (2010)
Circ. Res. 106, 1603-1612
   Abstract »    Full Text »    PDF »
Caffeine inhibits nonselective cationic currents in interstitial cells of Cajal from the murine jejunum.
N. G. Jin, S. D. Koh, and K. M. Sanders (2009)
Am J Physiol Cell Physiol 297, C971-C978
   Abstract »    Full Text »    PDF »
Regulation of Cation Channel Voltage and Ca2+ Dependence by Multiple Modulators.
K. E. Gardam and N. S. Magoski (2009)
J Neurophysiol 102, 259-271
   Abstract »    Full Text »    PDF »
A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry.
Y. Liao, N. W. Plummer, M. D. George, J. Abramowitz, M. X. Zhu, and L. Birnbaumer (2009)
PNAS 106, 3202-3206
   Abstract »    Full Text »    PDF »
Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells.
P. C. Sundivakkam, A. M. Kwiatek, T. T. Sharma, R. D. Minshall, A. B. Malik, and C. Tiruppathi (2009)
Am J Physiol Cell Physiol 296, C403-C413
   Abstract »    Full Text »    PDF »
TRPC3 Activation by Erythropoietin Is Modulated by TRPC6.
I. Hirschler-Laszkiewicz, Q. Tong, K. Conrad, W. Zhang, W. W. Flint, A. J. Barber, D. L. Barber, J. Y. Cheung, and B. A. Miller (2009)
J. Biol. Chem. 284, 4567-4581
   Abstract »    Full Text »    PDF »
Physiology and pathophysiology of canonical transient receptor potential channels.
J. Abramowitz and L. Birnbaumer (2009)
FASEB J 23, 297-328
   Abstract »    Full Text »    PDF »
TRPC3 Controls Agonist-stimulated Intracellular Ca2+ Release by Mediating the Interaction between Inositol 1,4,5-Trisphosphate Receptor and RACK1.
B. C. Bandyopadhyay, H. L. Ong, T. P. Lockwich, X. Liu, B. C. Paria, B. B. Singh, and I. S. Ambudkar (2008)
J. Biol. Chem. 283, 32821-32830
   Abstract »    Full Text »    PDF »
IP3 Receptor Binds to and Sensitizes TRPV4 Channel to Osmotic Stimuli via a Calmodulin-binding Site.
A. Garcia-Elias, I. M. Lorenzo, R. Vicente, and M. A. Valverde (2008)
J. Biol. Chem. 283, 31284-31288
   Abstract »    Full Text »    PDF »
Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries.
G. Zhao, A. Adebiyi, E. Blaskova, Q. Xi, and J. H. Jaggar (2008)
Am J Physiol Cell Physiol 295, C1376-C1384
   Abstract »    Full Text »    PDF »
Calcium Plays a Central Role in the Sensitization of TRPV3 Channel to Repetitive Stimulations.
R. Xiao, J. Tang, C. Wang, C. K. Colton, J. Tian, and M. X. Zhu (2008)
J. Biol. Chem. 283, 6162-6174
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Channel A1 Is Directly Gated by Calcium Ions.
J. F. Doerner, G. Gisselmann, H. Hatt, and C. H. Wetzel (2007)
J. Biol. Chem. 282, 13180-13189
   Abstract »    Full Text »    PDF »
TRPC-like conductance mediates restoration of intracellular Ca2+ in cochlear outer hair cells in the guinea pig and rat.
N. P. Raybould, D. J. Jagger, R. Kanjhan, D. Greenwood, P. Laslo, N. Hoya, C. Soeller, M. B. Cannell, and G. D. Housley (2007)
J. Physiol. 579, 101-113
   Abstract »    Full Text »    PDF »
Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation.
I. Derler, M. Hofbauer, H. Kahr, R. Fritsch, M. Muik, K. Kepplinger, M. E. Hack, S. Moritz, R. Schindl, K. Groschner, et al. (2006)
J. Physiol. 577, 31-44
   Abstract »    Full Text »    PDF »
Homer 1 Mediates Store- and Inositol 1,4,5-Trisphosphate Receptor-dependent Translocation and Retrieval of TRPC3 to the Plasma Membrane.
J. Y. Kim, W. Zeng, K. Kiselyov, J. P. Yuan, M. H. Dehoff, K. Mikoshiba, P. F. Worley, and S. Muallem (2006)
J. Biol. Chem. 281, 32540-32549
   Abstract »    Full Text »    PDF »
Heteromultimeric TRPC6-TRPC7 Channels Contribute to Arginine Vasopressin-Induced Cation Current of A7r5 Vascular Smooth Muscle Cells.
Y. Maruyama, Y. Nakanishi, E. J. Walsh, D. P. Wilson, D. G. Welsh, and W. C. Cole (2006)
Circ. Res. 98, 1520-1527
   Abstract »    Full Text »    PDF »
TRPC3 and TRPC4 Associate to Form a Redox-sensitive Cation Channel: EVIDENCE FOR EXPRESSION OF NATIVE TRPC3-TRPC4 HETEROMERIC CHANNELS IN ENDOTHELIAL CELLS.
M. Poteser, A. Graziani, C. Rosker, P. Eder, I. Derler, H. Kahr, M. X. Zhu, C. Romanin, and K. Groschner (2006)
J. Biol. Chem. 281, 13588-13595
   Abstract »    Full Text »    PDF »
Polyunsaturated fatty acids mobilize intracellular Ca2+ in NT2 human teratocarcinoma cells by causing release of Ca2+ from mitochondria.
B.-X. Zhang, X. Ma, W. Zhang, C.-K. Yeh, A. Lin, J. Luo, E. A. Sprague, R. H. Swerdlow, and M. S. Katz (2006)
Am J Physiol Cell Physiol 290, C1321-C1333
   Abstract »    Full Text »    PDF »
Functional Coupling between TRPC3 and RyR1 Regulates the Expressions of Key Triadic Proteins.
E. H. Lee, G. Cherednichenko, I. N. Pessah, and P. D. Allen (2006)
J. Biol. Chem. 281, 10042-10048
   Abstract »    Full Text »    PDF »
Regulation of the Transient Receptor Potential Channel TRPM2 by the Ca2+ Sensor Calmodulin.
Q. Tong, W. Zhang, K. Conrad, K. Mostoller, J. Y. Cheung, B. Z. Peterson, and B. A. Miller (2006)
J. Biol. Chem. 281, 9076-9085
   Abstract »    Full Text »    PDF »
Involvement of calmodulin and myosin light chain kinase in activation of mTRPC5 expressed in HEK cells.
M. T. Kim, B. J. Kim, J. H. Lee, S. C. Kwon, D. S. Yeon, D. K. Yang, I. So, and K. W. Kim (2006)
Am J Physiol Cell Physiol 290, C1031-C1040
   Abstract »    Full Text »    PDF »
Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells.
S. Shimizu, T. Yoshida, M. Wakamori, M. Ishii, T. Okada, M. Takahashi, M. Seto, K. Sakurada, Y. Kiuchi, and Y. Mori (2006)
J. Physiol. 570, 219-235
   Abstract »    Full Text »    PDF »
Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels.
B. T. Kawasaki, Y. Liao, and L. Birnbaumer (2006)
PNAS 103, 335-340
   Abstract »    Full Text »    PDF »
Activation of M1 Muscarinic Acetylcholine Receptors Stimulates the Formation of a Multiprotein Complex Centered on TRPC6 Channels.
J. Y. Kim and D. Saffen (2005)
J. Biol. Chem. 280, 32035-32047
   Abstract »    Full Text »    PDF »
Calmodulin and Calcium Interplay in the Modulation of TRPC5 Channel Activity: IDENTIFICATION OF A NOVEL C-TERMINAL DOMAIN FOR CALCIUM/CALMODULIN-MEDIATED FACILITATION.
B. Ordaz, J. Tang, R. Xiao, A. Salgado, A. Sampieri, M. X. Zhu, and L. Vaca (2005)
J. Biol. Chem. 280, 30788-30796
   Abstract »    Full Text »    PDF »
The Foot Structure from the Type 1 Ryanodine Receptor Is Required for Functional Coupling to Store-operated Channels.
A. Sampieri, M. Diaz-Munoz, A. Antaramian, and L. Vaca (2005)
J. Biol. Chem. 280, 24804-24815
   Abstract »    Full Text »    PDF »
Calmodulin mediates norepinephrine-induced receptor-operated calcium entry in preglomerular resistance arteries.
C. S. Facemire and W. J. Arendshorst (2005)
Am J Physiol Renal Physiol 289, F127-F136
   Abstract »    Full Text »    PDF »
MxA, a Member of the Dynamin Superfamily, Interacts with the Ankyrin-like Repeat Domain of TRPC.
M. P. Lussier, S. Cayouette, P. K. Lepage, C. L. Bernier, N. Francoeur, M. St-Hilaire, M. Pinard, and G. Boulay (2005)
J. Biol. Chem. 280, 19393-19400
   Abstract »    Full Text »    PDF »
Store-Operated Calcium Channels.
A. B. Parekh and J. W. Putney Jr. (2005)
Physiol Rev 85, 757-810
   Abstract »    Full Text »    PDF »
Regulation of the Ca2+ Sensitivity of the Nonselective Cation Channel TRPM4.
B. Nilius, J. Prenen, J. Tang, C. Wang, G. Owsianik, A. Janssens, T. Voets, and M. X. Zhu (2005)
J. Biol. Chem. 280, 6423-6433
   Abstract »    Full Text »    PDF »
Negative Regulation of TRPC3 Channels by Protein Kinase C-Mediated Phosphorylation of Serine 712.
M. Trebak, N. Hempel, B. J. Wedel, J. T. Smyth, G. St. J. Bird, and J. W. Putney Jr. (2005)
Mol. Pharmacol. 67, 558-563
   Abstract »    Full Text »    PDF »
Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells.
J. Shi, E. Mori, Y. Mori, M. Mori, J. Li, Y. Ito, and R. Inoue (2004)
J. Physiol. 561, 415-432
   Abstract »    Full Text »    PDF »
Fast Ca2+-dependent inactivation of the store-operated Ca2+ current (ISOC) in liver cells: a role for calmodulin.
T. Litjens, M. L. Harland, M. L. Roberts, G. J. Barritt, and G. Y. Rychkov (2004)
J. Physiol. 558, 85-97
   Abstract »    Full Text »    PDF »
Regulation of TRPC6 Channel Activity by Tyrosine Phosphorylation.
C. Hisatsune, Y. Kuroda, K. Nakamura, T. Inoue, T. Nakamura, T. Michikawa, A. Mizutani, and K. Mikoshiba (2004)
J. Biol. Chem. 279, 18887-18894
   Abstract »    Full Text »    PDF »
Ca2+ Signaling by TRPC3 Involves Na+ Entry and Local Coupling to the Na+/Ca2+ Exchanger.
C. Rosker, A. Graziani, M. Lukas, P. Eder, M. X. Zhu, C. Romanin, and K. Groschner (2004)
J. Biol. Chem. 279, 13696-13704
   Abstract »    Full Text »    PDF »
Expression and relative abundance of short transient receptor potential channels in the rat renal microcirculation.
C. S. Facemire, P. J. Mohler, and W. J. Arendshorst (2004)
Am J Physiol Renal Physiol 286, F546-F551
   Abstract »    Full Text »
Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G.
H.-Y. Kwan, Y. Huang, and X. Yao (2004)
PNAS 101, 2625-2630
   Abstract »    Full Text »    PDF »
Exocytotic Insertion of TRPC6 Channel into the Plasma Membrane upon Gq Protein-coupled Receptor Activation.
S. Cayouette, M. P. Lussier, E.-L. Mathieu, S. M. Bousquet, and G. Boulay (2004)
J. Biol. Chem. 279, 7241-7246
   Abstract »    Full Text »    PDF »
N-Linked Protein Glycosylation Is a Major Determinant for Basal TRPC3 and TRPC6 Channel Activity.
A. Dietrich, M. Mederos y Schnitzler, J. Emmel, H. Kalwa, T. Hofmann, and T. Gudermann (2003)
J. Biol. Chem. 278, 47842-47852
   Abstract »    Full Text »    PDF »
Regulation of Canonical Transient Receptor Potential (TRPC) Channel Function by Diacylglycerol and Protein Kinase C.
K. Venkatachalam, F. Zheng, and D. L. Gill (2003)
J. Biol. Chem. 278, 29031-29040
   Abstract »    Full Text »    PDF »
Ca2+-dependent Potentiation of the Nonselective Cation Channel TRPV4 Is Mediated by a C-terminal Calmodulin Binding Site.
R. Strotmann, G. Schultz, and T. D. Plant (2003)
J. Biol. Chem. 278, 26541-26549
   Abstract »    Full Text »    PDF »
TRPC3 Mediates T-cell Receptor-dependent Calcium Entry in Human T-lymphocytes.
S. Philipp, B. Strauss, D. Hirnet, U. Wissenbach, L. Mery, V. Flockerzi, and M. Hoth (2003)
J. Biol. Chem. 278, 26629-26638
   Abstract »    Full Text »    PDF »
A Calmodulin/Inositol 1,4,5-Trisphosphate (IP3) Receptor-binding Region Targets TRPC3 to the Plasma Membrane in a Calmodulin/IP3 Receptor-independent Process.
B. J. Wedel, G. Vazquez, R. R. McKay, G. St. J. Bird, and J. W. Putney Jr. (2003)
J. Biol. Chem. 278, 25758-25765
   Abstract »    Full Text »    PDF »
Structural determinant of TRPV1 desensitization interacts with calmodulin.
M. Numazaki, T. Tominaga, K. Takeuchi, N. Murayama, H. Toyooka, and M. Tominaga (2003)
PNAS 100, 8002-8006
   Abstract »    Full Text »    PDF »
Domain organization of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis.
P. C. A. da Fonseca, S. A. Morris, E. P. Nerou, C. W. Taylor, and E. P. Morris (2003)
PNAS 100, 3936-3941
   Abstract »    Full Text »    PDF »
Group I metabotropic glutamate receptors activate a calcium-sensitive transient receptor potential-like conductance in rat hippocampus.
C. E Gee, P. Benquet, and U. Gerber (2003)
J. Physiol. 546, 655-664
   Abstract »    Full Text »    PDF »
TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal.
R. L. Walker, S. D. Koh, G. P. Sergeant, K. M. Sanders, and B. Horowitz (2002)
Am J Physiol Cell Physiol 283, C1637-C1645
   Abstract »    Full Text »    PDF »
Calmodulin Modulates the Delay Period between Release of Calcium from Internal Stores and Activation of Calcium Influx via Endogenous TRP1 Channels.
L. Vaca and A. Sampieri (2002)
J. Biol. Chem. 277, 42178-42187
   Abstract »    Full Text »    PDF »
Calmodulin Is an Auxiliary Subunit of KCNQ2/3 Potassium Channels.
H. Wen and I. B. Levitan (2002)
J. Neurosci. 22, 7991-8001
   Abstract »    Full Text »    PDF »
Comparison of Human TRPC3 Channels in Receptor-activated and Store-operated Modes. DIFFERENTIAL SENSITIVITY TO CHANNEL BLOCKERS SUGGESTS FUNDAMENTAL DIFFERENCES IN CHANNEL COMPOSITION.
M. Trebak, G. St. J. Bird, R. R. McKay, and J. W. Putney Jr. (2002)
J. Biol. Chem. 277, 21617-21623
   Abstract »    Full Text »    PDF »
A Ca2+-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal.
S. D. Koh, J. Y. Jun, T. W. Kim, and K. M Sanders (2002)
J. Physiol. 540, 803-814
   Abstract »    Full Text »    PDF »
A Ca2+-permeable non-selective cation channel activated by depletion of internal Ca2+ stores in single rabbit portal vein myocytes.
A P Albert and W A Large (2002)
J. Physiol. 538, 717-728
   Abstract »    Full Text »    PDF »
Activation of Inositol 1,4,5-Trisphosphate Receptor Is Essential for the Opening of Mouse TRP5 Channels.
H. Kanki, M. Kinoshita, A. Akaike, M. Satoh, Y. Mori, and S. Kaneko (2001)
Mol. Pharmacol. 60, 989-998
   Abstract »    Full Text »    PDF »
Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes.
G. Vazquez, J.-P. Lievremont, G. St. J. Bird, and J. W. Putney Jr. (2001)
PNAS 98, 11777-11782
   Abstract »    Full Text »    PDF »
Expression of Functional Receptor-coupled TRPC3 Channels in DT40 Triple Receptor InsP3 knockout Cells.
K. Venkatachalam, H.-T. Ma, D. L. Ford, and D. L. Gill (2001)
J. Biol. Chem. 276, 33980-33985
   Abstract »    Full Text »    PDF »
Identification of Common Binding Sites for Calmodulin and Inositol 1,4,5-Trisphosphate Receptors on the Carboxyl Termini of Trp Channels.
J. Tang, Y. Lin, Z. Zhang, S. Tikunova, L. Birnbaumer, and M. X. Zhu (2001)
J. Biol. Chem. 276, 21303-21310
   Abstract »    Full Text »    PDF »
Modification of Store-operated Channel Coupling and Inositol Trisphosphate Receptor Function by 2-Aminoethoxydiphenyl Borate in DT40 Lymphocytes.
H.-T. Ma, K. Venkatachalam, J. B. Parys, and D. L. Gill (2002)
J. Biol. Chem. 277, 6915-6922
   Abstract »    Full Text »    PDF »
Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes.
G. Vazquez, J.-P. Lievremont, G. St. J. Bird, and J. W. Putney Jr. (2001)
PNAS 98, 11777-11782
   Abstract »    Full Text »    PDF »
A Ca2+-permeable non-selective cation channel activated by depletion of internal Ca2+ stores in single rabbit portal vein myocytes.
A P Albert and W A Large (2002)
J. Physiol. 538, 717-728
   Abstract »    Full Text »    PDF »
A Ca2+-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal.
S. D. Koh, J. Y. Jun, T. W. Kim, and K. M Sanders (2002)
J. Physiol. 540, 803-814
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882