Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 286 (5446): 1962-1965

Copyright © 1999 by the American Association for the Advancement of Science

Activation Tagging of the Floral Inducer FT

Igor Kardailsky, 12*dagger Vipula K. Shukla, 1*ddagger Ji Hoon Ahn, 1* Nicole Dagenais, 1 Sioux K. Christensen, 1 Jasmine T. Nguyen, 1§ Joanne Chory, 13 Maria J. Harrison, 2 Detlef Weigel 1parallel

FLOWERING LOCUS T (FT), which acts in parallel with the meristem-identity gene LEAFY (LFY) to induce flowering of Arabidopsis, was isolated by activation tagging. Like LFY, FT acts partially downstream of CONSTANS (CO), which promotes flowering in response to long days. Unlike many other floral regulators, the deduced sequence of the FT protein does not suggest that it directly controls transcription or transcript processing. Instead, it is similar to the sequence of TERMINAL FLOWER 1 (TFL1), an inhibitor of flowering that also shares sequence similarity with membrane-associated mammalian proteins.

1 Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
2 The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, OK 73402, USA.
3 Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
*   These authors contributed equally to this work.

dagger    Present address: Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA.

ddagger    Present address: Dow AgroSciences, LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA.

§   Present address: Akkadix Corporation, 11099 North Torrey Pines Road, La Jolla, CA 92037, USA.

parallel    To whom correspondence should be addressed. E-mail: weigel{at}salk.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A dark-light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum.
J. Drabešova, D. Chab, J. Kolař, K. Haškovcova, and H. Štorchova (2014)
J. Exp. Bot. 65, 2137-2146
   Abstract »    Full Text »    PDF »
The embryonic shoot: a lifeline through winter.
C. van der Schoot, L. K. Paul, and P. L. H. Rinne (2014)
J. Exp. Bot. 65, 1699-1712
   Abstract »    Full Text »    PDF »
Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.
A. O. Diallo, Z. Agharbaoui, M. A. Badawi, M. A. Ali-Benali, A. Moheb, M. Houde, and F. Sarhan (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS AFFECTING FLOWERING genes in Arabidopsis.
L. Shen, Z. Thong, X. Gong, Q. Shen, Y. Gan, and H. Yu (2014)
Development 141, 1303-1312
   Abstract »    Full Text »    PDF »
Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T.
W. W. H. Ho and D. Weigel (2014)
PLANT CELL 26, 552-564
   Abstract »    Full Text »    PDF »
The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at FLOWERING LOCUS C in Arabidopsis.
T. Jegu, D. Latrasse, M. Delarue, H. Hirt, S. Domenichini, F. Ariel, M. Crespi, C. Bergounioux, C. Raynaud, and M. Benhamed (2014)
PLANT CELL 26, 538-551
   Abstract »    Full Text »    PDF »
Flowering Time in Watermelon Is Associated with a Major Quantitative Trait Locus on Chromosome 3.
C. E. McGregor, V. Waters, T. Vashisth, and H. Abdel-Haleem (2014)
J. Amer. Soc. Hort. Sci. 139, 48-53
   Abstract »    Full Text »    PDF »
Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana.
M. Y. Xu, L. Zhang, W. W. Li, X. L. Hu, M.-B. Wang, Y. L. Fan, C. Y. Zhang, and L. Wang (2014)
J. Exp. Bot. 65, 89-101
   Abstract »    Full Text »    PDF »
Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon.
L. Wu, D. Liu, J. Wu, R. Zhang, Z. Qin, D. Liu, A. Li, D. Fu, W. Zhai, and L. Mao (2013)
PLANT CELL 25, 4363-4377
   Abstract »    Full Text »    PDF »
PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS.
M. Endo, Y. Tanigawa, T. Murakami, T. Araki, and A. Nagatani (2013)
PNAS 110, 18017-18022
   Abstract »    Full Text »    PDF »
The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums.
Y. Higuchi, T. Narumi, A. Oda, Y. Nakano, K. Sumitomo, S. Fukai, and T. Hisamatsu (2013)
PNAS 110, 17137-17142
   Abstract »    Full Text »    PDF »
Acceleration of flowering in Arabidopsis thaliana by Cape Verde Islands alleles of FLOWERING H is dependent on the floral promoter FD.
N. Seedat, A. Dinsdale, E. K. Ong, and A. R. Gendall (2013)
J. Exp. Bot. 64, 2767-2778
   Abstract »    Full Text »    PDF »
TWIN SISTER OF FT, GIGANTEA, and CONSTANS Have a Positive But Indirect Effect on Blue Light-Induced Stomatal Opening in Arabidopsis.
E. Ando, M. Ohnishi, Y. Wang, T. Matsushita, A. Watanabe, Y. Hayashi, M. Fujii, J. F. Ma, S.-i. Inoue, and T. Kinoshita (2013)
Plant Physiology 162, 1529-1538
   Abstract »    Full Text »    PDF »
GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1.
M. Riboni, M. Galbiati, C. Tonelli, and L. Conti (2013)
Plant Physiology 162, 1706-1719
   Abstract »    Full Text »    PDF »
Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA.
F. E. Vaistij, Y. Gan, S. Penfield, A. D. Gilday, A. Dave, Z. He, E.-M. Josse, G. Choi, K. J. Halliday, and I. A. Graham (2013)
PNAS 110, 10866-10871
   Abstract »    Full Text »    PDF »
Genetic Structure and Linkage Disequilibrium in a Diverse, Representative Collection of the C4 Model Plant, Sorghum bicolor.
Y.-H. Wang, H. D. Upadhyaya, A. M. Burrell, S. M. E. Sahraeian, R. R. Klein, and P. E. Klein (2013)
g3 3, 783-793
   Abstract »    Full Text »    PDF »
Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation.
W. Kim, T. I. Park, S. J. Yoo, A. R. Jun, and J. H. Ahn (2013)
J. Exp. Bot. 64, 1715-1729
   Abstract »    Full Text »    PDF »
BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems in Arabidopsis.
M. Niwa, Y. Daimon, K.-i. Kurotani, A. Higo, J. L. Pruneda-Paz, G. Breton, N. Mitsuda, S. A. Kay, M. Ohme-Takagi, M. Endo, et al. (2013)
PLANT CELL 25, 1228-1242
   Abstract »    Full Text »    PDF »
Application of an Analog of 9, 10-ketol-octadecadienoic acid (KODA), Affected Flower Bud Formation and MdTFL1 and MdFT1 Gene Expressions in Apple Buds under Heavy-crop and Shade Conditions.
M. Kittikorn, K. Okawa, H. Ohara, S. Kondo, N. Kotoda, M. Wada, M. Yokoyama, O. Ifuku, A. Murata, and N. Watanabe (2013)
J. Amer. Soc. Hort. Sci. 138, 102-107
   Abstract »    Full Text »    PDF »
Interlocking Feedback Loops Govern the Dynamic Behavior of the Floral Transition in Arabidopsis.
K. E. Jaeger, N. Pullen, S. Lamzin, R. J. Morris, and P. A. Wigge (2013)
PLANT CELL 25, 820-833
   Abstract »    Full Text »    PDF »
The Florigen Genes FT and TSF Modulate Lateral Shoot Outgrowth in Arabidopsis thaliana.
K. Hiraoka, A. Yamaguchi, M. Abe, and T. Araki (2013)
Plant Cell Physiol. 54, 352-368
   Abstract »    Full Text »    PDF »
Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana.
V. Wahl, J. Ponnu, A. Schlereth, S. Arrivault, T. Langenecker, A. Franke, R. Feil, J. E. Lunn, M. Stitt, and M. Schmid (2013)
Science 339, 704-707
   Abstract »    Full Text »    PDF »
Genetic Control and Comparative Genomic Analysis of Flowering Time in Setaria (Poaceae).
M. Mauro-Herrera, X. Wang, H. Barbier, T. P. Brutnell, K. M. Devos, and A. N. Doust (2013)
g3 3, 283-295
   Abstract »    Full Text »    PDF »
Flowering retardation by high temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene repression.
Y. Nakano, Y. Higuchi, K. Sumitomo, and T. Hisamatsu (2013)
J. Exp. Bot. 64, 909-920
   Abstract »    Full Text »    PDF »
FT-Like NFT1 Gene May Play a Role in Flower Transition Induced by Heat Accumulation in Narcissus tazetta var. chinensis.
X.-F. Li, L.-Y. Jia, J. Xu, X.-J. Deng, Y. Wang, W. Zhang, X.-P. Zhang, Q. Fang, D.-M. Zhang, Y. Sun, et al. (2013)
Plant Cell Physiol. 54, 270-281
   Abstract »    Full Text »    PDF »
Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
B. K. Blackman (2013)
J. Exp. Bot. 64, 421-431
   Abstract »    Full Text »    PDF »
The Cotyledons Produce Sufficient FT Protein to Induce Flowering: Evidence from Cotyledon Micrografting in Arabidopsis.
S. J. Yoo, S. M. Hong, H. S. Jung, and J. H. Ahn (2013)
Plant Cell Physiol. 54, 119-128
   Abstract »    Full Text »    PDF »
Florigenic and Antiflorigenic Signaling in Plants.
I. G. Matsoukas, A. J. Massiah, and B. Thomas (2012)
Plant Cell Physiol. 53, 1827-1842
   Abstract »    Full Text »    PDF »
The E3 Ubiquitin Ligase HOS1 Regulates Low Ambient Temperature-Responsive Flowering in Arabidopsis thaliana.
J. H. Lee, J. J. Kim, S. H. Kim, H. J. Cho, J. Kim, and J. H. Ahn (2012)
Plant Cell Physiol. 53, 1802-1814
   Abstract »    Full Text »    PDF »
The U-Box E3 Ligase SPL11/PUB13 Is a Convergence Point of Defense and Flowering Signaling in Plants.
J. Liu, W. Li, Y. Ning, G. Shirsekar, Y. Cai, X. Wang, L. Dai, Z. Wang, W. Liu, and G.-L. Wang (2012)
Plant Physiology 160, 28-37
   Full Text »    PDF »
Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
A. Porri, S. Torti, M. Romera-Branchat, and G. Coupland (2012)
Development 139, 2198-2209
   Abstract »    Full Text »    PDF »
The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 Module Regulates Ambient Temperature-Responsive Flowering via FLOWERING LOCUS T in Arabidopsis.
J. J. Kim, J. H. Lee, W. Kim, H. S. Jung, P. Huijser, and J. H. Ahn (2012)
Plant Physiology 159, 461-478
   Abstract »    Full Text »    PDF »
The U-Box/ARM E3 Ligase PUB13 Regulates Cell Death, Defense, and Flowering Time in Arabidopsis.
W. Li, I.-P. Ahn, Y. Ning, C.-H. Park, L. Zeng, J. G. A. Whitehill, H. Lu, Q. Zhao, B. Ding, Q. Xie, et al. (2012)
Plant Physiology 159, 239-250
   Abstract »    Full Text »    PDF »
CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums.
A. Oda, T. Narumi, T. Li, T. Kando, Y. Higuchi, K. Sumitomo, S. Fukai, and T. Hisamatsu (2012)
J. Exp. Bot. 63, 1461-1477
   Abstract »    Full Text »    PDF »
Analysis of the Arabidopsis Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering.
S. Torti, F. Fornara, C. Vincent, F. Andres, K. Nordstrom, U. Gobel, D. Knoll, H. Schoof, and G. Coupland (2012)
PLANT CELL 24, 444-462
   Abstract »    Full Text »    PDF »
CRYPTIC PRECOCIOUS/MED12 is a Novel Flowering Regulator with Multiple Target Steps in Arabidopsis.
Y. Imura, Y. Kobayashi, S. Yamamoto, M. Furutani, M. Tasaka, M. Abe, and T. Araki (2012)
Plant Cell Physiol. 53, 287-303
   Abstract »    Full Text »    PDF »
ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize.
C. M. Lazakis, V. Coneva, and J. Colasanti (2011)
J. Exp. Bot. 62, 4833-4842
   Abstract »    Full Text »    PDF »
Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family.
R. Blanvillain, S. Wei, P. Wei, J. H. Kim, and D. W. Ow (2011)
EMBO J. 30, 3812-3822
   Abstract »    Full Text »    PDF »
Fruit regulates seasonal expression of flowering genes in alternate-bearing 'Moncada' mandarin.
N. Munoz-Fambuena, C. Mesejo, M. Carmen Gonzalez-Mas, E. Primo-Millo, M. Agusti, and D. J. Iglesias (2011)
Ann. Bot. 108, 511-519
   Abstract »    Full Text »    PDF »
Characterization of Oncidium 'Gower Ramsey' Transcriptomes using 454 GS-FLX Pyrosequencing and Their Application to the Identification of Genes Associated with Flowering Time.
Y.-Y. Chang, Y.-W. Chu, C.-W. Chen, W.-M. Leu, H.-F. Hsu, and C.-H. Yang (2011)
Plant Cell Physiol. 52, 1532-1545
   Abstract »    Full Text »    PDF »
Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression.
S. Hanano and K. Goto (2011)
PLANT CELL 23, 3172-3184
   Abstract »    Full Text »    PDF »
Long-distance regulation of flowering time.
C. Turnbull (2011)
J. Exp. Bot. 62, 4399-4413
   Abstract »    Full Text »    PDF »
Evolution of the PEBP Gene Family in Plants: Functional Diversification in Seed Plant Evolution.
A. Karlgren, N. Gyllenstrand, T. Kallman, J. F. Sundstrom, D. Moore, M. Lascoux, and U. Lagercrantz (2011)
Plant Physiology 156, 1967-1977
   Abstract »    Full Text »    PDF »
The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time.
R. E. Laurie, P. Diwadkar, M. Jaudal, L. Zhang, V. Hecht, J. Wen, M. Tadege, K. S. Mysore, J. Putterill, J. L. Weller, et al. (2011)
Plant Physiology 156, 2207-2224
   Abstract »    Full Text »    PDF »
WEREWOLF, a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of FT mRNA Stability.
E. Seo, J. Yu, K. H. Ryu, M. M. Lee, and I. Lee (2011)
Plant Physiology 156, 1867-1877
   Abstract »    Full Text »    PDF »
FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar.
C.-Y. Hsu, J. P. Adams, H. Kim, K. No, C. Ma, S. H. Strauss, J. Drnevich, L. Vandervelde, J. D. Ellis, B. M. Rice, et al. (2011)
PNAS 108, 10756-10761
   Abstract »    Full Text »    PDF »
The Gentian Orthologs of the FT/TFL1 Gene Family Control Floral Initiation in Gentiana.
T. Imamura, T. Nakatsuka, A. Higuchi, M. Nishihara, and H. Takahashi (2011)
Plant Cell Physiol. 52, 1031-1041
   Abstract »    Full Text »    PDF »
Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.
N. Mimida, S.-I. Kidou, H. Iwanami, S. Moriya, K. Abe, C. Voogd, E. Varkonyi-Gasic, and N. Kotoda (2011)
Tree Physiol
   Abstract »    Full Text »    PDF »
Constitutive expression of the GIGANTEA Ortholog Affects Circadian Rhythms and Suppresses One-shot Induction of Flowering in Pharbitis nil, a Typical Short-day Plant.
Y. Higuchi, K. Sage-Ono, R. Sasaki, N. Ohtsuki, A. Hoshino, S. Iida, H. Kamada, and M. Ono (2011)
Plant Cell Physiol. 52, 638-650
   Abstract »    Full Text »    PDF »
Aa TFL1 Confers an Age-Dependent Response to Vernalization in Perennial Arabis alpina.
R. Wang, M. C. Albani, C. Vincent, S. Bergonzi, M. Luan, Y. Bai, C. Kiefer, R. Castillo, and G. Coupland (2011)
PLANT CELL 23, 1307-1321
   Abstract »    Full Text »    PDF »
Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion.
L. Ragni, K. Nieminen, D. Pacheco-Villalobos, R. Sibout, C. Schwechheimer, and C. S. Hardtke (2011)
PLANT CELL 23, 1322-1336
   Abstract »    Full Text »    PDF »
A Major QTL, Ghd8, Plays Pleiotropic Roles in Regulating Grain Productivity, Plant Height, and Heading Date in Rice.
W.-H. Yan, P. Wang, H.-X. Chen, H.-J. Zhou, Q.-P. Li, C.-R. Wang, Z.-H. Ding, Y.-S. Zhang, S.-B. Yu, Y.-Z. Xing, et al. (2011)
Mol Plant 4, 319-330
   Abstract »    Full Text »    PDF »
The FT-Like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize.
X. Meng, M. G. Muszynski, and O. N. Danilevskaya (2011)
PLANT CELL 23, 942-960
   Abstract »    Full Text »    PDF »
The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis.
M. R. Willmann and R. S. Poethig (2011)
Development 138, 677-685
   Abstract »    Full Text »    PDF »
The J-Domain Protein J3 Mediates the Integration of Flowering Signals in Arabidopsis.
L. Shen, Y. G. G. Kang, L. Liu, and H. Yu (2011)
PLANT CELL 23, 499-514
   Abstract »    Full Text »    PDF »
LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 Form a Positive Feedback Regulatory Loop in the Arabidopsis Circadian Clock.
Y. Wang, J.-F. Wu, N. Nakamichi, H. Sakakibara, H.-G. Nam, and S.-H. Wu (2011)
PLANT CELL 23, 486-498
   Abstract »    Full Text »    PDF »
Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156.
L. Yang, S. R. Conway, and R. S. Poethig (2011)
Development 138, 245-249
   Abstract »    Full Text »    PDF »
Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development.
H. M. S. Smith, N. Ung, S. Lal, and J. Courtier (2011)
J. Exp. Bot. 62, 583-593
   Abstract »    Full Text »    PDF »
Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize.
N. Depege-Fargeix, M. Javelle, P. Chambrier, N. Frangne, D. Gerentes, P. Perez, P. M. Rogowsky, and V. Vernoud (2011)
J. Exp. Bot. 62, 293-305
   Abstract »    Full Text »    PDF »
HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress.
C. A. Dezar, J. I. Giacomelli, P. A. Manavella, D. A. Re, M. Alves-Ferreira, I. T. Baldwin, G. Bonaventure, and R. L. Chan (2011)
J. Exp. Bot. 62, 1061-1076
   Abstract »    Full Text »    PDF »
EFO1 and EFO2, encoding putative WD-domain proteins, have overlapping and distinct roles in the regulation of vegetative development and flowering of Arabidopsis.
W. Wang, D. Yang, and K. A. Feldmann (2011)
J. Exp. Bot. 62, 1077-1088
   Abstract »    Full Text »    PDF »
The Pea GIGAS Gene Is a FLOWERING LOCUS T Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod.
V. Hecht, R. E. Laurie, J. K. Vander Schoor, S. Ridge, C. L. Knowles, L. C. Liew, F. C. Sussmilch, I. C. Murfet, R. C. Macknight, and J. L. Weller (2011)
PLANT CELL 23, 147-161
   Abstract »    Full Text »    PDF »
An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet.
P. A. Pin, R. Benlloch, D. Bonnet, E. Wremerth-Weich, T. Kraft, J. J. L. Gielen, and O. Nilsson (2010)
Science 330, 1397-1400
   Abstract »    Full Text »    PDF »
DTH8 Suppresses Flowering in Rice, Influencing Plant Height and Yield Potential Simultaneously.
X. Wei, J. Xu, H. Guo, L. Jiang, S. Chen, C. Yu, Z. Zhou, P. Hu, H. Zhai, and J. Wan (2010)
Plant Physiology 153, 1747-1758
   Abstract »    Full Text »    PDF »
Temporal Control of Trichome Distribution by MicroRNA156-Targeted SPL Genes in Arabidopsis thaliana.
N. Yu, W.-J. Cai, S. Wang, C.-M. Shan, L.-J. Wang, and X.-Y. Chen (2010)
PLANT CELL 22, 2322-2335
   Abstract »    Full Text »    PDF »
ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals.
A. G. Greenup, S. Sasani, S. N. Oliver, M. J. Talbot, E. S. Dennis, M. N. Hemming, and B. Trevaskis (2010)
Plant Physiology 153, 1062-1073
   Abstract »    Full Text »    PDF »
The Arabidopsis Paf1c Complex Component CDC73 Participates in the Modification of FLOWERING LOCUS C Chromatin.
X. Yu and S. D. Michaels (2010)
Plant Physiology 153, 1074-1084
   Abstract »    Full Text »    PDF »
Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus.
H. Zhang, D. E. Harry, C. Ma, C. Yuceer, C.-Y. Hsu, V. Vikram, O. Shevchenko, E. Etherington, and S. H. Strauss (2010)
J. Exp. Bot. 61, 2549-2560
   Abstract »    Full Text »    PDF »
MOTHER OF FT AND TFL1 Regulates Seed Germination through a Negative Feedback Loop Modulating ABA Signaling in Arabidopsis.
W. Xi, C. Liu, X. Hou, and H. Yu (2010)
PLANT CELL 22, 1733-1748
   Abstract »    Full Text »    PDF »
Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis.
H. Lee, S. J. Yoo, J. H. Lee, W. Kim, S. K. Yoo, H. Fitzgerald, J. C. Carrington, and J. H. Ahn (2010)
Nucleic Acids Res. 38, 3081-3093
   Abstract »    Full Text »    PDF »
cis-Regulatory Elements and Chromatin State Coordinately Control Temporal and Spatial Expression of FLOWERING LOCUS T in Arabidopsis.
J. Adrian, S. Farrona, J. J. Reimer, M. C. Albani, G. Coupland, and F. Turck (2010)
PLANT CELL 22, 1425-1440
   Abstract »    Full Text »    PDF »
The Soybean Stem Growth Habit Gene Dt1 Is an Ortholog of Arabidopsis TERMINAL FLOWER1.
B. Liu, S. Watanabe, T. Uchiyama, F. Kong, A. Kanazawa, Z. Xia, A. Nagamatsu, M. Arai, T. Yamada, K. Kitamura, et al. (2010)
Plant Physiology 153, 198-210
   Abstract »    Full Text »    PDF »
Concerted Modification of Flowering Time and Inflorescence Architecture by Ectopic Expression of TFL1-Like Genes in Maize.
O. N. Danilevskaya, X. Meng, and E. V. Ananiev (2010)
Plant Physiology 153, 238-251
   Abstract »    Full Text »    PDF »
Molecular Characterization of FLOWERING LOCUS T-Like Genes of Apple (Malus x domestica Borkh.).
N. Kotoda, H. Hayashi, M. Suzuki, M. Igarashi, Y. Hatsuyama, S. i. Kidou, T. Igasaki, M. Nishiguchi, K. Yano, T. Shimizu, et al. (2010)
Plant Cell Physiol. 51, 561-575
   Abstract »    Full Text »    PDF »
Transcriptional changes in CiFT-introduced transgenic trifoliate orange (Poncirus trifoliata L. Raf.).
F. Nishikawa, T. Endo, T. Shimada, H. Fujii, T. Shimizu, Y. Kobayashi, T. Araki, and M. Omura (2010)
Tree Physiol 30, 431-439
   Abstract »    Full Text »    PDF »
Metabolomic Screening Applied to Rice FOX Arabidopsis Lines Leads to the Identification of a Gene-Changing Nitrogen Metabolism.
D. Albinsky, M. Kusano, M. Higuchi, N. Hayashi, M. Kobayashi, A. Fukushima, M. Mori, T. Ichikawa, K. Matsui, H. Kuroda, et al. (2010)
Mol Plant 3, 125-142
   Abstract »    Full Text »    PDF »
Arabidopsis CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time.
H. Chen, X. Huang, G. Gusmaroli, W. Terzaghi, O. S. Lau, Y. Yanagawa, Y. Zhang, J. Li, J.-H. Lee, D. Zhu, et al. (2010)
PLANT CELL 22, 108-123
   Abstract »    Full Text »    PDF »
Distinct Patterns of Genetic Variation Alter Flowering Responses of Arabidopsis Accessions to Different Daylengths.
A. Giakountis, F. Cremer, S. Sim, M. Reymond, J. Schmitt, and G. Coupland (2010)
Plant Physiology 152, 177-191
   Abstract »    Full Text »    PDF »
The Flowering Process of Vitis vinifera: A Review.
M. C. Vasconcelos, M. Greven, C. S. Winefield, M. C.T. Trought, and V. Raw (2009)
Am. J. Enol. Vitic. 60, 411-434
   Abstract »    Full Text »    PDF »
Coming into bloom: the specification of floral meristems.
C. Liu, Z. Thong, and H. Yu (2009)
Development 136, 3379-3391
   Abstract »    Full Text »    PDF »
Cis-regulatory Changes at FLOWERING LOCUS T Mediate Natural Variation in Flowering Responses of Arabidopsis thaliana.
C. Schwartz, S. Balasubramanian, N. Warthmann, T. P. Michael, J. Lempe, S. Sureshkumar, Y. Kobayashi, J. N. Maloof, J. O. Borevitz, J. Chory, et al. (2009)
Genetics 183, 723-732
   Abstract »    Full Text »    PDF »
Crosstalk between Cold Response and Flowering in Arabidopsis Is Mediated through the Flowering-Time Gene SOC1 and Its Upstream Negative Regulator FLC.
E. Seo, H. Lee, J. Jeon, H. Park, J. Kim, Y.-S. Noh, and I. Lee (2009)
PLANT CELL 21, 3185-3197
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882