Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 286 (5446): 1960-1962

Copyright © 1999 by the American Association for the Advancement of Science

A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals

Yasushi Kobayashi, 1 Hidetaka Kaya, 1 Koji Goto, 2 Masaki Iwabuchi, 1* Takashi Araki 1dagger

Flowering in Arabidopsis is promoted via several interacting pathways. A photoperiod-dependent pathway relays signals from photoreceptors to a transcription factor gene, CONSTANS (CO), which activates downstream meristem identity genes such as LEAFY (LFY). FT, together with LFY, promotes flowering and is positively regulated by CO. Loss of FT causes delay in flowering, whereas overexpression of FT results in precocious flowering independent of CO or photoperiod. FT acts in part downstream of CO and mediates signals for flowering in an antagonistic manner with its homologous gene, TERMINAL FLOWER1 (TFL1).

1 Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
2 Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
*   Present address: Research Institute for Biological Sciences, Kayo-cho, Jobo-gun, Okayama 716-1241, Japan.

dagger    To whom correspondence should be addressed. E-mail: taraqui{at}

The embryonic shoot: a lifeline through winter.
C. van der Schoot, L. K. Paul, and P. L. H. Rinne (2014)
J. Exp. Bot. 65, 1699-1712
   Abstract »    Full Text »    PDF »
Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.
A. O. Diallo, Z. Agharbaoui, M. A. Badawi, M. A. Ali-Benali, A. Moheb, M. Houde, and F. Sarhan (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS AFFECTING FLOWERING genes in Arabidopsis.
L. Shen, Z. Thong, X. Gong, Q. Shen, Y. Gan, and H. Yu (2014)
Development 141, 1303-1312
   Abstract »    Full Text »    PDF »
The time of day effects of warm temperature on flowering time involve PIF4 and PIF5.
B. C. Thines, Y. Youn, M. I. Duarte, and F. G. Harmon (2014)
J. Exp. Bot. 65, 1141-1151
   Abstract »    Full Text »    PDF »
Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T.
W. W. H. Ho and D. Weigel (2014)
PLANT CELL 26, 552-564
   Abstract »    Full Text »    PDF »
The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at FLOWERING LOCUS C in Arabidopsis.
T. Jegu, D. Latrasse, M. Delarue, H. Hirt, S. Domenichini, F. Ariel, M. Crespi, C. Bergounioux, C. Raynaud, and M. Benhamed (2014)
PLANT CELL 26, 538-551
   Abstract »    Full Text »    PDF »
Flowering Time in Watermelon Is Associated with a Major Quantitative Trait Locus on Chromosome 3.
C. E. McGregor, V. Waters, T. Vashisth, and H. Abdel-Haleem (2014)
J. Amer. Soc. Hort. Sci. 139, 48-53
   Abstract »    Full Text »    PDF »
Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana.
M. Y. Xu, L. Zhang, W. W. Li, X. L. Hu, M.-B. Wang, Y. L. Fan, C. Y. Zhang, and L. Wang (2014)
J. Exp. Bot. 65, 89-101
   Abstract »    Full Text »    PDF »
The regulation of seasonal flowering in the Rosaceae.
T. Kurokura, N. Mimida, N. H. Battey, and T. Hytonen (2013)
J. Exp. Bot. 64, 4131-4141
   Abstract »    Full Text »    PDF »
Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon.
L. Wu, D. Liu, J. Wu, R. Zhang, Z. Qin, D. Liu, A. Li, D. Fu, W. Zhai, and L. Mao (2013)
PLANT CELL 25, 4363-4377
   Abstract »    Full Text »    PDF »
Exogenous Gibberellins Induce Wheat Spike Development under Short Days Only in the Presence of VERNALIZATION1.
S. Pearce, L. S. Vanzetti, and J. Dubcovsky (2013)
Plant Physiology 163, 1433-1445
   Abstract »    Full Text »    PDF »
PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS.
M. Endo, Y. Tanigawa, T. Murakami, T. Araki, and A. Nagatani (2013)
PNAS 110, 18017-18022
   Abstract »    Full Text »    PDF »
The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums.
Y. Higuchi, T. Narumi, A. Oda, Y. Nakano, K. Sumitomo, S. Fukai, and T. Hisamatsu (2013)
PNAS 110, 17137-17142
   Abstract »    Full Text »    PDF »
FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce.
A. Karlgren, N. Gyllenstrand, D. Clapham, and U. Lagercrantz (2013)
Plant Physiology 163, 792-803
   Abstract »    Full Text »    PDF »
Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh..
Y. Wang and P. M. Pijut (2013)
Tree Physiol
   Abstract »    Full Text »    PDF »
Acceleration of flowering in Arabidopsis thaliana by Cape Verde Islands alleles of FLOWERING H is dependent on the floral promoter FD.
N. Seedat, A. Dinsdale, E. K. Ong, and A. R. Gendall (2013)
J. Exp. Bot. 64, 2767-2778
   Abstract »    Full Text »    PDF »
TWIN SISTER OF FT, GIGANTEA, and CONSTANS Have a Positive But Indirect Effect on Blue Light-Induced Stomatal Opening in Arabidopsis.
E. Ando, M. Ohnishi, Y. Wang, T. Matsushita, A. Watanabe, Y. Hayashi, M. Fujii, J. F. Ma, S.-i. Inoue, and T. Kinoshita (2013)
Plant Physiology 162, 1529-1538
   Abstract »    Full Text »    PDF »
GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1.
M. Riboni, M. Galbiati, C. Tonelli, and L. Conti (2013)
Plant Physiology 162, 1706-1719
   Abstract »    Full Text »    PDF »
Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA.
F. E. Vaistij, Y. Gan, S. Penfield, A. D. Gilday, A. Dave, Z. He, E.-M. Josse, G. Choi, K. J. Halliday, and I. A. Graham (2013)
PNAS 110, 10866-10871
   Abstract »    Full Text »    PDF »
Genetic Structure and Linkage Disequilibrium in a Diverse, Representative Collection of the C4 Model Plant, Sorghum bicolor.
Y.-H. Wang, H. D. Upadhyaya, A. M. Burrell, S. M. E. Sahraeian, R. R. Klein, and P. E. Klein (2013)
g3 3, 783-793
   Abstract »    Full Text »    PDF »
Changes in CsFT Transcript Abundance at the Onset of Low-temperature Floral Induction in Sweet Orange.
E. J. Chica and L. G. Albrigo (2013)
J. Amer. Soc. Hort. Sci. 138, 184-189
   Abstract »    Full Text »    PDF »
Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation.
W. Kim, T. I. Park, S. J. Yoo, A. R. Jun, and J. H. Ahn (2013)
J. Exp. Bot. 64, 1715-1729
   Abstract »    Full Text »    PDF »
BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems in Arabidopsis.
M. Niwa, Y. Daimon, K.-i. Kurotani, A. Higo, J. L. Pruneda-Paz, G. Breton, N. Mitsuda, S. A. Kay, M. Ohme-Takagi, M. Endo, et al. (2013)
PLANT CELL 25, 1228-1242
   Abstract »    Full Text »    PDF »
Expression of Flower Promoting Genes in Sweet Orange during Floral Inductive Water Deficits.
E. J. Chica and L. G. Albrigo (2013)
J. Amer. Soc. Hort. Sci. 138, 88-94
   Abstract »    Full Text »    PDF »
Application of an Analog of 9, 10-ketol-octadecadienoic acid (KODA), Affected Flower Bud Formation and MdTFL1 and MdFT1 Gene Expressions in Apple Buds under Heavy-crop and Shade Conditions.
M. Kittikorn, K. Okawa, H. Ohara, S. Kondo, N. Kotoda, M. Wada, M. Yokoyama, O. Ifuku, A. Murata, and N. Watanabe (2013)
J. Amer. Soc. Hort. Sci. 138, 102-107
   Abstract »    Full Text »    PDF »
Interlocking Feedback Loops Govern the Dynamic Behavior of the Floral Transition in Arabidopsis.
K. E. Jaeger, N. Pullen, S. Lamzin, R. J. Morris, and P. A. Wigge (2013)
PLANT CELL 25, 820-833
   Abstract »    Full Text »    PDF »
The Florigen Genes FT and TSF Modulate Lateral Shoot Outgrowth in Arabidopsis thaliana.
K. Hiraoka, A. Yamaguchi, M. Abe, and T. Araki (2013)
Plant Cell Physiol. 54, 352-368
   Abstract »    Full Text »    PDF »
Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana.
V. Wahl, J. Ponnu, A. Schlereth, S. Arrivault, T. Langenecker, A. Franke, R. Feil, J. E. Lunn, M. Stitt, and M. Schmid (2013)
Science 339, 704-707
   Abstract »    Full Text »    PDF »
Genetic Control and Comparative Genomic Analysis of Flowering Time in Setaria (Poaceae).
M. Mauro-Herrera, X. Wang, H. Barbier, T. P. Brutnell, K. M. Devos, and A. N. Doust (2013)
g3 3, 283-295
   Abstract »    Full Text »    PDF »
Flowering retardation by high temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene repression.
Y. Nakano, Y. Higuchi, K. Sumitomo, and T. Hisamatsu (2013)
J. Exp. Bot. 64, 909-920
   Abstract »    Full Text »    PDF »
Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
B. K. Blackman (2013)
J. Exp. Bot. 64, 421-431
   Abstract »    Full Text »    PDF »
The Cotyledons Produce Sufficient FT Protein to Induce Flowering: Evidence from Cotyledon Micrografting in Arabidopsis.
S. J. Yoo, S. M. Hong, H. S. Jung, and J. H. Ahn (2013)
Plant Cell Physiol. 54, 119-128
   Abstract »    Full Text »    PDF »
Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris).
M. Kwak, O. Toro, D. G. Debouck, and P. Gepts (2012)
Ann. Bot. 110, 1573-1580
   Abstract »    Full Text »    PDF »
Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue.
M. Randoux, J. Jeauffre, T. Thouroude, F. Vasseur, L. Hamama, M. Juchaux, S. Sakr, and F. Foucher (2012)
J. Exp. Bot. 63, 6543-6554
   Abstract »    Full Text »    PDF »
Florigenic and Antiflorigenic Signaling in Plants.
I. G. Matsoukas, A. J. Massiah, and B. Thomas (2012)
Plant Cell Physiol. 53, 1827-1842
   Abstract »    Full Text »    PDF »
The MdTFL1 gene of apple (Malus x domestica Borkh.) reduces vegetative growth and generation time.
H. Flachowsky, I. Szankowski, S. Waidmann, A. Peil, C. Trankner, and M.-V. Hanke (2012)
Tree Physiol 32, 1288-1301
   Abstract »    Full Text »    PDF »
The E3 Ubiquitin Ligase HOS1 Regulates Low Ambient Temperature-Responsive Flowering in Arabidopsis thaliana.
J. H. Lee, J. J. Kim, S. H. Kim, H. J. Cho, J. Kim, and J. H. Ahn (2012)
Plant Cell Physiol. 53, 1802-1814
   Abstract »    Full Text »    PDF »
Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING-LIKE Transcription Factors.
S. Yu, V. C. Galvao, Y.-C. Zhang, D. Horrer, T.-Q. Zhang, Y.-H. Hao, Y.-Q. Feng, S. Wang, M. Schmid, and J.-W. Wang (2012)
PLANT CELL 24, 3320-3332
   Abstract »    Full Text »    PDF »
Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
A. Porri, S. Torti, M. Romera-Branchat, and G. Coupland (2012)
Development 139, 2198-2209
   Abstract »    Full Text »    PDF »
Light-Regulated Stomatal Aperture in Arabidopsis.
C. Chen, Y.-G. Xiao, X. Li, and M. Ni (2012)
Mol Plant 5, 566-572
   Abstract »    Full Text »    PDF »
The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 Module Regulates Ambient Temperature-Responsive Flowering via FLOWERING LOCUS T in Arabidopsis.
J. J. Kim, J. H. Lee, W. Kim, H. S. Jung, P. Huijser, and J. H. Ahn (2012)
Plant Physiology 159, 461-478
   Abstract »    Full Text »    PDF »
CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums.
A. Oda, T. Narumi, T. Li, T. Kando, Y. Higuchi, K. Sumitomo, S. Fukai, and T. Hisamatsu (2012)
J. Exp. Bot. 63, 1461-1477
   Abstract »    Full Text »    PDF »
Analysis of the Arabidopsis Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering.
S. Torti, F. Fornara, C. Vincent, F. Andres, K. Nordstrom, U. Gobel, D. Knoll, H. Schoof, and G. Coupland (2012)
PLANT CELL 24, 444-462
   Abstract »    Full Text »    PDF »
CRYPTIC PRECOCIOUS/MED12 is a Novel Flowering Regulator with Multiple Target Steps in Arabidopsis.
Y. Imura, Y. Kobayashi, S. Yamamoto, M. Furutani, M. Tasaka, M. Abe, and T. Araki (2012)
Plant Cell Physiol. 53, 287-303
   Abstract »    Full Text »    PDF »
Developmental Plasticity in Plants.
M. de Jong and O. Leyser (2012)
Cold Spring Harb Symp Quant Biol 77, 63-73
   Abstract »    Full Text »    PDF »
The Molecular Basis of Vernalization in Different Plant Groups.
T. S. Ream, D. P. Woods, and R. M. Amasino (2012)
Cold Spring Harb Symp Quant Biol 77, 105-115
   Abstract »    Full Text »    PDF »
Genetic control of biennial bearing in apple.
B. Guitton, J.-J. Kelner, R. Velasco, S. E. Gardiner, D. Chagne, and E. Costes (2012)
J. Exp. Bot. 63, 131-149
   Abstract »    Full Text »    PDF »
ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize.
C. M. Lazakis, V. Coneva, and J. Colasanti (2011)
J. Exp. Bot. 62, 4833-4842
   Abstract »    Full Text »    PDF »
Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family.
R. Blanvillain, S. Wei, P. Wei, J. H. Kim, and D. W. Ow (2011)
EMBO J. 30, 3812-3822
   Abstract »    Full Text »    PDF »
Fruit regulates seasonal expression of flowering genes in alternate-bearing 'Moncada' mandarin.
N. Munoz-Fambuena, C. Mesejo, M. Carmen Gonzalez-Mas, E. Primo-Millo, M. Agusti, and D. J. Iglesias (2011)
Ann. Bot. 108, 511-519
   Abstract »    Full Text »    PDF »
Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression.
S. Hanano and K. Goto (2011)
PLANT CELL 23, 3172-3184
   Abstract »    Full Text »    PDF »
Evolution of the PEBP Gene Family in Plants: Functional Diversification in Seed Plant Evolution.
A. Karlgren, N. Gyllenstrand, T. Kallman, J. F. Sundstrom, D. Moore, M. Lascoux, and U. Lagercrantz (2011)
Plant Physiology 156, 1967-1977
   Abstract »    Full Text »    PDF »
The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time.
R. E. Laurie, P. Diwadkar, M. Jaudal, L. Zhang, V. Hecht, J. Wen, M. Tadege, K. S. Mysore, J. Putterill, J. L. Weller, et al. (2011)
Plant Physiology 156, 2207-2224
   Abstract »    Full Text »    PDF »
WEREWOLF, a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of FT mRNA Stability.
E. Seo, J. Yu, K. H. Ryu, M. M. Lee, and I. Lee (2011)
Plant Physiology 156, 1867-1877
   Abstract »    Full Text »    PDF »
FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar.
C.-Y. Hsu, J. P. Adams, H. Kim, K. No, C. Ma, S. H. Strauss, J. Drnevich, L. Vandervelde, J. D. Ellis, B. M. Rice, et al. (2011)
PNAS 108, 10756-10761
   Abstract »    Full Text »    PDF »
The Gentian Orthologs of the FT/TFL1 Gene Family Control Floral Initiation in Gentiana.
T. Imamura, T. Nakatsuka, A. Higuchi, M. Nishihara, and H. Takahashi (2011)
Plant Cell Physiol. 52, 1031-1041
   Abstract »    Full Text »    PDF »
Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.
N. Mimida, S.-I. Kidou, H. Iwanami, S. Moriya, K. Abe, C. Voogd, E. Varkonyi-Gasic, and N. Kotoda (2011)
Tree Physiol
   Abstract »    Full Text »    PDF »
Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
R. Nefissi, Y. Natsui, K. Miyata, A. Oda, Y. Hase, M. Nakagawa, A. Ghorbel, and T. Mizoguchi (2011)
J. Exp. Bot. 62, 2731-2744
   Abstract »    Full Text »    PDF »
Constitutive expression of the GIGANTEA Ortholog Affects Circadian Rhythms and Suppresses One-shot Induction of Flowering in Pharbitis nil, a Typical Short-day Plant.
Y. Higuchi, K. Sage-Ono, R. Sasaki, N. Ohtsuki, A. Hoshino, S. Iida, H. Kamada, and M. Ono (2011)
Plant Cell Physiol. 52, 638-650
   Abstract »    Full Text »    PDF »
Aa TFL1 Confers an Age-Dependent Response to Vernalization in Perennial Arabis alpina.
R. Wang, M. C. Albani, C. Vincent, S. Bergonzi, M. Luan, Y. Bai, C. Kiefer, R. Castillo, and G. Coupland (2011)
PLANT CELL 23, 1307-1321
   Abstract »    Full Text »    PDF »
Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion.
L. Ragni, K. Nieminen, D. Pacheco-Villalobos, R. Sibout, C. Schwechheimer, and C. S. Hardtke (2011)
PLANT CELL 23, 1322-1336
   Abstract »    Full Text »    PDF »
A Major QTL, Ghd8, Plays Pleiotropic Roles in Regulating Grain Productivity, Plant Height, and Heading Date in Rice.
W.-H. Yan, P. Wang, H.-X. Chen, H.-J. Zhou, Q.-P. Li, C.-R. Wang, Z.-H. Ding, Y.-S. Zhang, S.-B. Yu, Y.-Z. Xing, et al. (2011)
Mol Plant 4, 319-330
   Abstract »    Full Text »    PDF »
The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis.
M. R. Willmann and R. S. Poethig (2011)
Development 138, 677-685
   Abstract »    Full Text »    PDF »
The J-Domain Protein J3 Mediates the Integration of Flowering Signals in Arabidopsis.
L. Shen, Y. G. G. Kang, L. Liu, and H. Yu (2011)
PLANT CELL 23, 499-514
   Abstract »    Full Text »    PDF »
LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 Form a Positive Feedback Regulatory Loop in the Arabidopsis Circadian Clock.
Y. Wang, J.-F. Wu, N. Nakamichi, H. Sakakibara, H.-G. Nam, and S.-H. Wu (2011)
PLANT CELL 23, 486-498
   Abstract »    Full Text »    PDF »
Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156.
L. Yang, S. R. Conway, and R. S. Poethig (2011)
Development 138, 245-249
   Abstract »    Full Text »    PDF »
EFO1 and EFO2, encoding putative WD-domain proteins, have overlapping and distinct roles in the regulation of vegetative development and flowering of Arabidopsis.
W. Wang, D. Yang, and K. A. Feldmann (2011)
J. Exp. Bot. 62, 1077-1088
   Abstract »    Full Text »    PDF »
The Pea GIGAS Gene Is a FLOWERING LOCUS T Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod.
V. Hecht, R. E. Laurie, J. K. Vander Schoor, S. Ridge, C. L. Knowles, L. C. Liew, F. C. Sussmilch, I. C. Murfet, R. C. Macknight, and J. L. Weller (2011)
PLANT CELL 23, 147-161
   Abstract »    Full Text »    PDF »
An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet.
P. A. Pin, R. Benlloch, D. Bonnet, E. Wremerth-Weich, T. Kraft, J. J. L. Gielen, and O. Nilsson (2010)
Science 330, 1397-1400
   Abstract »    Full Text »    PDF »
DTH8 Suppresses Flowering in Rice, Influencing Plant Height and Yield Potential Simultaneously.
X. Wei, J. Xu, H. Guo, L. Jiang, S. Chen, C. Yu, Z. Zhou, P. Hu, H. Zhai, and J. Wan (2010)
Plant Physiology 153, 1747-1758
   Abstract »    Full Text »    PDF »
Temporal Control of Trichome Distribution by MicroRNA156-Targeted SPL Genes in Arabidopsis thaliana.
N. Yu, W.-J. Cai, S. Wang, C.-M. Shan, L.-J. Wang, and X.-Y. Chen (2010)
PLANT CELL 22, 2322-2335
   Abstract »    Full Text »    PDF »
ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals.
A. G. Greenup, S. Sasani, S. N. Oliver, M. J. Talbot, E. S. Dennis, M. N. Hemming, and B. Trevaskis (2010)
Plant Physiology 153, 1062-1073
   Abstract »    Full Text »    PDF »
The Arabidopsis Paf1c Complex Component CDC73 Participates in the Modification of FLOWERING LOCUS C Chromatin.
X. Yu and S. D. Michaels (2010)
Plant Physiology 153, 1074-1084
   Abstract »    Full Text »    PDF »
Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus.
H. Zhang, D. E. Harry, C. Ma, C. Yuceer, C.-Y. Hsu, V. Vikram, O. Shevchenko, E. Etherington, and S. H. Strauss (2010)
J. Exp. Bot. 61, 2549-2560
   Abstract »    Full Text »    PDF »
MOTHER OF FT AND TFL1 Regulates Seed Germination through a Negative Feedback Loop Modulating ABA Signaling in Arabidopsis.
W. Xi, C. Liu, X. Hou, and H. Yu (2010)
PLANT CELL 22, 1733-1748
   Abstract »    Full Text »    PDF »
Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis.
H. Lee, S. J. Yoo, J. H. Lee, W. Kim, S. K. Yoo, H. Fitzgerald, J. C. Carrington, and J. H. Ahn (2010)
Nucleic Acids Res. 38, 3081-3093
   Abstract »    Full Text »    PDF »
cis-Regulatory Elements and Chromatin State Coordinately Control Temporal and Spatial Expression of FLOWERING LOCUS T in Arabidopsis.
J. Adrian, S. Farrona, J. J. Reimer, M. C. Albani, G. Coupland, and F. Turck (2010)
PLANT CELL 22, 1425-1440
   Abstract »    Full Text »    PDF »
The Soybean Stem Growth Habit Gene Dt1 Is an Ortholog of Arabidopsis TERMINAL FLOWER1.
B. Liu, S. Watanabe, T. Uchiyama, F. Kong, A. Kanazawa, Z. Xia, A. Nagamatsu, M. Arai, T. Yamada, K. Kitamura, et al. (2010)
Plant Physiology 153, 198-210
   Abstract »    Full Text »    PDF »
Concerted Modification of Flowering Time and Inflorescence Architecture by Ectopic Expression of TFL1-Like Genes in Maize.
O. N. Danilevskaya, X. Meng, and E. V. Ananiev (2010)
Plant Physiology 153, 238-251
   Abstract »    Full Text »    PDF »
BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa.
J. Zhao, V. Kulkarni, N. Liu, D. Pino Del Carpio, J. Bucher, and G. Bonnema (2010)
J. Exp. Bot. 61, 1817-1825
   Abstract »    Full Text »    PDF »
Molecular Characterization of FLOWERING LOCUS T-Like Genes of Apple (Malus x domestica Borkh.).
N. Kotoda, H. Hayashi, M. Suzuki, M. Igarashi, Y. Hatsuyama, S. i. Kidou, T. Igasaki, M. Nishiguchi, K. Yano, T. Shimizu, et al. (2010)
Plant Cell Physiol. 51, 561-575
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882