Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 99 (1): 225-232

Copyright © 2002 by the National Academy of Sciences.

Inaugural Article


The glycosynapse

Sen-itiroh Hakomori*

Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122-4327, and Departments of Pathobiology and Microbiology, University of Washington, Seattle, WA 98195

Contributed by Sen-itiroh Hakomori

Accepted for publication October 11, 2001.

Abstract: Physically distinguishable microdomains associated with various functional membrane proteins are one of the major current topics in cell biology. Glycosphingolipids present in such microdomains have been used as "markers;" however, the functional role of glycosyl epitopes in microdomains has received little attention. In this review, I have tried to summarize the evidence that glycosyl epitopes in microdomains mediate cell adhesion and signal transduction events that affect cellular phenotypes. Molecular assemblies that perform such functions are hereby termed "glycosynapse" in analogy to "immunological synapse," the membrane assembly of immunocyte adhesion and signaling. Three types of glycosynapses are so far distinguishable: (i) Glycosphingolipids organized with cytoplasmic signal transducers and proteolipid tetraspanin with or without growth factor receptors; (ii) transmembrane mucin-type glycoproteins with clustered O-linked glycoepitopes for cell adhesion and associated signal transducers at lipid domain; and (iii) N-glycosylated transmembrane adhesion receptors complexed with tetraspanin and gangliosides, as typically seen with the integrin–tetraspanin–ganglioside complex. The possibility is discussed that glycosynapses give rise to a high degree of diversity and complexity of phenotypes.

* Division of Biomembrane Research, Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122-4327. E-mail: hakomori{at}

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on May 1, 2001.

{dagger} Glycosphingolipids are abbreviated according to the recommendations of the International Union of Pure and Applied Chemistry-International Union of Biochemistry Commission on Biochemical Nomenclature (CBN) [CBN for lipids (1977) Eur. J. Biochem. 79, 11–21]; however, the suffix -OseCer is omitted. Ganglio-series gangliosides are abbreviated according to the extended version of Svennerholm's list [Holmgren, J., Svennerholm, L., Elwing, H., Fredman, P. & Strannegard, O. (1980) Proc. Natl. Acad. Sci. USA 77, 1947–1950].

{ddagger} The term "glycosynapse" is applied to the membrane assembly involved in glycosylation-dependent cell adhesion and signaling, in analogy to "immunological synapse," which controls functional adhesion between immunocytes (refs. 120 and 121). The term supplements the concepts of "caveolae" (1), "raft" (5), and other terms which do not implicate glycosylation-dependent cell function.

Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration.
R. L. Schnaar, R. Gerardy-Schahn, and H. Hildebrandt (2014)
Physiol Rev 94, 461-518
   Abstract »    Full Text »    PDF »
Clot retraction is mediated by factor XIII-dependent fibrin-{alpha}IIb{beta}3-myosin axis in platelet sphingomyelin-rich membrane rafts.
K. Kasahara, M. Kaneda, T. Miki, K. Iida, N. Sekino-Suzuki, I. Kawashima, H. Suzuki, M. Shimonaka, M. Arai, Y. Ohno-Iwashita, et al. (2013)
Blood 122, 3340-3348
   Abstract »    Full Text »    PDF »
Unique gangliosides synthesized in vitro by sialyltransferases from marine bacteria and their characterization: ganglioside synthesis by bacterial sialyltransferases.
H. Kamimiya, Y. Suzuki, T. Kasama, H. Kajiwara, T. Yamamoto, T. Mine, S. Watarai, K. Ogura, K. Nakamura, J. Tsuge, et al. (2013)
J. Lipid Res. 54, 571-580
   Abstract »    Full Text »    PDF »
The origin and function of platelet glycosyltransferases.
H. H. Wandall, V. Rumjantseva, A. L. T. Sorensen, S. Patel-Hett, E. C. Josefsson, E. P. Bennett, J. E. Italiano Jr, H. Clausen, J. H. Hartwig, and K. M. Hoffmeister (2012)
Blood 120, 626-635
   Abstract »    Full Text »    PDF »
The ganglioside GD2 induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the GD3 synthase.
A. Cazet, M. Bobowski, Y. Rombouts, J. Lefebvre, A. Steenackers, I. Popa, Y. Guerardel, X. Le Bourhis, D. Tulasne, and P. Delannoy (2012)
Glycobiology 22, 806-816
   Abstract »    Full Text »    PDF »
Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice.
A. Di Pardo, V. Maglione, M. Alpaugh, M. Horkey, R. S. Atwal, J. Sassone, A. Ciammola, J. S. Steffan, K. Fouad, R. Truant, et al. (2012)
PNAS 109, 3528-3533
   Abstract »    Full Text »    PDF »
Membrane texture induced by specific protein binding and receptor clustering: active roles for lipids in cellular function.
E. B. Watkins, C. E. Miller, J. Majewski, and T. L. Kuhl (2011)
PNAS 108, 6975-6980
   Abstract »    Full Text »    PDF »
Anti-Ganglioside Antibody-Mediated Activation of RhoA Induces Inhibition of Neurite Outgrowth.
G. Zhang, H. C. Lehmann, S. Manoharan, M. Hashmi, S. Shim, G.-L. Ming, R. L. Schnaar, P. H. Lopez, N. Bogdanova, and K. A. Sheikh (2011)
J. Neurosci. 31, 1664-1675
   Abstract »    Full Text »    PDF »
Altered Ganglioside Expression Modulates the Pathogenic Mechanism of Thyroid-Associated Ophthalmopathy by Increase in Hyaluronic Acid.
K. H. Kook, Y.-H. Choi, Y. R. Kim, S. J. Park, I. Jou, S. J. Kim, and S. Y. Lee (2011)
Invest. Ophthalmol. Vis. Sci. 52, 264-273
   Abstract »    Full Text »    PDF »
Production and characterization of monoclonal antibodies specific to lactotriaosylceramide.
H. Nozaki, M. Yanagida, K.-i. Koide, K. Shiotani, M. Kinoshita, Y. Kobayashi, S. Watarai, K. Nakamura, A. Suzuki, T. Ariga, et al. (2010)
Glycobiology 20, 1631-1642
   Abstract »    Full Text »    PDF »
GD3 Synthase Expression Enhances Proliferation and Tumor Growth of MDA-MB-231 Breast Cancer Cells through c-Met Activation.
A. Cazet, J. Lefebvre, E. Adriaenssens, S. Julien, M. Bobowski, A. Grigoriadis, A. Tutt, D. Tulasne, X. Le Bourhis, and P. Delannoy (2010)
Mol. Cancer Res. 8, 1526-1535
   Abstract »    Full Text »    PDF »
Direct quantitative determination of ceramide glycosylation in vivo: a new approach to evaluate cellular enzyme activity of glucosylceramide synthase.
V. Gupta, G. A. Patwardhan, Q.-J. Zhang, M. C. Cabot, S. M. Jazwinski, and Y.-Y. Liu (2010)
J. Lipid Res. 51, 866-874
   Abstract »    Full Text »    PDF »
Impaired Ganglioside Metabolism in Huntington's Disease and Neuroprotective Role of GM1.
V. Maglione, P. Marchi, A. Di Pardo, S. Lingrell, M. Horkey, E. Tidmarsh, and S. Sipione (2010)
J. Neurosci. 30, 4072-4080
   Abstract »    Full Text »    PDF »
Sialyltransferases of marine bacteria efficiently utilize glycosphingolipid substrates.
Y. Kushi, H. Kamimiya, H. Hiratsuka, H. Nozaki, H. Fukui, M. Yanagida, M. Hashimoto, K. Nakamura, S. Watarai, T. Kasama, et al. (2010)
Glycobiology 20, 187-198
   Abstract »    Full Text »    PDF »
Bisecting GlcNAc Residues on Laminin-332 Down-regulate Galectin-3-dependent Keratinocyte Motility.
Y. Kariya, C. Kawamura, T. Tabei, and J. Gu (2010)
J. Biol. Chem. 285, 3330-3340
   Abstract »    Full Text »    PDF »
Metabolic glycoengineering: Sialic acid and beyond.
J. Du, M A. Meledeo, Z. Wang, H. S Khanna, V. D P Paruchuri, and K. J Yarema (2009)
Glycobiology 19, 1382-1401
   Abstract »    Full Text »    PDF »
Sialic acid feeding aged rats rejuvenates stimulated salivation and colon enteric neuron chemotypes.
N. Sprenger, M. Julita, D. Donnicola, and A. Jann (2009)
Glycobiology 19, 1492-1502
   Abstract »    Full Text »    PDF »
Zebrafish and Mouse {alpha}2,3-Sialyltransferases Responsible for Synthesizing GM4 Ganglioside.
S.-i. Chisada, Y. Yoshimura, K. Sakaguchi, S. Uemura, S. Go, K. Ikeda, H. Uchima, N. Matsunaga, K. Ogura, T. Tai, et al. (2009)
J. Biol. Chem. 284, 30534-30546
   Abstract »    Full Text »    PDF »
Order of lipid phases in model and plasma membranes.
H.-J. Kaiser, D. Lingwood, I. Levental, J. L. Sampaio, L. Kalvodova, L. Rajendran, and K. Simons (2009)
PNAS 106, 16645-16650
   Abstract »    Full Text »    PDF »
Analysis of lectin binding to glycolipid complexes using combinatorial glycoarrays.
S. Rinaldi, K. M Brennan, C. S Goodyear, C. O'Leary, G. Schiavo, P. R Crocker, and H. J Willison (2009)
Glycobiology 19, 789-796
   Abstract »    Full Text »    PDF »
Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti.
M. Yoshikawa, S. Go, K. Takasaki, Y. Kakazu, M. Ohashi, M. Nagafuku, K. Kabayama, J. Sekimoto, S.-i. Suzuki, K. Takaiwa, et al. (2009)
PNAS 106, 9483-9488
   Abstract »    Full Text »    PDF »
Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines.
F. Guan, K. Handa, and S.-i. Hakomori (2009)
PNAS 106, 7461-7466
   Abstract »    Full Text »    PDF »
Tyrosine Kinase Activity of Epidermal Growth Factor Receptor Is Regulated by GM3 Binding through Carbohydrate to Carbohydrate Interactions.
N. Kawashima, S.-J. Yoon, K. Itoh, and K.-i. Nakayama (2009)
J. Biol. Chem. 284, 6147-6155
   Abstract »    Full Text »    PDF »
Ganglioside complexes containing GQ1b as targets in Miller Fisher and Guillain-Barre syndromes.
M Kanzaki, K Kaida, M Ueda, D Morita, M Hirakawa, K Motoyoshi, K Kamakura, and S Kusunoki (2008)
J. Neurol. Neurosurg. Psychiatry 79, 1148-1152
   Abstract »    Full Text »    PDF »
GM2/GD2 and GM3 gangliosides have no effect on cellular cholesterol pools or turnover in normal or NPC1 mice.
H. Li, S. D. Turley, B. Liu, J. J. Repa, and J. M. Dietschy (2008)
J. Lipid Res. 49, 1816-1828
   Abstract »    Full Text »    PDF »
Ganglioside depletion and EGF responses of human GM3 synthase-deficient fibroblasts.
Y. Liu, Y. Su, M. Wiznitzer, O. Epifano, and S. Ladisch (2008)
Glycobiology 18, 593-601
   Abstract »    Full Text »    PDF »
Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity.
L. Roque-Navarro, K. Chakrabandhu, J. de Leon, S. Rodriguez, C. Toledo, A. Carr, C. M. de Acosta, A.-O. Hueber, and R. Perez (2008)
Mol. Cancer Ther. 7, 2033-2041
   Abstract »    Full Text »    PDF »
Thematic Review Series: Sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a.
P. Mukherjee, A. C. Faber, L. M. Shelton, R. C. Baek, T. C. Chiles, and T. N. Seyfried (2008)
J. Lipid Res. 49, 929-938
   Abstract »    Full Text »    PDF »
Tetraspanin CD151 Promotes Cell Migration by Regulating Integrin Trafficking.
L. Liu, B. He, W. M. Liu, D. Zhou, J. V. Cox, and X. A. Zhang (2007)
J. Biol. Chem. 282, 31631-31642
   Abstract »    Full Text »    PDF »
Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance.
K. Kabayama, T. Sato, K. Saito, N. Loberto, A. Prinetti, S. Sonnino, M. Kinjo, Y. Igarashi, and J.-i. Inokuchi (2007)
PNAS 104, 13678-13683
   Abstract »    Full Text »    PDF »
A Cholesterol-independent Membrane Microdomain Serves as a Functional Counter-receptor for E-selectin at the Colo201 Cell Surface and Initiates Signalling on E-selectin Binding.
C. Suzuki and N. Kojima (2007)
J. Biochem. 142, 55-64
   Abstract »    Full Text »    PDF »
Gangliosides GM1 and GM3 in the Living Cell Membrane Form Clusters Susceptible to Cholesterol Depletion and Chilling.
A. Fujita, J. Cheng, M. Hirakawa, K. Furukawa, S. Kusunoki, and T. Fujimoto (2007)
Mol. Biol. Cell 18, 2112-2122
   Abstract »    Full Text »    PDF »
Fatty Acid 2-Hydroxylase, Encoded by FA2H, Accounts for Differentiation-associated Increase in 2-OH Ceramides during Keratinocyte Differentiation.
Y. Uchida, H. Hama, N. L. Alderson, S. Douangpanya, Y. Wang, D. A. Crumrine, P. M. Elias, and W. M. Holleran (2007)
J. Biol. Chem. 282, 13211-13219
   Abstract »    Full Text »    PDF »
Passive Immunization with Anti-Ganglioside Antibodies Directly Inhibits Axon Regeneration in an Animal Model.
H. C. Lehmann, P. H. H. Lopez, G. Zhang, T. Ngyuen, J. Zhang, B. C. Kieseier, S. Mori, and K. A. Sheikh (2007)
J. Neurosci. 27, 27-34
   Abstract »    Full Text »    PDF »
Membrane Ganglioside Enrichment Lowers the Threshold for Vascular Endothelial Cell Angiogenic Signaling.
Y. Liu, J. McCarthy, and S. Ladisch (2006)
Cancer Res. 66, 10408-10414
   Abstract »    Full Text »    PDF »
Z. Wang, Z. Sun, A. V. Li, and K. J. Yarema (2006)
J. Biol. Chem. 281, 27016-27028
   Abstract »    Full Text »    PDF »
9-O-Acetylation of Exogenously Added Ganglioside GD3: THE GD3 MOLECULE INDUCES ITS OWN O-ACETYLATION MACHINERY.
H. Y. Chen, A. K. Challa, and A. Varki (2006)
J. Biol. Chem. 281, 7825-7833
   Abstract »    Full Text »    PDF »
Core Fucosylation Regulates Epidermal Growth Factor Receptor-mediated Intracellular Signaling.
X. Wang, J. Gu, H. Ihara, E. Miyoshi, K. Honke, and N. Taniguchi (2006)
J. Biol. Chem. 281, 2572-2577
   Abstract »    Full Text »    PDF »
The Decreased Susceptibility of Bcr/Abl Targets to NK Cell-Mediated Lysis in Response to Imatinib Mesylate Involves Modulation of NKG2D Ligands, GM1 Expression, and Synapse Formation.
C. Cebo, S. Da Rocha, S. Wittnebel, A. G. Turhan, J. Abdelali, S. Caillat-Zucman, J. H. Bourhis, S. Chouaib, and A. Caignard (2006)
J. Immunol. 176, 864-872
   Abstract »    Full Text »    PDF »
A Specific Microdomain ("Glycosynapse 3") Controls Phenotypic Conversion and Reversion of Bladder Cancer Cells through GM3-mediated Interaction of {alpha}3{beta}1 Integrin with CD9.
K. Mitsuzuka, K. Handa, M. Satoh, Y. Arai, and S. Hakomori (2005)
J. Biol. Chem. 280, 35545-35553
   Abstract »    Full Text »    PDF »
Serinc, an Activity-regulated Protein Family, Incorporates Serine into Membrane Lipid Synthesis.
M. Inuzuka, M. Hayakawa, and T. Ingi (2005)
J. Biol. Chem. 280, 35776-35783
   Abstract »    Full Text »    PDF »
The Glycosphingolipid, Lactosylceramide, Regulates {beta}1-Integrin Clustering and Endocytosis.
D. K. Sharma, J. C. Brown, Z. Cheng, E. L. Holicky, D. L. Marks, and R. E. Pagano (2005)
Cancer Res. 65, 8233-8241
   Abstract »    Full Text »    PDF »
Characterization of a Proapoptotic Antiganglioside GM2 Monoclonal Antibody and Evaluation of Its Therapeutic Effect on Melanoma and Small Cell Lung Carcinoma Xenografts.
M. W. Retter, J. C. Johnson, D. W. Peckham, J. E. Bannink, C. S. Bangur, K. Dresser, F. Cai, T. M. Foy, N. A. Fanger, G. R. Fanger, et al. (2005)
Cancer Res. 65, 6425-6434
   Abstract »    Full Text »    PDF »
Effect of Ganglioside and Tetraspanins in Microdomains on Interaction of Integrins with Fibroblast Growth Factor Receptor.
M. S. Toledo, E. Suzuki, K. Handa, and S. Hakomori (2005)
J. Biol. Chem. 280, 16227-16234
   Abstract »    Full Text »    PDF »
Galectin-4 Binds to Sulfated Glycosphingolipids and Carcinoembryonic Antigen in Patches on the Cell Surface of Human Colon Adenocarcinoma Cells.
H. Ideo, A. Seko, and K. Yamashita (2005)
J. Biol. Chem. 280, 4730-4737
   Abstract »    Full Text »    PDF »
Paths toward Algal Genomics.
A. R. Grossman (2005)
Plant Physiology 137, 410-427
   Full Text »    PDF »
A. Kohyama-Koganeya, T. Sasamura, E. Oshima, E. Suzuki, S. Nishihara, R. Ueda, and Y. Hirabayashi (2004)
J. Biol. Chem. 279, 35995-36002
   Abstract »    Full Text »    PDF »
Cell Growth Regulation through GM3-enriched Microdomain (Glycosynapse) in Human Lung Embryonal Fibroblast WI38 and Its Oncogenic Transformant VA13.
M. S. Toledo, E. Suzuki, K. Handa, and S. Hakomori (2004)
J. Biol. Chem. 279, 34655-34664
   Abstract »    Full Text »    PDF »
The Plasma Membrane-associated Sialidase MmNEU3 Modifies the Ganglioside Pattern of Adjacent Cells Supporting Its Involvement in Cell-to-Cell Interactions.
N. Papini, L. Anastasia, C. Tringali, G. Croci, R. Bresciani, K. Yamaguchi, T. Miyagi, A. Preti, A. Prinetti, S. Prioni, et al. (2004)
J. Biol. Chem. 279, 16989-16995
   Abstract »    Full Text »    PDF »
Does Paranode Formation and Maintenance Require Partitioning of Neurofascin 155 into Lipid Rafts?.
D. P. Schafer, R. Bansal, K. L. Hedstrom, S. E. Pfeiffer, and M. N. Rasband (2004)
J. Neurosci. 24, 3176-3185
   Abstract »    Full Text »    PDF »
{beta}1,4-N-Acetylglucosaminyltransferase III down-regulates neurite outgrowth induced by costimulation of epidermal growth factor and integrins through the Ras/ERK signaling pathway in PC12 cells.
J. Gu, Y. Zhao, T. Isaji, Y. Shibukawa, H. Ihara, M. Takahashi, Y. Ikeda, E. Miyoshi, K. Honke, and N. Taniguchi (2004)
Glycobiology 14, 177-186
   Abstract »    Full Text »    PDF »
Immunoblockage of 9-O-Acetyl GD3 Ganglioside Arrests the In Vivo Migration of Cerebellar Granule Neurons.
M. F. Santiago, M. R. Costa, and R. Mendez-Otero (2004)
J. Neurosci. 24, 474-478
   Abstract »    Full Text »    PDF »
Glycosphingolipids in Health and Disease.
X. Zhang and F. L. Kiechle (2004)
Ann. Clin. Lab. Sci. 34, 3-13
   Abstract »    Full Text »    PDF »
Chlamydomonas reinhardtii at the Crossroads of Genomics.
A. R. Grossman, E. E. Harris, C. Hauser, P. A. Lefebvre, D. Martinez, D. Rokhsar, J. Shrager, C. D. Silflow, D. Stern, O. Vallon, et al. (2003)
Eukaryot. Cell 2, 1137-1150
   Full Text »    PDF »
The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity.
H. Ideo, A. Seko, I. Ishizuka, and K. Yamashita (2003)
Glycobiology 13, 713-723
   Abstract »    Full Text »    PDF »
T Cell Glycolipid-Enriched Membrane Domains Are Constitutively Assembled as Membrane Patches That Translocate to Immune Synapses.
S. Jordan and W. Rodgers (2003)
J. Immunol. 171, 78-87
   Abstract »    Full Text »    PDF »
Carbohydrate-dependent signaling from the phosphatidylglucoside-based microdomain induces granulocytic differentiation of HL60 cells.
Y. Nagatsuka, M. Hara-Yokoyama, T. Kasama, M. Takekoshi, F. Maeda, S. Ihara, S. Fujiwara, E. Ohshima, K. Ishii, T. Kobayashi, et al. (2003)
PNAS 100, 7454-7459
   Abstract »    Full Text »    PDF »
Enhanced insulin sensitivity in mice lacking ganglioside GM3.
T. Yamashita, A. Hashiramoto, M. Haluzik, H. Mizukami, S. Beck, A. Norton, M. Kono, S. Tsuji, J. L. Daniotti, N. Werth, et al. (2003)
PNAS 100, 3445-3449
   Abstract »    Full Text »    PDF »
Chlamydomonas reinhardtii Genome Project. A Guide to the Generation and Use of the cDNA Information.
J. Shrager, C. Hauser, C.-W. Chang, E. H. Harris, J. Davies, J. McDermott, R. Tamse, Z. Zhang, and A. R. Grossman (2003)
Plant Physiology 131, 401-408
   Abstract »    Full Text »    PDF »
All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases.
K. G. Ten Hagen, T. A. Fritz, and L. A. Tabak (2003)
Glycobiology 13, 1R-16R
   Abstract »    Full Text »    PDF »
O-acetylation of GD3: An Enigmatic Modification Regulating Apoptosis?.
H. Y. Chen and A. Varki (2002)
J. Exp. Med. 196, 1529-1533
   Full Text »    PDF »
Ganglioside Induces Caveolin-1 Redistribution and Interaction with the Epidermal Growth Factor Receptor.
X.-Q. Wang, P. Sun, and A. S. Paller (2002)
J. Biol. Chem. 277, 47028-47034
   Abstract »    Full Text »    PDF »
Ganglioside Modulation Regulates Epithelial Cell Adhesion and Spreading via Ganglioside-specific Effects on Signaling.
X.-Q. Wang, P. Sun, and A. S. Paller (2002)
J. Biol. Chem. 277, 40410-40419
   Abstract »    Full Text »    PDF »
Tetraspanin CD9 Is a "Proteolipid," and Its Interaction with alpha 3 Integrin in Microdomain Is Promoted by GM3 Ganglioside, Leading to Inhibition of Laminin-5-dependent Cell Motility.
Y. Kawakami, K. Kawakami, W. F. A. Steelant, M. Ono, R. C. Baek, K. Handa, D. A. Withers, and S. Hakomori (2002)
J. Biol. Chem. 277, 34349-34358
   Abstract »    Full Text »    PDF »
Glycosylation defining cancer malignancy: New wine in an old bottle.
S. Hakomori (2002)
PNAS 99, 10231-10233
   Full Text »    PDF »
Preferential binding of the anticancer drug rViscumin (recombinant mistletoe lectin) to terminally {alpha}2-6-sialylated neolacto-series gangliosides.
J. Muthing, M. Burg, B. Mockel, M. Langer, W. Metelmann-Strupat, A. Werner, U. Neumann, J. Peter-Katalinic, and J. Eck (2002)
Glycobiology 12, 485-497
   Abstract »    Full Text »    PDF »
Ganglioside rafts as MAG receptors that mediate blockade of axon growth.
L. McKerracher (2002)
PNAS 99, 7811-7813
   Full Text »    PDF »
Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration.
A. A. Vyas, H. V. Patel, S. E. Fromholt, M. Heffer-Lauc, K. A. Vyas, J. Dang, M. Schachner, and R. L. Schnaar (2002)
PNAS 99, 8412-8417
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882