Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 286 (5440): 771-774

Copyright © 1999 by the American Association for the Advancement of Science

Negative Feedback Regulation of TGF-beta Signaling by the SnoN Oncoprotein

Shannon L. Stroschein, 12 Wei Wang, 1 Sharleen Zhou, 2 Qiang Zhou, 2 Kunxin Luo 12*

Smad proteins mediate transforming growth factor-beta (TGF-beta ) signaling to regulate cell growth and differentiation. The SnoN oncoprotein was found to interact with Smad2 and Smad4 and to repress their abilities to activate transcription through recruitment of the transcriptional corepressor N-CoR. Immediately after TGF-beta stimulation, SnoN is rapidly degraded by the nuclear accumulation of Smad3, allowing the activation of TGF-beta target genes. By 2 hours, TGF-beta induces a marked increase in SnoN expression, resulting in termination of Smad-mediated transactivation. Thus, SnoN maintains the repressed state of TGF-beta -responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling.

1 Life Sciences Division, Lawrence Berkeley National Laboratory, and
2 Department of Molecular and Cell Biology, University of California, Berkeley, 229 Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA.
*   To whom correspondence should be addressed. E-mail: k_luo{at}ux5.lbl.gov


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Regulation of TGF-{beta} family signalling by ubiquitination and deubiquitination.
T. Imamura, Y. Oshima, and A. Hikita (2013)
J. Biochem. 154, 481-489
   Abstract »    Full Text »    PDF »
Signaling by the TGF{beta} Superfamily.
J. L. Wrana (2013)
Cold Spring Harb Perspect Biol 5, a011197
   Full Text »    PDF »
SnoN facilitates ALK1-Smad1/5 signaling during embryonic angiogenesis.
Q. Zhu, Y. H. Kim, D. Wang, S. P. Oh, and K. Luo (2013)
J. Cell Biol. 202, 937-950
   Abstract »    Full Text »    PDF »
Systematic Interrogation of 3q26 Identifies TLOC1 and SKIL as Cancer Drivers.
D. Hagerstrand, A. Tong, S. E. Schumacher, N. Ilic, R. R. Shen, H. W. Cheung, F. Vazquez, Y. Shrestha, S. Y. Kim, A. O. Giacomelli, et al. (2013)
Cancer Discovery 3, 1044-1057
   Abstract »    Full Text »    PDF »
Arkadia Regulates Tumor Metastasis by Modulation of the TGF-{beta} Pathway.
M. A. Briones-Orta, L. Levy, C. D. Madsen, D. Das, Y. Erker, E. Sahai, and C. S. Hill (2013)
Cancer Res. 73, 1800-1810
   Abstract »    Full Text »    PDF »
Smad7 inhibits autocrine expression of TGF-{beta}2 in intestinal epithelial cells in baboon necrotizing enterocolitis.
K. Namachivayam, C. L. Blanco, K. MohanKumar, R. Jagadeeswaran, M. Vasquez, L. McGill-Vargas, S. A. Garzon, S. K. Jain, R. K. Gill, N. E. Freitag, et al. (2013)
Am J Physiol Gastrointest Liver Physiol 304, G167-G180
   Abstract »    Full Text »    PDF »
The SMAD2/3 corepressor SNON maintains pluripotency through selective repression of mesendodermal genes in human ES cells.
N. Tsuneyoshi, E. K. Tan, A. Sadasivam, Y. Poobalan, T. Sumi, N. Nakatsuji, H. Suemori, and N. R. Dunn (2012)
Genes & Dev. 26, 2471-2476
   Abstract »    Full Text »    PDF »
SnoN Suppresses Maturation of Chondrocytes by Mediating Signal Cross-talk between Transforming Growth Factor-{beta} and Bone Morphogenetic Protein Pathways.
I. Kawamura, S. Maeda, K. Imamura, T. Setoguchi, M. Yokouchi, Y. Ishidou, and S. Komiya (2012)
J. Biol. Chem. 287, 29101-29113
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-{beta}/SMAD Target Gene SKIL Is Negatively Regulated by the Transcriptional Cofactor Complex SNON-SMAD4.
A. C. Tecalco-Cruz, M. Sosa-Garrocho, G. Vazquez-Victorio, L. Ortiz-Garcia, E. Dominguez-Huttinger, and M. Macias-Silva (2012)
J. Biol. Chem. 287, 26764-26776
   Abstract »    Full Text »    PDF »
Dynamics of TGF-{beta} signaling reveal adaptive and pulsatile behaviors reflected in the nuclear localization of transcription factor Smad4.
A. Warmflash, Q. Zhang, B. Sorre, A. Vonica, E. D. Siggia, and A. H. Brivanlou (2012)
PNAS 109, E1947-E1956
   Abstract »    Full Text »    PDF »
Phosphorylation of the Anaphase-promoting Complex/Cdc27 Is Involved in TGF-{beta} Signaling.
L. Zhang, T. Fujita, G. Wu, X. Xiao, and Y. Wan (2011)
J. Biol. Chem. 286, 10041-10050
   Abstract »    Full Text »    PDF »
TGF-{beta} Biology in Mammary Development and Breast Cancer.
H. Moses and M. H. Barcellos-Hoff (2011)
Cold Spring Harb Perspect Biol 3, a003277
   Abstract »    Full Text »    PDF »
The Role of SnoN in Transforming Growth Factor {beta}1-induced Expression of Metalloprotease-Disintegrin ADAM12.
E. Solomon, H. Li, S. Duhachek Muggy, E. Syta, and A. Zolkiewska (2010)
J. Biol. Chem. 285, 21969-21977
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-{beta} Regulator SnoN Modulates Mammary Gland Branching Morphogenesis, Postlactational Involution, and Mammary Tumorigenesis.
N. S. Jahchan, Y. H. You, W. J. Muller, and K. Luo (2010)
Cancer Res. 70, 4204-4213
   Abstract »    Full Text »    PDF »
Context-dependent regulation of the expression of c-Ski protein by Arkadia in human cancer cells.
Y. Nagano, D. Koinuma, K. Miyazawa, and K. Miyazono (2010)
J. Biochem. 147, 545-554
   Abstract »    Full Text »    PDF »
The Phosphatidylinositol 3-Kinase/Akt Pathway Regulates Transforming Growth Factor-{beta} Signaling by Destabilizing Ski and Inducing Smad7.
A. M. Band, M. Bjorklund, and M. Laiho (2009)
J. Biol. Chem. 284, 35441-35449
   Abstract »    Full Text »    PDF »
SnoN functions as a tumour suppressor by inducing premature senescence.
D. Pan, Q. Zhu, and K. Luo (2009)
EMBO J. 28, 3500-3513
   Abstract »    Full Text »    PDF »
Transforming Growth Factors {beta} Coordinate Cartilage and Tendon Differentiation in the Developing Limb Mesenchyme.
C. I. Lorda-Diez, J. A. Montero, C. Martinez-Cue, J. A. Garcia-Porrero, and J. M. Hurle (2009)
J. Biol. Chem. 284, 29988-29996
   Abstract »    Full Text »    PDF »
SKI and MEL1 Cooperate to Inhibit Transforming Growth Factor-{beta} Signal in Gastric Cancer Cells.
M. Takahata, Y. Inoue, H. Tsuda, I. Imoto, D. Koinuma, M. Hayashi, T. Ichikura, T. Yamori, K. Nagasaki, M. Yoshida, et al. (2009)
J. Biol. Chem. 284, 3334-3344
   Abstract »    Full Text »    PDF »
Medea SUMOylation restricts the signaling range of the Dpp morphogen in the Drosophila embryo.
W. O. Miles, E. Jaffray, S. G. Campbell, S. Takeda, L. J. Bayston, S. P. Basu, M. Li, L. A. Raftery, M. P. Ashe, R. T. Hay, et al. (2008)
Genes & Dev. 22, 2578-2590
   Abstract »    Full Text »    PDF »
Regulation of transforming growth factor {beta}-induced responses by protein kinase A in pancreatic acinar cells.
H. Yang, C. J. Lee, L. Zhang, M. D. Sans, and D. M. Simeone (2008)
Am J Physiol Gastrointest Liver Physiol 295, G170-G178
   Abstract »    Full Text »    PDF »
Chromatin-Bound p53 Anchors Activated Smads and the mSin3A Corepressor To Confer Transforming Growth Factor {beta}-Mediated Transcription Repression.
D. S. Wilkinson, W.-W. Tsai, M. A. Schumacher, and M. C. Barton (2008)
Mol. Cell. Biol. 28, 1988-1998
   Abstract »    Full Text »    PDF »
Transforming growth factor-{beta} signaling and ubiquitinators in cancer.
E. Glasgow and L. Mishra (2008)
Endocr. Relat. Cancer 15, 59-72
   Abstract »    Full Text »    PDF »
TGF{beta}-Smad2 Signaling Regulates the Cdh1-APC/SnoN Pathway of Axonal Morphogenesis.
J. Stegmuller, M. A. Huynh, Z. Yuan, Y. Konishi, and A. Bonni (2008)
J. Neurosci. 28, 1961-1969
   Abstract »    Full Text »    PDF »
Genome-wide Impact of the BRG1 SWI/SNF Chromatin Remodeler on the Transforming Growth Factor Transcriptional Program.
Q. Xi, W. He, X. H.-F. Zhang, H.-V. Le, and J. Massague (2008)
J. Biol. Chem. 283, 1146-1155
   Abstract »    Full Text »    PDF »
Arkadia Activates Smad3/Smad4-Dependent Transcription by Triggering Signal-Induced SnoN Degradation.
L. Levy, M. Howell, D. Das, S. Harkin, V. Episkopou, and C. S. Hill (2007)
Mol. Cell. Biol. 27, 6068-6083
   Abstract »    Full Text »    PDF »
Acetylation of Smad2 by the Co-activator p300 Regulates Activin and Transforming Growth Factor beta Response.
A. W. Tu and K. Luo (2007)
J. Biol. Chem. 282, 21187-21196
   Abstract »    Full Text »    PDF »
Arkadia Induces Degradation of SnoN and c-Ski to Enhance Transforming Growth Factor-beta Signaling.
Y. Nagano, K. J. Mavrakis, K. L. Lee, T. Fujii, D. Koinuma, H. Sase, K. Yuki, K. Isogaya, M. Saitoh, T. Imamura, et al. (2007)
J. Biol. Chem. 282, 20492-20501
   Abstract »    Full Text »    PDF »
TAK1 MAPK Kinase Kinase Mediates Transforming Growth Factor-beta Signaling by Targeting SnoN Oncoprotein for Degradation.
T. Kajino, E. Omori, S. Ishii, K. Matsumoto, and J. Ninomiya-Tsuji (2007)
J. Biol. Chem. 282, 9475-9481
   Abstract »    Full Text »    PDF »
Dual Role of SnoN in Mammalian Tumorigenesis.
Q. Zhu, A. R. Krakowski, E. E. Dunham, L. Wang, A. Bandyopadhyay, R. Berdeaux, G. S. Martin, L. Sun, and K. Luo (2007)
Mol. Cell. Biol. 27, 324-339
   Abstract »    Full Text »    PDF »
Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS.
Y. Sun, L. Ding, H. Zhang, J. Han, X. Yang, J. Yan, Y. Zhu, J. Li, H. Song, and Q. Ye (2006)
Nucleic Acids Res. 34, 6314-6326
   Abstract »    Full Text »    PDF »
Sumoylated SnoN Represses Transcription in a Promoter-specific Manner.
Y.-H. R. Hsu, K. P. Sarker, I. Pot, A. Chan, S. J. Netherton, and S. Bonni (2006)
J. Biol. Chem. 281, 33008-33018
   Abstract »    Full Text »    PDF »
dSno Facilitates Baboon Signaling in the Drosophila Brain by Switching the Affinity of Medea Away From Mad and Toward dSmad2.
N. T. Takaesu, C. Hyman-Walsh, Y. Ye, R. G. Wisotzkey, M. J. Stinchfield, M. B. O'Connor, D. Wotton, and S. J. Newfeld (2006)
Genetics 174, 1299-1313
   Abstract »    Full Text »    PDF »
Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription.
S. Ross, E. Cheung, T. G. Petrakis, M. Howell, W. L. Kraus, and C. S. Hill (2006)
EMBO J. 25, 4490-4502
   Abstract »    Full Text »    PDF »
Downregulation of SnoN Expression in Obstructive Nephropathy Is Mediated by an Enhanced Ubiquitin-Dependent Degradation.
R. Tan, J. Zhang, X. Tan, X. Zhang, J. Yang, and Y. Liu (2006)
J. Am. Soc. Nephrol. 17, 2781-2791
   Abstract »    Full Text »    PDF »
Expression Profiling Identifies Altered Expression of Genes That Contribute to the Inhibition of Transforming Growth Factor-{beta} Signaling in Ovarian Cancer..
J. S. Sunde, H. Donninger, K. Wu, M. E. Johnson, R. G. Pestell, G. S. Rose, S. C. Mok, J. Brady, T. Bonome, and M. J. Birrer (2006)
Cancer Res. 66, 8404-8412
   Abstract »    Full Text »    PDF »
Role of the Proteasome in TGF-{beta} Signaling in Lens Epithelial Cells.
M. R. Hosler, S.-T. Wang-Su, and B. J. Wagner (2006)
Invest. Ophthalmol. Vis. Sci. 47, 2045-2052
   Abstract »    Full Text »    PDF »
Activin Signaling and Its Role in Regulation of Cell Proliferation, Apoptosis, and Carcinogenesis.
Y.-G. Chen, Q. Wang, S.-L. Lin, C. D. Chang, J. Chung, and S.-Y. Ying (2006)
Experimental Biology and Medicine 231, 534-544
   Abstract »    Full Text »    PDF »
The contribution of transforming growth factor-{beta} and epidermal growth factor signalling to airway remodelling in chronic asthma.
C. Boxall, S. T. Holgate, and D. E. Davies (2006)
Eur. Respir. J. 27, 208-229
   Abstract »    Full Text »    PDF »
Requirement for the SnoN Oncoprotein in Transforming Growth Factor {beta}-Induced Oncogenic Transformation of Fibroblast Cells.
Q. Zhu, S. Pearson-White, and K. Luo (2005)
Mol. Cell. Biol. 25, 10731-10744
   Abstract »    Full Text »    PDF »
Smad transcription factors.
J. Massague, J. Seoane, and D. Wotton (2005)
Genes & Dev. 19, 2783-2810
   Abstract »    Full Text »    PDF »
Identification of Binding Sites of EVI1 in Mammalian Cells.
B. Yatsula, S. Lin, A. J. Read, A. Poholek, K. Yates, D. Yue, P. Hui, and A. S. Perkins (2005)
J. Biol. Chem. 280, 30712-30722
   Abstract »    Full Text »    PDF »
Activin A Mediates Growth Inhibition and Cell Cycle Arrest through Smads in Human Breast Cancer Cells.
J. E. Burdette, J. S. Jeruss, S. J. Kurley, E. J. Lee, and T. K. Woodruff (2005)
Cancer Res. 65, 7968-7975
   Abstract »    Full Text »    PDF »
Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-{beta} signaling by sequestration of the Smad proteins.
A. R. Krakowski, J. Laboureau, A. Mauviel, M. J. Bissell, and K. Luo (2005)
PNAS 102, 12437-12442
   Abstract »    Full Text »    PDF »
Inability of Transforming Growth Factor-{beta} to Cause SnoN Degradation Leads to Resistance to Transforming Growth Factor-{beta}-Induced Growth Arrest in Esophageal Cancer Cells.
J. S. Edmiston, W. A. Yeudall, T. D. Chung, and D. A. Lebman (2005)
Cancer Res. 65, 4782-4788
   Abstract »    Full Text »    PDF »
Induction of Ectopic Olfactory Structures and Bone Morphogenetic Protein Inhibition by Rossy, a Group XII Secreted Phospholipase A2.
I. Munoz-Sanjuan and A. H. Brivanlou (2005)
Mol. Cell. Biol. 25, 3608-3619
   Abstract »    Full Text »    PDF »
The Integral Inner Nuclear Membrane Protein MAN1 Physically Interacts with the R-Smad Proteins to Repress Signaling by the Transforming Growth Factor-{beta} Superfamily of Cytokines.
D. Pan, L. D. Estevez-Salmeron, S. L. Stroschein, X. Zhu, J. He, S. Zhou, and K. Luo (2005)
J. Biol. Chem. 280, 15992-16001
   Abstract »    Full Text »    PDF »
SnoN Is a Cell Type-specific Mediator of Transforming Growth Factor-{beta} Responses.
K. P. Sarker, S. M. Wilson, and S. Bonni (2005)
J. Biol. Chem. 280, 13037-13046
   Abstract »    Full Text »    PDF »
Role of Transforming Growth Factor Beta in Human Cancer.
R. L. Elliott and G. C. Blobe (2005)
J. Clin. Oncol. 23, 2078-2093
   Abstract »    Full Text »    PDF »
A Direct Intersection between p53 and Transforming Growth Factor {beta} Pathways Targets Chromatin Modification and Transcription Repression of the {alpha}-Fetoprotein Gene.
D. S. Wilkinson, S. K. Ogden, S. A. Stratton, J. L. Piechan, T. T. Nguyen, G. A. Smulian, and M. C. Barton (2005)
Mol. Cell. Biol. 25, 1200-1212
   Abstract »    Full Text »    PDF »
MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-{beta} signaling.
F. Lin, J. M. Morrison, W. Wu, and H. J. Worman (2005)
Hum. Mol. Genet. 14, 437-445
   Abstract »    Full Text »    PDF »
Recent advances in understanding transforming growth factor {beta} regulation of orofacial development.
R. M Greene and M M. Pisano (2005)
Human and Experimental Toxicology 24, 1-12
   Abstract »    PDF »
Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation.
M. Daniels, K. Shimizu, A. M. Zorn, and S.-i. Ohnuma (2004)
Development 131, 5613-5626
   Abstract »    Full Text »    PDF »
THE ROLE OF TGF-{beta} IN EPITHELIAL MALIGNANCY AND ITS RELEVANCE TO THE PATHOGENESIS OF ORAL CANCER (PART II).
S.S. Prime, M. Davies, M. Pring, and I.C. Paterson (2004)
Critical Reviews in Oral Biology & Medicine 15, 337-347
   Abstract »    Full Text »    PDF »
STAT2 Nuclear Trafficking.
G. Banninger and N. C. Reich (2004)
J. Biol. Chem. 279, 39199-39206
   Abstract »    Full Text »    PDF »
Repression of Endogenous Smad7 by Ski.
N. G. Denissova and F. Liu (2004)
J. Biol. Chem. 279, 28143-28148
   Abstract »    Full Text »    PDF »
DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGF{beta} pathway to regulate C. elegans dauer development.
L. S. da Graca, K. K. Zimmerman, M. C. Mitchell, M. Kozhan-Gorodetska, K. Sekiewicz, Y. Morales, and G. I. Patterson,, (2004)
Development 131, 435-446
   Abstract »    Full Text »    PDF »
DACH1 Inhibits Transforming Growth Factor-{beta} Signaling through Binding Smad4.
K. Wu, Y. Yang, C. Wang, M. A. Davoli, M. D'Amico, A. Li, K. Cveklova, Z. Kozmik, M. P. Lisanti, R. G. Russell, et al. (2003)
J. Biol. Chem. 278, 51673-51684
   Abstract »    Full Text »    PDF »
Drosophila TGIF Proteins Are Transcriptional Activators.
C. A. Hyman, L. Bartholin, S. J. Newfeld, and D. Wotton (2003)
Mol. Cell. Biol. 23, 9262-9274
   Abstract »    Full Text »    PDF »
Reduction in Smad2/3 Signaling Enhances Tumorigenesis but Suppresses Metastasis of Breast Cancer Cell Lines.
F. Tian, S. DaCosta Byfield, W. T. Parks, S. Yoo, A. Felici, B. Tang, E. Piek, L. M. Wakefield, and A. B. Roberts (2003)
Cancer Res. 63, 8284-8292
   Abstract »    Full Text »    PDF »
Downregulation of Smad Transcriptional Corepressors SnoN and Ski in the Fibrotic Kidney: An Amplification Mechanism for TGF-{beta}1 Signaling.
J. Yang, X. Zhang, Y. Li, and Y. Liu (2003)
J. Am. Soc. Nephrol. 14, 3167-3177
   Abstract »    Full Text »    PDF »
Requirement of the Co-repressor Homeodomain-interacting Protein Kinase 2 for Ski-mediated Inhibition of Bone Morphogenetic Protein-induced Transcriptional Activation.
J. Harada, K. Kokura, C. Kanei-Ishii, T. Nomura, M. M. Khan, Y. Kim, and S. Ishii (2003)
J. Biol. Chem. 278, 38998-39005
   Abstract »    Full Text »    PDF »
Regulation of Transforming Growth Factor-{beta} Signaling by Protein Inhibitor of Activated STAT, PIASy through Smad3.
S. Imoto, K. Sugiyama, R. Muromoto, N. Sato, T. Yamamoto, and T. Matsuda (2003)
J. Biol. Chem. 278, 34253-34258
   Abstract »    Full Text »    PDF »
Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT.
J. Long, I. Matsuura, D. He, G. Wang, K. Shuai, and F. Liu (2003)
PNAS 100, 9791-9796
   Abstract »    Full Text »    PDF »
Ski-related novel protein N (SnoN), a Negative Controller of Transforming Growth Factor-{beta} Signaling, Is a Prognostic Marker in Estrogen Receptor-positive Breast Carcinomas ,.
F. Zhang, M. Lundin, A. Ristimaki, P. Heikkila, J. Lundin, J. Isola, H. Joensuu, and M. Laiho (2003)
Cancer Res. 63, 5005-5010
   Abstract »    Full Text »    PDF »
The Transforming Activity of Ski and SnoN Is Dependent on Their Ability to Repress the Activity of Smad Proteins.
J. He, S. B. Tegen, A. R. Krawitz, G. S. Martin, and K. Luo (2003)
J. Biol. Chem. 278, 30540-30547
   Abstract »    Full Text »    PDF »
Defective T-Cell Activation Is Associated with Augmented Transforming Growth Factor {beta} Sensitivity in Mice with Mutations in the Sno Gene.
S. Pearson-White and M. McDuffie (2003)
Mol. Cell. Biol. 23, 5446-5459
   Abstract »    Full Text »    PDF »
The Oncoprotein Ski Acts as an Antagonist of Transforming Growth Factor-{beta} Signaling by Suppressing Smad2 Phosphorylation.
C. Prunier, M. Pessah, N. Ferrand, S. R. Seo, P. Howe, and A. Atfi (2003)
J. Biol. Chem. 278, 26249-26257
   Abstract »    Full Text »    PDF »
Down-Regulation of Activin, Activin Receptors, and Smads in High-Grade Breast Cancer.
J. S. Jeruss, C. D. Sturgis, A. W. Rademaker, and T. K. Woodruff (2003)
Cancer Res. 63, 3783-3790
   Abstract »    Full Text »    PDF »
Uncoupling of Promitogenic and Antiapoptotic Functions of IL-2 by Smad-Dependent TGF-{beta} Signaling.
B. H. Nelson, T. P. Martyak, L. J. Thompson, J. J. Moon, and T. Wang (2003)
J. Immunol. 170, 5563-5570
   Abstract »    Full Text »    PDF »
The Ski-binding Protein C184M Negatively Regulates Tumor Growth Factor-{beta} Signaling by Sequestering the Smad Proteins in the Cytoplasm.
K. Kokura, H. Kim, T. Shinagawa, M. M. Khan, T. Nomura, and S. Ishii (2003)
J. Biol. Chem. 278, 20133-20139
   Abstract »    Full Text »    PDF »
Both Max and TFE3 Cooperate with Smad Proteins to Bind the Plasminogen Activator Inhibitor-1 Promoter, but They Have Opposite Effects on Transcriptional Activity.
A. V. Grinberg and T. Kerppola (2003)
J. Biol. Chem. 278, 11227-11236
   Abstract »    Full Text »    PDF »
Loss of c-myc Repression Coincides with Ovarian Cancer Resistance to Transforming Growth Factor {beta} Growth Arrest Independent of Transforming Growth Factor {beta}/Smad Signaling.
R. L. Baldwin, H. Tran, and B. Y. Karlan (2003)
Cancer Res. 63, 1413-1419
   Abstract »    Full Text »    PDF »
TGF-beta signal transduction and mesangial cell fibrogenesis.
H. W. Schnaper, T. Hayashida, S. C. Hubchak, and A.-C. Poncelet (2003)
Am J Physiol Renal Physiol 284, F243-F252
   Abstract »    Full Text »    PDF »
Two Short Segments of Smad3 Are Important for Specific Interaction of Smad3 with c-Ski and SnoN.
M. Mizuide, T. Hara, T. Furuya, M. Takeda, K. Kusanagi, Y. Inada, M. Mori, T. Imamura, K. Miyazawa, and K. Miyazono (2003)
J. Biol. Chem. 278, 531-536
   Abstract »    Full Text »    PDF »
Identification of mZnf8, a Mouse Kruppel-Like Transcriptional Repressor, as a Novel Nuclear Interaction Partner of Smad1.
K. Jiao, Y. Zhou, and B. L. M. Hogan (2002)
Mol. Cell. Biol. 22, 7633-7644
   Abstract »    Full Text »    PDF »
Up-regulated Transcriptional Repressors SnoN and Ski Bind Smad Proteins to Antagonize Transforming Growth Factor-{beta} Signals during Liver Regeneration.
M. Macias-Silva, W. Li, J. I. Leu, M. A. S. Crissey, and R. Taub (2002)
J. Biol. Chem. 277, 28483-28490
   Abstract »    Full Text »    PDF »
Transforming Growth Factor {beta} Mimetics: Discovery of 7-[4-(4-Cyanophenyl)phenoxy]-Heptanohydroxamic Acid, a Biaryl Hydroxamate Inhibitor of Histone Deacetylase.
K. B. Glaser, J. Li, M. E. Aakre, D. W. Morgan, G. Sheppard, K. D. Stewart, J. Pollock, P. Lee, C. Z. O'Connor, S. N. Anderson, et al. (2002)
Mol. Cancer Ther. 1, 759-768
   Abstract »    Full Text »    PDF »
Genomic Copy Number Analysis of Non-small Cell Lung Cancer Using Array Comparative Genomic Hybridization: Implications of the Phosphatidylinositol 3-Kinase Pathway.
P. P. Massion, W.-L. Kuo, D. Stokoe, A. B. Olshen, P. A. Treseler, K. Chin, C. Chen, D. Polikoff, A. N. Jain, D. Pinkel, et al. (2002)
Cancer Res. 62, 3636-3640
   Abstract »    Full Text »    PDF »
TIMAP, a novel CAAX box protein regulated by TGF-beta 1 and expressed in endothelial cells.
W. Cao, S. N. Mattagajasingh, H. Xu, K. Kim, W. Fierlbeck, J. Deng, C. J. Lowenstein, and B. J. Ballermann (2002)
Am J Physiol Cell Physiol 283, C327-C337
   Abstract »    Full Text »    PDF »
Molecular Mechanism of Transforming Growth Factor (TGF)-beta 1-induced Glutathione Depletion in Alveolar Epithelial Cells. INVOLVEMENT OF AP-1/ARE AND Fra-1.
H. Jardine, W. MacNee, K. Donaldson, and I. Rahman (2002)
J. Biol. Chem. 277, 21158-21166
   Abstract »    Full Text »    PDF »
Transforming growth factor {beta} signal transduction.
S. Dennler, M.-J. Goumans, and P. ten Dijke (2002)
J. Leukoc. Biol. 71, 731-740
   Abstract »    Full Text »    PDF »
Factors Involved in the Regulation of Type I Collagen Gene Expression: Implication in Fibrosis.
A. K. Ghosh (2002)
Experimental Biology and Medicine 227, 301-314
   Abstract »    Full Text »    PDF »
Biological roles and mechanistic actions of co-repressor complexes.
K. Jepsen and M. G. Rosenfeld (2002)
J. Cell Sci. 115, 689-698
   Abstract »    Full Text »    PDF »
Differential Effect of Activin A and BMP-7 on Myofibroblast Differentiation and the Role of the Smad Signaling Pathway.
L. You and F. E. Kruse (2002)
Invest. Ophthalmol. Vis. Sci. 43, 72-81
   Abstract »    Full Text »    PDF »
SNIP1 Inhibits NF-kappa B Signaling by Competing for Its Binding to the C/H1 Domain of CBP/p300 Transcriptional Co-activators.
R. H. Kim, K. C. Flanders, S. B. Reffey, L. A. Anderson, C. S. Duckett, N. D. Perkins, and A. B. Roberts (2001)
J. Biol. Chem. 276, 46297-46304
   Abstract »    Full Text »    PDF »
Proteasomal Degradation of Smad1 Induced by Bone Morphogenetic Proteins.
C. Gruendler, Y. Lin, J. Farley, and T. Wang (2001)
J. Biol. Chem. 276, 46533-46543
   Abstract »    Full Text »    PDF »
TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3.
D. Liu, B. L. Black, and R. Derynck (2001)
Genes & Dev. 15, 2950-2966
   Abstract »    Full Text »    PDF »
Cross-talk between Transforming Growth Factor-beta and Estrogen Receptor Signaling through Smad3.
T. Matsuda, T. Yamamoto, A. Muraguchi, and F. Saatcioglu (2001)
J. Biol. Chem. 276, 42908-42914
   Abstract »    Full Text »    PDF »
Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN.
S. L. Stroschein, S. Bonni, J. L. Wrana, and K. Luo (2001)
Genes & Dev. 15, 2822-2836
   Abstract »    Full Text »    PDF »
Synergistic Cooperation between Hypoxia and Transforming Growth Factor-{beta} Pathways on Human Vascular Endothelial Growth Factor Gene Expression.
T. Sanchez-Elsner, L. M. Botella, B. Velasco, A. Corbi, L. Attisano, and C. Bernabeu (2001)
J. Biol. Chem. 276, 38527-38535
   Abstract »    Full Text »    PDF »
The Smad Transcriptional Corepressor TGIF Recruits mSin3.
D. Wotton, P. S. Knoepfler, C. D. Laherty, R. N. Eisenman, and J. Massague (2001)
Cell Growth Differ. 12, 457-463
   Abstract »    Full Text »    PDF »
Regulation of myostatin activity and muscle growth.
S.-J. Lee and A. C. McPherron (2001)
PNAS 98, 9306-9311
   Abstract »    Full Text »    PDF »
Gremlin negatively modulates BMP-4 induction of embryonic mouse lung branching morphogenesis.
W. Shi, J. Zhao, K. D. Anderson, and D. Warburton (2001)
Am J Physiol Lung Cell Mol Physiol 280, L1030-L1039
   Abstract »    Full Text »    PDF »
Ligand-dependent Degradation of Smad3 by a Ubiquitin Ligase Complex of ROC1 and Associated Proteins.
M. Fukuchi, T. Imamura, T. Chiba, T. Ebisawa, M. Kawabata, K. Tanaka, and K. Miyazono (2001)
Mol. Biol. Cell 12, 1431-1443
   Abstract »    Full Text »
The corepressor CtBP interacts with Evi-1 to repress transforming growth factor {beta} signaling.
K. Izutsu, M. Kurokawa, Y. Imai, K. Maki, K. Mitani, and H. Hirai (2001)
Blood 97, 2815-2822
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882