Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 285 (5435): 1917-1919

Copyright © 1999 by the American Association for the Advancement of Science

Constitutive Activation of Toll-Mediated Antifungal Defense in Serpin-Deficient Drosophila

Elena A. Levashina, 1*dagger Emma Langley, 1*ddagger Clare Green, 2 David Gubb, 2 Michael Ashburner, 2 Jules A. Hoffmann, 1 Jean-Marc Reichhart 1§

The antifungal defense of Drosophila is controlled by the spaetzle/Toll/cactus gene cassette. Here, a loss-of-function mutation in the gene encoding a blood serine protease inhibitor, Spn43Ac, was shown to lead to constitutive expression of the antifungal peptide drosomycin, and this effect was mediated by the spaetzle and Toll gene products. Spaetzle was cleaved by proteolytic enzymes to its active ligand form shortly after immune challenge, and cleaved Spaetzle was constitutively present in Spn43Ac-deficient flies. Hence, Spn43Ac negatively regulates the Toll signaling pathway, and Toll does not function as a pattern recognition receptor in the Drosophila host defense.

1 UPR 9022 CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, Strasbourg 67084, France.
2 Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
*   These authors contributed equally to this study.

dagger    Present address: European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 67117, Germany.

ddagger    Present address: Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK.

§   To whom correspondence should be addressed. E-mail: reichhart{at}ibmc.u-strasbg.fr


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Whole-genome expression profile analysis of Drosophila melanogaster immune responses.
L. Teixeira (2012)
Briefings in Functional Genomics 11, 375-386
   Abstract »    Full Text »    PDF »
93-kDa Twin-domain Serine Protease Inhibitor (Serpin) Has a Regulatory Function on the Beetle Toll Proteolytic Signaling Cascade.
R. Jiang, B. Zhang, K. Kurokawa, Y.-I. So, E.-H. Kim, H. O. Hwang, J.-H. Lee, A. Shiratsuchi, J. Zhang, Y. Nakanishi, et al. (2011)
J. Biol. Chem. 286, 35087-35095
   Abstract »    Full Text »    PDF »
Spn1 Regulates the GNBP3-Dependent Toll Signaling Pathway in Drosophila melanogaster.
A. Fullaondo, S. Garcia-Sanchez, A. Sanz-Parra, E. Recio, S. Y. Lee, and D. Gubb (2011)
Mol. Cell. Biol. 31, 2960-2972
   Abstract »    Full Text »    PDF »
ZmPep1, an Ortholog of Arabidopsis Elicitor Peptide 1, Regulates Maize Innate Immunity and Enhances Disease Resistance.
A. Huffaker, N. J. Dafoe, and E. A. Schmelz (2011)
Plant Physiology 155, 1325-1338
   Abstract »    Full Text »    PDF »
Structural and Functional Characterization of a Highly Specific Serpin in the Insect Innate Immunity.
S. H. Park, R. Jiang, S. Piao, B. Zhang, E.-H. Kim, H.-M. Kwon, X. L. Jin, B. L. Lee, and N.-C. Ha (2011)
J. Biol. Chem. 286, 1567-1575
   Abstract »    Full Text »    PDF »
Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects.
Y. Yu, J.-W. Park, H.-M. Kwon, H.-O. Hwang, I.-H. Jang, A. Masuda, K. Kurokawa, H. Nakayama, W.-J. Lee, N. Dohmae, et al. (2010)
J. Biol. Chem. 285, 32937-32945
   Abstract »    Full Text »    PDF »
Analysis of Mutually Exclusive Alternatively Spliced Serpin-1 Isoforms and Identification of Serpin-1 Proteinase Complexes in Manduca sexta Hemolymph.
E. J. Ragan, C. An, C. T. Yang, and M. R. Kanost (2010)
J. Biol. Chem. 285, 29642-29650
   Abstract »    Full Text »    PDF »
Serpins Flex Their Muscle: I. PUTTING THE CLAMPS ON PROTEOLYSIS IN DIVERSE BIOLOGICAL SYSTEMS.
G. A. Silverman, J. C. Whisstock, S. P. Bottomley, J. A. Huntington, D. Kaiserman, C. J. Luke, S. C. Pak, J.-M. Reichhart, and P. I. Bird (2010)
J. Biol. Chem. 285, 24299-24305
   Abstract »    Full Text »    PDF »
Arabidopsis AtSerpin1, Crystal Structure and in Vivo Interaction with Its Target Protease RESPONSIVE TO DESICCATION-21 (RD21).
N. Lampl, O. Budai-Hadrian, O. Davydov, T. V. Joss, S. J. Harrop, P. M. G. Curmi, T. H. Roberts, and R. Fluhr (2010)
J. Biol. Chem. 285, 13550-13560
   Abstract »    Full Text »    PDF »
Three Pairs of Protease-Serpin Complexes Cooperatively Regulate the Insect Innate Immune Responses.
R. Jiang, E.-H. Kim, J.-H. Gong, H.-M. Kwon, C.-H. Kim, K.-H. Ryu, J.-W. Park, K. Kurokawa, J. Zhang, D. Gubb, et al. (2009)
J. Biol. Chem. 284, 35652-35658
   Abstract »    Full Text »    PDF »
A Profound Role for the Expansion of Trypsin-Like Serine Protease Family in the Evolution of Hematophagy in Mosquito.
D.-D. Wu, G.-D. Wang, D. M Irwin, and Y.-P. Zhang (2009)
Mol. Biol. Evol. 26, 2333-2341
   Abstract »    Full Text »    PDF »
Genetic screen identifies serpin5 as a regulator of the toll pathway and CHMP2B toxicity associated with frontotemporal dementia.
S. T. Ahmad, S. T. Sweeney, J.-A. Lee, N. T. Sweeney, and F.-B. Gao (2009)
PNAS 106, 12168-12173
   Abstract »    Full Text »    PDF »
Proteolytic Cascade for the Activation of the Insect Toll Pathway Induced by the Fungal Cell Wall Component.
K.-B. Roh, C.-H. Kim, H. Lee, H.-M. Kwon, J.-W. Park, J.-H. Ryu, K. Kurokawa, N.-C. Ha, W.-J. Lee, B. Lemaitre, et al. (2009)
J. Biol. Chem. 284, 19474-19481
   Abstract »    Full Text »    PDF »
Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response.
B. Charroux and J. Royet (2009)
PNAS 106, 9797-9802
   Abstract »    Full Text »    PDF »
A Three-step Proteolytic Cascade Mediates the Activation of the Peptidoglycan-induced Toll Pathway in an Insect.
C.-H. Kim, S.-J. Kim, H. Kan, H.-M. Kwon, K.-B. Roh, R. Jiang, Y. Yang, J.-W. Park, H.-H. Lee, N.-C. Ha, et al. (2008)
J. Biol. Chem. 283, 7599-7607
   Abstract »    Full Text »    PDF »
Infection-induced proteolysis of PGRP-LC controls the IMD activation and melanization cascades in Drosophila.
R. L. Schmidt, T. R. Trejo, T. B. Plummer, J. L. Platt, and A. H. Tang (2008)
FASEB J 22, 918-929
   Abstract »    Full Text »    PDF »
Toll and IMD Pathways Synergistically Activate an Innate Immune Response in Drosophila melanogaster.
T. Tanji, X. Hu, A. N. R. Weber, and Y. T. Ip (2007)
Mol. Cell. Biol. 27, 4578-4588
   Abstract »    Full Text »    PDF »
Fungal Peptide Destruxin A Plays a Specific Role in Suppressing the Innate Immune Response in Drosophila melanogaster.
S. Pal, R. J. St. Leger, and L. P. Wu (2007)
J. Biol. Chem. 282, 8969-8977
   Abstract »    Full Text »    PDF »
An Ectopic Expression Screen Reveals the Protective and Toxic Effects of Drosophila Seminal Fluid Proteins.
J. L. Mueller, J. L. Page, and M. F. Wolfner (2007)
Genetics 175, 777-783
   Abstract »    Full Text »    PDF »
Two Proteases Defining a Melanization Cascade in the Immune System of Drosophila.
H. Tang, Z. Kambris, B. Lemaitre, and C. Hashimoto (2006)
J. Biol. Chem. 281, 28097-28104
   Abstract »    Full Text »    PDF »
Inhibitory Activity of the Drosophila melanogaster Serpin Necrotic Is Dependent on Lysine Residues in the D-helix.
A. S. Robertson, D. Belorgey, D. Gubb, T. R. Dafforn, and D. A. Lomas (2006)
J. Biol. Chem. 281, 26437-26443
   Abstract »    Full Text »    PDF »
Interaction of beta-1,3-Glucan with Its Recognition Protein Activates Hemolymph Proteinase 14, an Initiation Enzyme of the Prophenoloxidase Activation System in Manduca sexta.
Y. Wang and H. Jiang (2006)
J. Biol. Chem. 281, 9271-9278
   Abstract »    Full Text »    PDF »
Analysis of Homologous Gene Clusters in Caenorhabditis elegans Reveals Striking Regional Cluster Domains.
J. H. Thomas (2006)
Genetics 172, 127-143
   Abstract »    Full Text »    PDF »
An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites.
E. G. Abraham, S. B. Pinto, A. Ghosh, D. L. Vanlandingham, A. Budd, S. Higgs, F. C. Kafatos, M. Jacobs-Lorena, and K. Michel (2005)
PNAS 102, 16327-16332
   Abstract »    Full Text »    PDF »
Manduca sexta Serpin-4 and Serpin-5 Inhibit the Prophenol Oxidase Activation Pathway: cDNA CLONING, PROTEIN EXPRESSION, AND CHARACTERIZATION.
Y. Tong and M. R. Kanost (2005)
J. Biol. Chem. 280, 14923-14931
   Abstract »    Full Text »    PDF »
Manduca sexta Serpin-6 Regulates Immune Serine Proteinases PAP-3 and HP8: cDNA CLONING, PROTEIN EXPRESSION, INHIBITION KINETICS, AND FUNCTION ELUCIDATION.
Z. Zou and H. Jiang (2005)
J. Biol. Chem. 280, 14341-14348
   Abstract »    Full Text »    PDF »
Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor.
K.-M. Choe, H. Lee, and K. V. Anderson (2005)
PNAS 102, 1122-1126
   Abstract »    Full Text »    PDF »
Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity.
A. Takehana, T. Yano, S. Mita, A. Kotani, Y. Oshima, and S. Kurata (2004)
EMBO J. 23, 4690-4700
   Abstract »    Full Text »    PDF »
A Pattern Recognition Serine Proteinase Triggers the Prophenoloxidase Activation Cascade in the Tobacco Hornworm, Manduca sexta.
C. Ji, Y. Wang, X. Guo, S. Hartson, and H. Jiang (2004)
J. Biol. Chem. 279, 34101-34106
   Abstract »    Full Text »    PDF »
Toll-dependent and Toll-independent immune responses in Drosophila.
J.-L. Imler, D. Ferrandon, J. Royet, J.-M. Reichhart, C. Hetru, and J. A. Hoffmann (2004)
Innate Immunity 10, 241-246
   Abstract »    PDF »
Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics.
M. A. Osta, G. K. Christophides, D. Vlachou, and F. C. Kafatos (2004)
J. Exp. Biol. 207, 2551-2563
   Abstract »    Full Text »    PDF »
Multimerization and interaction of Toll and Spatzle in Drosophila.
X. Hu, Y. Yagi, T. Tanji, S. Zhou, and Y. T. Ip (2004)
PNAS 101, 9369-9374
   Abstract »    Full Text »    PDF »
Immune-Deficient Drosophila melanogaster: A Model for the Innate Immune Response to Human Fungal Pathogens.
A.-M. Alarco, A. Marcil, J. Chen, B. Suter, D. Thomas, and M. Whiteway (2004)
J. Immunol. 172, 5622-5628
   Abstract »    Full Text »    PDF »
Proteomic Analysis of the Systemic Immune Response of Drosophila.
F. Levy, P. Bulet, and L. Ehret-Sabatier (2004)
Mol. Cell. Proteomics 3, 156-166
   Abstract »    Full Text »    PDF »
Peptidoglycan Recognition Proteins Involved in 1,3-{beta}-D-Glucan-dependent Prophenoloxidase Activation System of Insect.
M. H. Lee, T. Osaki, J. Y. Lee, M. J. Baek, R. Zhang, J. W. Park, S.-i. Kawabata, K. Soderhall, and B. L. Lee (2004)
J. Biol. Chem. 279, 3218-3227
   Abstract »    Full Text »    PDF »
A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides.
S. Ariki, K. Koori, T. Osaki, K. Motoyama, K.-i. Inamori, and S.-i. Kawabata (2004)
PNAS 101, 953-958
   Abstract »    Full Text »    PDF »
A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph.
E. Vierstraete, P. Verleyen, G. Baggerman, W. D'Hertog, G. Van den Bergh, L. Arckens, A. De Loof, and L. Schoofs (2004)
PNAS 101, 470-475
   Abstract »    Full Text »    PDF »
Dual Activation of the Drosophila Toll Pathway by Two Pattern Recognition Receptors.
V. Gobert, M. Gottar, A. A. Matskevich, S. Rutschmann, J. Royet, M. Belvin, J. A. Hoffmann, and D. Ferrandon (2003)
Science 302, 2126-2130
   Abstract »    Full Text »    PDF »
Silencing of Toll pathway components by direct injection of double-stranded RNA into Drosophila adult flies.
A. Goto, S. Blandin, J. Royet, J.-M. Reichhart, and E. A. Levashina (2003)
Nucleic Acids Res. 31, 6619-6623
   Abstract »    Full Text »    PDF »
Role of Toll-Like Receptors in Pathogen Recognition.
S. Janssens and R. Beyaert (2003)
Clin. Microbiol. Rev. 16, 637-646
   Abstract »    Full Text »    PDF »
Baculovirus Induces an Innate Immune Response and Confers Protection from Lethal Influenza Virus Infection in Mice.
T. Abe, H. Takahashi, H. Hamazaki, N. Miyano-Kurosaki, Y. Matsuura, and H. Takaku (2003)
J. Immunol. 171, 1133-1139
   Abstract »    Full Text »    PDF »
Drosophila melanogaster Antimicrobial Defense.
C. Hetru, L. Troxler, and J. A. Hoffmann (2003)
The Journal of Infectious Disease 187, S327-S334
   Abstract »    Full Text »    PDF »
Drosophila melanogaster Is a Genetically Tractable Model Host for Mycobacterium marinum.
M. S. Dionne, N. Ghori, and D. S. Schneider (2003)
Infect. Immun. 71, 3540-3550
   Abstract »    Full Text »    PDF »
Drosophila necrotic mutations mirror disease-associated variants of human serpins.
C. Green, G. Brown, T. R. Dafforn, J.-M. Reichhart, T. Morley, D. A. Lomas, and D. Gubb (2003)
Development 130, 1473-1478
   Abstract »    Full Text »    PDF »
The Interleukin-1 Receptor/Toll-Like Receptor Superfamily: Signal Transduction During Inflammation and Host Defense.
A. Dunne and L. A. J. O'Neill (2003)
Sci. STKE 2003, re3
   Abstract »    Full Text »    PDF »
Characterization of the Necrotic Protein That Regulates the Toll-mediated Immune Response in Drosophila.
A. S. Robertson, D. Belorgey, K. S. Lilley, D. A. Lomas, D. Gubb, and T. R. Dafforn (2003)
J. Biol. Chem. 278, 6175-6180
   Abstract »    Full Text »    PDF »
Cloning and Characterization of Four Anopheles gambiae Serpin Isoforms, Differentially Induced in the Midgut by Plasmodium berghei Invasion.
A. Danielli, F. C. Kafatos, and T. G. Loukeris (2003)
J. Biol. Chem. 278, 4184-4193
   Abstract »    Full Text »    PDF »
Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila.
E. Foley and P. H. O'Farrell (2003)
Genes & Dev. 17, 115-125
   Abstract »    Full Text »    PDF »
Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae.
A. Takehana, T. Katsuyama, T. Yano, Y. Oshima, H. Takada, T. Aigaki, and S. Kurata (2002)
PNAS 99, 13705-13710
   Abstract »    Full Text »    PDF »
Immunity-Related Genes and Gene Families in Anopheles gambiae.
G. K. Christophides, E. Zdobnov, C. Barillas-Mury, E. Birney, S. Blandin, C. Blass, P. T. Brey, F. H. Collins, A. Danielli, G. Dimopoulos, et al. (2002)
Science 298, 159-165
   Abstract »    Full Text »    PDF »
Review paper: LPS in microbial pathogenesis: promise and fulfilment.
B. Beutler (2002)
Innate Immunity 8, 329-335
   Abstract »    PDF »
Activation of Drosophila Toll During Fungal Infection by a Blood Serine Protease.
P. Ligoxygakis, N. Pelte, J. A. Hoffmann, and J.-M. Reichhart (2002)
Science 297, 114-116
   Abstract »    Full Text »    PDF »
Critical evaluation of the role of the Toll-like receptor 18-Wheeler in the host defense of Drosophila.
P. Ligoxygakis, P. Bulet, and J.-M. Reichhart (2002)
EMBO Rep. 3, 666-673
   Abstract »    Full Text »    PDF »
The Toll and Imd pathways are the major regulators of the immune response in Drosophila.
E. De Gregorio, P. T. Spellman, P. Tzou, G. M. Rubin, and B. Lemaitre (2002)
EMBO J. 21, 2568-2579
   Abstract »    Full Text »    PDF »
A Tomato Cysteine Protease Required for Cf-2-Dependent Disease Resistance and Suppression of Autonecrosis.
J. Kruger, C. M. Thomas, C. Golstein, M. S. Dixon, M. Smoker, S. Tang, L. Mulder, and J. D. G. Jones (2002)
Science 296, 744-747
   Abstract »    Full Text »    PDF »
Toll Receptors: a Central Element in Innate Immune Responses.
T. Vasselon and P. A. Detmers (2002)
Infect. Immun. 70, 1033-1041
   Full Text »    PDF »
Toll-like receptor 9 mediates CpG-DNA signaling.
T.-H. Chuang, J. Lee, L. Kline, J. C. Mathison, and R. J. Ulevitch (2002)
J. Leukoc. Biol. 71, 538-544
   Abstract »    Full Text »    PDF »
The Drosophila melanogaster Seminal Fluid Protein Acp62F Is a Protease Inhibitor That Is Toxic Upon Ectopic Expression.
O. Lung, U. Tram, C. M. Finnerty, M. A. Eipper-Mains, J. M. Kalb, and M. F. Wolfner (2002)
Genetics 160, 211-224
   Abstract »    Full Text »    PDF »
Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays.
E. De Gregorio, P. T. Spellman, G. M. Rubin, and B. Lemaitre (2001)
PNAS 98, 12590-12595
   Abstract »    Full Text »    PDF »
NF-{kappa}B signaling pathways in mammalian and insect innate immunity.
N. Silverman and T. Maniatis (2001)
Genes & Dev. 15, 2321-2342
   Full Text »    PDF »
Drosophila Immunity: Genes on the Third Chromosome Required for the Response to Bacterial Infection.
L. P. Wu, K.-M. Choe, Y. Lu, and K. V. Anderson (2001)
Genetics 159, 189-199
   Abstract »    Full Text »    PDF »
Fibrinogen Stimulates Macrophage Chemokine Secretion Through Toll-Like Receptor 4.
S. T. Smiley, J. A. King, and W. W. Hancock (2001)
J. Immunol. 167, 2887-2894
   Abstract »    Full Text »    PDF »
Gastrulation defective, a complement factor C2/B-like protease, interprets a ventral prepattern in Drosophila.
R. DeLotto (2001)
EMBO Rep. 2, 721-726
   Abstract »    Full Text »    PDF »
Invited review: Bacterial lipopolysaccharides and innate immunity.
C. Alexander and E. Th. Rietschel (2001)
Innate Immunity 7, 167-202
   Abstract »    PDF »
The Sole Gateway to Endotoxin Response: How Lps Was Identified as Tlr4, and Its Role in Innate Immunity.
B. Beutler and A. Poltorak (2001)
Drug Metab. Dispos. 29, 474-478
   Abstract »    Full Text »
Toll-Like Receptor 4 Mediates Intracellular Signaling Without TNF-{{alpha}} Release in Response to Cryptococcus neoformans Polysaccharide Capsule.
S. Shoham, C. Huang, J.-M. Chen, D. T. Golenbock, and S. M. Levitz (2001)
J. Immunol. 166, 4620-4626
   Abstract »    Full Text »    PDF »
The necrotic Gene in Drosophila Corresponds to One of a Cluster of Three Serpin Transcripts Mapping at 43A1.2.
C. Green, E. Levashina, C. McKimmie, T. Dafforn, J.-M. Reichhart, and D. Gubb (2000)
Genetics 156, 1117-1127
   Abstract »    Full Text »    PDF »
The Serpin Secreted by Brugia malayi Microfilariae, Bm-SPN-2, Elicits Strong, but Short-Lived, Immune Responses in Mice and Humans.
X. Zang, A. K. Atmadja, P. Gray, J. E. Allen, C. A. Gray, R. A. Lawrence, M. Yazdanbakhsh, and R. M. Maizels (2000)
J. Immunol. 165, 5161-5169
   Abstract »    Full Text »    PDF »
Gram-negative Bacteria-binding Protein, a Pattern Recognition Receptor for Lipopolysaccharide and {beta}-1,3-Glucan That Mediates the Signaling for the Induction of Innate Immune Genes in Drosophila melanogaster Cells.
Y.-S. Kim, J.-H. Ryu, S.-J. Han, K.-H. Choi, K.-B. Nam, I.-H. Jang, B. Lemaitre, P. T. Brey, and W.-J. Lee (2000)
J. Biol. Chem. 275, 32721-32727
   Abstract »    Full Text »    PDF »
Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria.
F. Oduol, J. Xu, O. Niare, R. Natarajan, and K. D. Vernick (2000)
PNAS 97, 11397-11402
   Abstract »    Full Text »    PDF »
A horseshoe crab receptor structurally related to Drosophila Toll.
K.-i. Inamori, K. Koori, C. Mishima, T. Muta, and S.-i. Kawabata (2000)
Innate Immunity 6, 397-399
   Abstract »    PDF »
A Drosophila Ikappa B kinase complex required for Relish cleavage and antibacterial immunity.
N. Silverman, R. Zhou, S. Stoven, N. Pandey, D. Hultmark, and T. Maniatis (2000)
Genes & Dev. 14, 2461-2471
   Abstract »    Full Text »
Toll-related receptors and the control of antimicrobial peptide expression in Drosophila.
S. Tauszig, E. Jouanguy, J. A. Hoffmann, and J.-L. Imler (2000)
PNAS 97, 10520-10525
   Abstract »    Full Text »    PDF »
The Interleukin-1 Receptor/Toll-like Receptor Superfamily: Signal Transduction During Inflammation and Host Defense.
L. A. J. O'Neill (2000)
Sci. STKE 2000, re1
   Abstract »    Full Text »    PDF »
A modular chitin-binding protease associated with hemocytes and hemolymph in the mosquito Anopheles gambiae.
A. Danielli, T. G. Loukeris, M. Lagueux, H.-M. Muller, A. Richman, and F. C. Kafatos (2000)
PNAS 97, 7136-7141
   Abstract »    Full Text »    PDF »
Gram-negative Bacteria Binding Protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan, which mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells.
Y.-s. Kim, J.-h. Ryu, S.-j. Han, K.-h. Choi, K. Nam, I. Jang, B. Lemaitre, P. T Brey, and W.-J. Lee (2000)
J. Biol. Chem.
   Abstract »
The Serpins Are an Expanding Superfamily of Structurally Similar but Functionally Diverse Proteins. EVOLUTION, MECHANISM OF INHIBITION, NOVEL FUNCTIONS, AND A REVISED NOMENCLATURE.
G. A. Silverman, P. I. Bird, R. W. Carrell, F. C. Church, P. B. Coughlin, P. G. W. Gettins, J. A Irving, D. A. Lomas, C. J. Luke, R. W. Moyer, et al. (2001)
J. Biol. Chem. 276, 33293-33296
   Full Text »    PDF »
Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria.
F. Oduol, J. Xu, O. Niare, R. Natarajan, and K. D. Vernick (2000)
PNAS 97, 11397-11402
   Abstract »    Full Text »    PDF »
Toll-related receptors and the control of antimicrobial peptide expression in Drosophila.
S. Tauszig, E. Jouanguy, J. A. Hoffmann, and J.-L. Imler (2000)
PNAS 97, 10520-10525
   Abstract »    Full Text »    PDF »
Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays.
E. De Gregorio, P. T. Spellman, G. M. Rubin, and B. Lemaitre (2001)
PNAS 98, 12590-12595
   Abstract »    Full Text »    PDF »
Evolutionary perspective on innate immune recognition.
A. Mushegian and R. Medzhitov (2001)
J. Cell Biol. 155, 705-710
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882