Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 286 (5441): 961-964

Copyright © 1999 by the American Association for the Advancement of Science

Arabidopsis NPH3: A NPH1 Photoreceptor-Interacting Protein Essential for Phototropism

Andrei Motchoulski, Emmanuel Liscum *

Phototropism of Arabidopsis thaliana seedlings in response to a blue light source is initiated by nonphototropic hypocotyl 1 (NPH1), a light-activated serine-threonine protein kinase. Mutations in three loci [NPH2, root phototropism 2 (RPT2), and NPH3] disrupt early signaling occurring downstream of the NPH1 photoreceptor. The NPH3 gene, now cloned, encodes a NPH1-interacting protein. NPH3 is a member of a large protein family, apparently specific to higher plants, and may function as an adapter or scaffold protein to bring together the enzymatic components of a NPH1-activated phosphorelay.

Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
*   To whom correspondence should be addressed. E-mail: liscumm{at}missouri.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Phototropic Response is Locally Regulated Within the Topmost Light-Responsive Region of the Arabidopsis thaliana Seedling.
K. Yamamoto, T. Suzuki, Y. Aihara, K. Haga, T. Sakai, and A. Nagatani (2014)
Plant Cell Physiol. 55, 497-506
   Abstract »    Full Text »    PDF »
Phototropism: Growing towards an Understanding of Plant Movement.
E. Liscum, S. K. Askinosie, D. L. Leuchtman, J. Morrow, K. T. Willenburg, and D. R. Coats (2014)
PLANT CELL 26, 38-55
   Abstract »    Full Text »    PDF »
The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications.
P. Genschik, I. Sumara, and E. Lechner (2013)
EMBO J. 32, 2307-2320
   Abstract »    Full Text »    PDF »
Phototropins Function in High-Intensity Blue Light-Induced Hypocotyl Phototropism in Arabidopsis by Altering Cytosolic Calcium.
X. Zhao, Y.-L. Wang, X.-R. Qiao, J. Wang, L.-D. Wang, C.-S. Xu, and X. Zhang (2013)
Plant Physiology 162, 1539-1551
   Abstract »    Full Text »    PDF »
PIF4 and PIF5 Transcription Factors Link Blue Light and Auxin to Regulate the Phototropic Response in Arabidopsis.
J. Sun, L. Qi, Y. Li, Q. Zhai, and C. Li (2013)
PLANT CELL 25, 2102-2114
   Abstract »    Full Text »    PDF »
D6PK AGCVIII Kinases Are Required for Auxin Transport and Phototropic Hypocotyl Bending in Arabidopsis.
B. C. Willige, S. Ahlers, M. Zourelidou, I. C. R. Barbosa, E. Demarsy, M. Trevisan, P. A. Davis, M. R. G. Roelfsema, R. Hangarter, C. Fankhauser, et al. (2013)
PLANT CELL 25, 1674-1688
   Abstract »    Full Text »    PDF »
Phototropism: Translating light into directional growth.
T. Hohm, T. Preuten, and C. Fankhauser (2013)
Am. J. Botany 100, 47-59
   Abstract »    Full Text »    PDF »
Shoot phototropism in higher plants: New light through old concepts.
J. M. Christie and A. S. Murphy (2013)
Am. J. Botany 100, 35-46
   Abstract »    Full Text »    PDF »
A C-Terminal Membrane Association Domain of Phototropin 2 is Necessary for Chloroplast Movement.
S.-G. Kong, T. Kagawa, M. Wada, and A. Nagatani (2013)
Plant Cell Physiol. 54, 57-68
   Abstract »    Full Text »    PDF »
Antagonistic Regulation of Leaf Flattening by Phytochrome B and Phototropin in Arabidopsis thaliana.
T. Kozuka, N. Suetsugu, M. Wada, and A. Nagatani (2013)
Plant Cell Physiol. 54, 69-79
   Abstract »    Full Text »    PDF »
Role of RPT2 in Leaf Positioning and Flattening and a Possible Inhibition of phot2 Signaling by phot1.
A. Harada, A. Takemiya, S.-i. Inoue, T. Sakai, and K.-i. Shimazaki (2013)
Plant Cell Physiol. 54, 36-47
   Abstract »    Full Text »    PDF »
Photosensitivity of Kinase Activation by Blue Light Involves the Lifetime of a Cysteinyl-Flavin Adduct Intermediate, S390, in the Photoreaction Cycle of the LOV2 Domain in Phototropin, a Plant Blue Light Receptor.
K. Okajima, S. Kashojiya, and S. Tokutomi (2012)
J. Biol. Chem. 287, 40972-40981
   Abstract »    Full Text »    PDF »
PIN Auxin Efflux Carriers Are Necessary for Pulse-Induced But Not Continuous Light-Induced Phototropism in Arabidopsis.
K. Haga and T. Sakai (2012)
Plant Physiology 160, 763-776
   Abstract »    Full Text »    PDF »
The Light-Response BTB1 and BTB2 Proteins Assemble Nuclear Ubiquitin Ligases That Modify Phytochrome B and D Signaling in Arabidopsis.
M. J. Christians, D. J. Gingerich, Z. Hua, T. D. Lauer, and R. D. Vierstra (2012)
Plant Physiology 160, 118-134
   Abstract »    Full Text »    PDF »
The Role of a 14-3-3 Protein in Stomatal Opening Mediated by PHOT2 in Arabidopsis.
T.-S. Tseng, C. Whippo, R. P. Hangarter, and W. R. Briggs (2012)
PLANT CELL 24, 1114-1126
   Abstract »    Full Text »    PDF »
Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis.
C. Kami, M. Hersch, M. Trevisan, T. Genoud, A. Hiltbrunner, S. Bergmann, and C. Fankhauser (2012)
PLANT CELL 24, 566-576
   Abstract »    Full Text »    PDF »
The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in Arabidopsis Root Phototropism.
Y. Wan, J. Jasik, L. Wang, H. Hao, D. Volkmann, D. Menzel, S. Mancuso, F. Baluska, and J. Lin (2012)
PLANT CELL 24, 551-565
   Abstract »    Full Text »    PDF »
Tissue-Autonomous Promotion of Palisade Cell Development by Phototropin 2 in Arabidopsis.
T. Kozuka, S.-G. Kong, M. Doi, K.-i. Shimazaki, and A. Nagatani (2011)
PLANT CELL 23, 3684-3695
   Abstract »    Full Text »    PDF »
Modulation of Phototropic Responsiveness in Arabidopsis through Ubiquitination of Phototropin 1 by the CUL3-Ring E3 Ubiquitin Ligase CRL3NPH3.
D. Roberts, U. V. Pedmale, J. Morrow, S. Sachdev, E. Lechner, X. Tang, N. Zheng, M. Hannink, P. Genschik, and E. Liscum (2011)
PLANT CELL 23, 3627-3640
   Abstract »    Full Text »    PDF »
Rapid, Organ-Specific Transcriptional Responses to Light Regulate Photomorphogenic Development in Dicot Seedlings.
Y. Li, K. Swaminathan, and M. E. Hudson (2011)
Plant Physiology 156, 2124-2140
   Abstract »    Full Text »    PDF »
NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles.
S. Matsuda, T. Kajizuka, A. Kadota, T. Nishimura, and T. Koshiba (2011)
J. Exp. Bot. 62, 3459-3466
   Abstract »    Full Text »    PDF »
Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers.
M. Furutani, N. Sakamoto, S. Yoshida, T. Kajiwara, H. S. Robert, J. Friml, and M. Tasaka (2011)
Development 138, 2069-2078
   Abstract »    Full Text »    PDF »
Seven Things We Think We Know about Auxin Transport.
W. A. Peer, J. J. Blakeslee, H. Yang, and A. S. Murphy (2011)
Mol Plant 4, 487-504
   Abstract »    Full Text »    PDF »
A Negative Effector of Blue Light-Induced and Gravitropic Bending in Arabidopsis.
T. Knauer, M. Dummer, F. Landgraf, and C. Forreiter (2011)
Plant Physiology 156, 439-447
   Abstract »    Full Text »    PDF »
Functional Analyses of the Activation Loop of Phototropin2 in Arabidopsis.
S.-i. Inoue, T. Matsushita, Y. Tomokiyo, M. Matsumoto, K. I. Nakayama, T. Kinoshita, and K.-i. Shimazaki (2011)
Plant Physiology 156, 117-128
   Abstract »    Full Text »    PDF »
NPY Genes Play an Essential Role in Root Gravitropic Responses in Arabidopsis.
Y. Li, X. Dai, Y. Cheng, and Y. Zhao (2011)
Mol Plant 4, 171-179
   Abstract »    Full Text »    PDF »
The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 Protein Is a Phototropin Signaling Element That Regulates Leaf Flattening and Leaf Positioning.
M. de Carbonnel, P. Davis, M. R. G. Roelfsema, S.-i. Inoue, I. Schepens, P. Lariguet, M. Geisler, K.-i. Shimazaki, R. Hangarter, and C. Fankhauser (2010)
Plant Physiology 152, 1391-1405
   Abstract »    Full Text »    PDF »
Domain Swapping to Assess the Mechanistic Basis of Arabidopsis Phototropin 1 Receptor Kinase Activation and Endocytosis by Blue Light.
E. Kaiserli, S. Sullivan, M. A. Jones, K. A. Feeney, and J. M. Christie (2009)
PLANT CELL 21, 3226-3244
   Abstract »    Full Text »    PDF »
Understanding phototropism: from Darwin to today.
J. J. Holland, D. Roberts, and E. Liscum (2009)
J. Exp. Bot. 60, 1969-1978
   Abstract »    Full Text »    PDF »
The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action.
C. Sirichandra, A. Wasilewska, F. Vlad, C. Valon, and J. Leung (2009)
J. Exp. Bot. 60, 1439-1463
   Abstract »    Full Text »    PDF »
NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis.
Y. Cheng, G. Qin, X. Dai, and Y. Zhao (2008)
PNAS 105, 21017-21022
   Abstract »    Full Text »    PDF »
Cell Polarity Signaling: Focus on Polar Auxin Transport.
X. Gao, S. Nagawa, G. Wang, and Z. Yang (2008)
Mol Plant
   Abstract »    Full Text »    PDF »
An Inositol Polyphosphate 5-Phosphatase Functions in PHOTOTROPIN1 Signaling in Arabidopis by Altering Cytosolic Ca2+.
X. Chen, W.-H. Lin, Y. Wang, S. Luan, and H.-W. Xue (2008)
PLANT CELL 20, 353-366
   Abstract »    Full Text »    PDF »
Leaf Positioning of Arabidopsis in Response to Blue Light.
S.-i. Inoue, T. Kinoshita, A. Takemiya, M. Doi, and K.-i. Shimazaki (2008)
Mol Plant 1, 15-26
   Abstract »    Full Text »    PDF »
The Subcellular Localization and Blue-Light-Induced Movement of Phototropin 1-GFP in Etiolated Seedlings of Arabidopsis thalianaw.
Y.-L. Wan, W. Eisinger, D. Ehrhardt, U. Kubitscheck, F. Baluska, and W. Briggs (2008)
Mol Plant 1, 103-117
   Abstract »    Full Text »    PDF »
Disruptions in AUX1-Dependent Auxin Influx Alter Hypocotyl Phototropism in Arabidopsis.
B. B. Stone, E. L. Stowe-Evans, R. M. Harper, R. B. Celaya, K. Ljung, G. Sandberg, and E. Liscum (2008)
Mol Plant 1, 129-144
   Abstract »    Full Text »    PDF »
PHYTOCHROME KINASE SUBSTRATE1 Regulates Root Phototropism and Gravitropism.
H. E. Boccalandro, S. N. De Simone, A. Bergmann-Honsberger, I. Schepens, C. Fankhauser, and J. J. Casal (2008)
Plant Physiology 146, 108-115
   Abstract »    Full Text »    PDF »
NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis.
Y. Cheng, G. Qin, X. Dai, and Y. Zhao (2007)
PNAS 104, 18825-18829
   Abstract »    Full Text »    PDF »
The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level.
M. Furutani, T. Kajiwara, T. Kato, B. S. Treml, C. Stockum, R. A. Torres-Ruiz, and M. Tasaka (2007)
Development 134, 3849-3859
   Abstract »    Full Text »    PDF »
Large-Scale, Lineage-Specific Expansion of a Bric-a-Brac/Tramtrack/Broad Complex Ubiquitin-Ligase Gene Family in Rice.
D. J. Gingerich, K. Hanada, S.-H. Shiu, and R. D. Vierstra (2007)
PLANT CELL 19, 2329-2348
   Abstract »    Full Text »    PDF »
Regulation of Phototropic Signaling in Arabidopsis via Phosphorylation State Changes in the Phototropin 1-interacting Protein NPH3.
U. V. Pedmale and E. Liscum (2007)
J. Biol. Chem. 282, 19992-20001
   Abstract »    Full Text »    PDF »
A citrus abscission agent induces anoxia- and senescence-related gene expression in Arabidopsis.
F. Alferez, G. Y. Zhong, and J. K. Burns (2007)
J. Exp. Bot. 58, 2451-2462
   Abstract »    Full Text »    PDF »
Ubiquitin, Hormones and Biotic Stress in Plants.
K. Dreher and J. Callis (2007)
Ann. Bot. 99, 787-822
   Abstract »    Full Text »    PDF »
Protein phosphatase 1 positively regulates stomatal opening in response to blue light in Vicia faba.
A. Takemiya, T. Kinoshita, M. Asanuma, and K.-i. Shimazaki (2006)
PNAS 103, 13549-13554
   Abstract »    Full Text »    PDF »
Gene profiling of the red light signalling pathways in roots.
M. L. Molas, J. Z. Kiss, and M. J. Correll (2006)
J. Exp. Bot. 57, 3217-3229
   Abstract »    Full Text »    PDF »
PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism.
P. Lariguet, I. Schepens, D. Hodgson, U. V. Pedmale, M. Trevisan, C. Kami, M. de Carbonnel, J. M. Alonso, J. R. Ecker, E. Liscum, et al. (2006)
PNAS 103, 10134-10139
   Abstract »    Full Text »    PDF »
Phototropism: Bending towards Enlightenment.
C. W. Whippo and R. P. Hangarter (2006)
PLANT CELL 18, 1110-1119
   Full Text »    PDF »
An Auxilin-Like J-Domain Protein, JAC1, Regulates Phototropin-Mediated Chloroplast Movement in Arabidopsis.
N. Suetsugu, T. Kagawa, and M. Wada (2005)
Plant Physiology 139, 151-162
   Abstract »    Full Text »    PDF »
A Plant-Specific Protein Essential for Blue-Light-Induced Chloroplast Movements.
S. L. DeBlasio, D. L. Luesse, and R. P. Hangarter (2005)
Plant Physiology 139, 101-114
   Abstract »    Full Text »    PDF »
A Brassinosteroid-Hypersensitive Mutant of BAK1 Indicates That a Convergence of Photomorphogenic and Hormonal Signaling Modulates Phototropism.
C. W. Whippo and R. P. Hangarter (2005)
Plant Physiology 139, 448-457
   Abstract »    Full Text »    PDF »
Isolation of a Protein Interacting with Vfphot1a in Guard Cells of Vicia faba.
T. Emi, T. Kinoshita, K. Sakamoto, Y. Mineyuki, and K.-i. Shimazaki (2005)
Plant Physiology 138, 1615-1626
   Abstract »    Full Text »    PDF »
Cullins 3a and 3b Assemble with Members of the Broad Complex/Tramtrack/Bric-a-Brac (BTB) Protein Family to Form Essential Ubiquitin-Protein Ligases (E3s) in Arabidopsis.
D. J. Gingerich, J. M. Gagne, D. W. Salter, H. Hellmann, M. Estelle, L. Ma, and R. D. Vierstra (2005)
J. Biol. Chem. 280, 18810-18821
   Abstract »    Full Text »    PDF »
Arabidopsis Has Two Redundant Cullin3 Proteins That Are Essential for Embryo Development and That Interact with RBX1 and BTB Proteins to Form Multisubunit E3 Ubiquitin Ligase Complexes in Vivo.
P. Figueroa, G. Gusmaroli, G. Serino, J. Habashi, L. Ma, Y. Shen, S. Feng, M. Bostick, J. Callis, H. Hellmann, et al. (2005)
PLANT CELL 17, 1180-1195
   Abstract »    Full Text »    PDF »
The Rice COLEOPTILE PHOTOTROPISM1 Gene Encoding an Ortholog of Arabidopsis NPH3 Is Required for Phototropism of Coleoptiles and Lateral Translocation of Auxin.
K. Haga, M. Takano, R. Neumann, and M. Iino (2005)
PLANT CELL 17, 103-115
   Abstract »    Full Text »    PDF »
ARIA, an Arabidopsis Arm Repeat Protein Interacting with a Transcriptional Regulator of Abscisic Acid-Responsive Gene Expression, Is a Novel Abscisic Acid Signaling Component.
S. Kim, H.-i. Choi, H.-J. Ryu, J. H. Park, M. D. Kim, and S. Y. Kim (2004)
Plant Physiology 136, 3639-3648
   Abstract »    Full Text »    PDF »
Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis.
M. Yasuhara, S. Mitsui, H. Hirano, R. Takanabe, Y. Tokioka, N. Ihara, A. Komatsu, M. Seki, K. Shinozaki, and T. Kiyosue (2004)
J. Exp. Bot. 55, 2015-2027
   Abstract »    Full Text »    PDF »
Analysis of Transposon Insertion Mutants Highlights the Diversity of Mechanisms Underlying Male Progamic Development in Arabidopsis.
E. Lalanne, C. Michaelidis, J. M. Moore, W. Gagliano, A. Johnson, R. Patel, R. Howden, J.-P. Vielle-Calzada, U. Grossniklaus, and D. Twell (2004)
Genetics 167, 1975-1986
   Abstract »    Full Text »    PDF »
Localization of the Blue-Light Receptor Phototropin to the Flagella of the Green Alga Chlamydomonas reinhardtii.
K. Huang, T. Kunkel, and C. F. Beck (2004)
Mol. Biol. Cell 15, 3605-3614
   Abstract »    Full Text »    PDF »
RPT2 Is a Signal Transducer Involved in Phototropic Response and Stomatal Opening by Association with Phototropin 1 in Arabidopsis thaliana.
S. Inada, M. Ohgishi, T. Mayama, K. Okada, and T. Sakai (2004)
PLANT CELL 16, 887-896
   Abstract »    Full Text »    PDF »
High Pigment1 Mutation Negatively Regulates Phototropic Signal Transduction in Tomato Seedlings.
A. Srinivas, R. K. Behera, T. Kagawa, M. Wada, and R. Sharma (2004)
Plant Physiology 134, 790-800
   Abstract »    Full Text »    PDF »
Relocalization of the PIN1 Auxin Efflux Facilitator Plays a Role in Phototropic Responses.
J. J. Blakeslee, A. Bandyopadhyay, W. A. Peer, S. N. Makam, and A. S. Murphy (2004)
Plant Physiology 134, 28-31
   Full Text »    PDF »
Blue Light Signaling through the Cryptochromes and Phototropins. So That's What the Blues Is All About.
E. Liscum, D. W. Hodgson, and T. J. Campbell (2003)
Plant Physiology 133, 1429-1436
   Full Text »
Blue-Light- and Phosphorylation-Dependent Binding of a 14-3-3 Protein to Phototropins in Stomatal Guard Cells of Broad Bean.
T. Kinoshita, T. Emi, M. Tominaga, K. Sakamoto, A. Shigenaga, M. Doi, and K.-i. Shimazaki (2003)
Plant Physiology 133, 1453-1463
   Abstract »    Full Text »
Primary Inhibition of Hypocotyl Growth and Phototropism Depend Differently on Phototropin-Mediated Increases in Cytoplasmic Calcium Induced by Blue Light.
K. M. Folta, E. J. Lieg, T. Durham, and E. P. Spalding (2003)
Plant Physiology 133, 1464-1470
   Abstract »    Full Text »
A Genomic Analysis of the Shade Avoidance Response in Arabidopsis.
P. F. Devlin, M. J. Yanovsky, and S. A. Kay (2003)
Plant Physiology 133, 1617-1629
   Abstract »    Full Text »
Summaries of National Science Foundation-Sponsored Arabidopsis 2010 Projects and National Science Foundation-Sponsored Plant Genome Projects That Are Generating Arabidopsis Resources for the Community.
F. M. Ausubel (2002)
Plant Physiology 129, 394-437
   Full Text »    PDF »
Photoexcited Structure of a Plant Photoreceptor Domain Reveals a Light-Driven Molecular Switch.
S. Crosson and K. Moffat (2002)
PLANT CELL 14, 1067-1075
   Abstract »    Full Text »    PDF »
Blue Light Receptors and Signal Transduction.
C. Lin (2002)
PLANT CELL 14, S207-S225
   Full Text »    PDF »
Plant Photobiology 2001: A Thousand Points of Enlightenment from Receptor Structures to Ecological Adaptation.
T. J. Campbell and E. Liscum (2001)
PLANT CELL 13, 1704-1710
   Full Text »    PDF »
The Enhancement of Phototropin-Induced Phototropic Curvature in Arabidopsis Occurs via a Photoreversible Phytochrome A-Dependent Modulation of Auxin Responsiveness.
E. L. Stowe-Evans, D. R. Luesse, and E. Liscum (2001)
Plant Physiology 126, 826-834
   Abstract »    Full Text »    PDF »
Blue Light Sensing in Higher Plants.
J. M. Christie and W. R. Briggs (2001)
J. Biol. Chem. 276, 11457-11460
   Full Text »    PDF »
Arabidopsis NPL1: A Phototropin Homolog Controlling the Chloroplast High-Light Avoidance Response.
T. Kagawa, T. Sakai, N. Suetsugu, K. Oikawa, S. Ishiguro, T. Kato, S. Tabata, K. Okada, and M. Wada (2001)
Science 291, 2138-2141
   Abstract »    Full Text »
Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction.
S. Crosson and K. Moffat (2001)
PNAS 98, 2995-3000
   Abstract »    Full Text »    PDF »
Photoreceptors in Plant Photomorphogenesis to Date. Five Phytochromes, Two Cryptochromes, One Phototropin, and One Superchrome.
W. R. Briggs and M. A. Olney (2001)
Plant Physiology 125, 85-88
   Full Text »
Arabidopsis Research 2000.
S. Abel, M. Blazquez, J. Dangl, X. W. Deng, I. Graham, J. Harada, J. Jones, and O. Nilsson (2000)
PLANT CELL 12, 2302-2308
   Full Text »    PDF »
RPT2: A Signal Transducer of the Phototropic Response in Arabidopsis.
T. Sakai, T. Wada, S. Ishiguro, and K. Okada (2000)
PLANT CELL 12, 225-236
   Abstract »    Full Text »    PDF »
Blue Light Sensing in Higher Plants.
J. M. Christie and W. R. Briggs (2001)
J. Biol. Chem. 276, 11457-11460
   Full Text »    PDF »
Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction.
S. Crosson and K. Moffat (2001)
PNAS 98, 2995-3000
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882