Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 287 (5457): 1485-1489

Copyright © 2000 by the American Association for the Advancement of Science

Translocation of C. elegans CED-4 to Nuclear Membranes During Programmed Cell Death

Fangli Chen, 1*dagger Bradley M. Hersh, 1* Barbara Conradt, 1ddagger Zheng Zhou, 1 Dieter Riemer, 2 Yosef Gruenbaum, 3 H. Robert Horvitz 1

The Caenorhabditis elegans Bcl-2-like protein CED-9 prevents programmed cell death by antagonizing the Apaf-1-like cell-death activator CED-4. Endogenous CED-9 and CED-4 proteins localized to mitochondria in wild-type embryos, in which most cells survive. By contrast, in embryos in which cells had been induced to die, CED-4 assumed a perinuclear localization. CED-4 translocation induced by the cell-death activator EGL-1 was blocked by a gain-of-function mutation in ced-9 but was not dependent on ced-3 function, suggesting that CED-4 translocation precedes caspase activation and the execution phase of programmed cell death. Thus, a change in the subcellular localization of CED-4 may drive programmed cell death.

1 Howard Hughes Medical Institute, Department of Biology, 68-425, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
2 Department of Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37016 Goettingen, Germany.
3 Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 Israel.
*   These authors contributed equally to this work.

dagger    Present address: Whitehead Institute, Department of Biology, WI-525, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

ddagger    Present address: Max Planck Institute for Neurobiology, Am Klopferspitz 18A, D-82152 Planegg-Martinsried, Germany.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Apoptosome and inflammasome: conserved machineries for caspase activation.
J. Chai and Y. Shi (2014)
Natl Sci Rev 1, 101-118
   Abstract »    Full Text »    PDF »
Mechanistic insights into CED-4-mediated activation of CED-3.
W. Huang, T. Jiang, W. Choi, S. Qi, Y. Pang, Q. Hu, Y. Xu, X. Gong, P. D. Jeffrey, J. Wang, et al. (2013)
Genes & Dev. 27, 2039-2048
   Abstract »    Full Text »    PDF »
Hepatitis B virus X protein targets the Bcl-2 protein CED-9 to induce intracellular Ca2+ increase and cell death in Caenorhabditis elegans.
X. Geng, B. L. Harry, Q. Zhou, R. R. Skeen-Gaar, X. Ge, E. S. Lee, S. Mitani, and D. Xue (2012)
PNAS 109, 18465-18470
   Abstract »    Full Text »    PDF »
A molecular switch that governs mitochondrial fusion and fission mediated by the BCL2-like protein CED-9 of Caenorhabditis elegans.
Y. Lu, S. G. Rolland, and B. Conradt (2011)
PNAS 108, E813-E822
   Abstract »    Full Text »    PDF »
The LIN-15A and LIN-56 Transcriptional Regulators Interact to Negatively Regulate EGF/Ras Signaling in Caenorhabditis elegans Vulval Cell-Fate Determination.
E. M. Davison, A. M. Saffer, L. S. Huang, J. DeModena, P. W. Sternberg, and H. R. Horvitz (2011)
Genetics 187, 803-815
   Abstract »    Full Text »    PDF »
Adenine Nucleotide Translocator Cooperates with Core Cell Death Machinery To Promote Apoptosis in Caenorhabditis elegans.
Q. Shen, F. Qin, Z. Gao, J. Cui, H. Xiao, Z. Xu, and C. Yang (2009)
Mol. Cell. Biol. 29, 3881-3893
   Abstract »    Full Text »    PDF »
C. elegans SIR-2.1 translocation is linked to a proapoptotic pathway parallel to cep-1/p53 during DNA damage-induced apoptosis.
S. Greiss, J. Hall, S. Ahmed, and A. Gartner (2008)
Genes & Dev. 22, 2831-2842
   Abstract »    Full Text »    PDF »
Ceramide Biogenesis Is Required for Radiation-Induced Apoptosis in the Germ Line of C. elegans.
X. Deng, X. Yin, R. Allan, D. D. Lu, C. W. Maurer, A. Haimovitz-Friedman, Z. Fuks, S. Shaham, and R. Kolesnick (2008)
Science 322, 110-115
   Abstract »    Full Text »    PDF »
C. elegans and H. sapiens mRNAs with edited 3' UTRs are present on polysomes.
H. A. Hundley, A. A. Krauchuk, and B. L. Bass (2008)
RNA 14, 2050-2060
   Abstract »    Full Text »    PDF »
The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9.
H. T. Schwartz and H. R. Horvitz (2007)
Genes & Dev. 21, 3181-3194
   Abstract »    Full Text »    PDF »
SPD-3 Is Required for Spindle Alignment in Caenorhabditis elegans Embryos and Localizes to Mitochondria.
M. V. Dinkelmann, H. Zhang, A. R. Skop, and J. G. White (2007)
Genetics 177, 1609-1620
   Abstract »    Full Text »    PDF »
C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions.
C. Schertel and B. Conradt (2007)
Development 134, 3691-3701
   Abstract »    Full Text »    PDF »
Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene.
C. W. Maurer, M. Chiorazzi, and S. Shaham (2007)
Development 134, 1357-1368
   Abstract »    Full Text »    PDF »
DPL-1 DP, LIN-35 Rb and EFL-1 E2F Act With the MCD-1 Zinc-Finger Protein to Promote Programmed Cell Death in Caenorhabditis elegans.
P. W. Reddien, E. C. Andersen, M. C. Huang, and H. R. Horvitz (2007)
Genetics 175, 1719-1733
   Abstract »    Full Text »    PDF »
Pax2/5/8 proteins promote cell survival in C. elegans.
D. Park, H. Jia, V. Rajakumar, and H. M. Chamberlin (2006)
Development 133, 4193-4202
   Abstract »    Full Text »    PDF »
Matefin/SUN-1 is a nuclear envelope receptor for CED-4 during Caenorhabditis elegans apoptosis.
Y. B. Tzur, A. Margalit, N. Melamed-Book, and Y. Gruenbaum (2006)
PNAS 103, 13397-13402
   Abstract »    Full Text »    PDF »
C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival..
E. A. Kritikou, S. Milstein, P.-O. Vidalain, G. Lettre, E. Bogan, K. Doukoumetzidis, P. Gray, T. G. Chappell, M. Vidal, and M. O. Hengartner (2006)
Genes & Dev. 20, 2279-2292
   Abstract »    Full Text »    PDF »
Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1 homologue CED-4, but can interact with EGL-1.
A. M. Jabbour, M. A. Puryer, J. Y. Yu, T. Lithgow, C. D. Riffkin, D. M. Ashley, D. L. Vaux, P. G. Ekert, and C. J. Hawkins (2006)
J. Cell Sci. 119, 2572-2582
   Abstract »    Full Text »    PDF »
RNA Aptamers Targeting the Cell Death Inhibitor CED-9 Induce Cell Killing in Caenorhabditis elegans.
C. Yang, N. Yan, J. Parish, X. Wang, Y. Shi, and D. Xue (2006)
J. Biol. Chem. 281, 9137-9144
   Abstract »    Full Text »    PDF »
Plasma membrane sequestration of apoptotic protease-activating factor-1 in human B-lymphoma cells: a novel mechanism of chemoresistance.
Y. Sun, S. Orrenius, S. Pervaiz, and B. Fadeel (2005)
Blood 105, 4070-4077
   Abstract »    Full Text »    PDF »
Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm).
S. Kornbluth and K. White (2005)
J. Cell Sci. 118, 1779-1787
   Abstract »    Full Text »    PDF »
Apoptosis in the development and treatment of cancer.
R. Gerl and D. L. Vaux (2005)
Carcinogenesis 26, 263-270
   Abstract »    Full Text »    PDF »
Nuclear Localization of Apoptosis Protease Activating Factor-1 Predicts Survival after Tumor Resection in Early-Stage Non-Small Cell Lung Cancer.
B. Besse, C. Cande, J.-P. Spano, A. Martin, D. Khayat, T. Le Chevalier, T. Tursz, L. Sabatier, J.-C. Soria, and G. Kroemer (2004)
Clin. Cancer Res. 10, 5665-5669
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans pvl-5 Gene Protects Hypodermal Cells From ced-3-Dependent, ced-4-Independent Cell Death.
P. Joshi and D. M. Eisenmann (2004)
Genetics 167, 673-685
   Abstract »    Full Text »    PDF »
Pro-apoptotic Proteins Released from the Mitochondria Regulate the Protein Composition and Caspase-processing Activity of the Native Apaf-1/Caspase-9 Apoptosome Complex.
D. Twiddy, D. G. Brown, C. Adrain, R. Jukes, S. J. Martin, G. M. Cohen, M. MacFarlane, and K. Cain (2004)
J. Biol. Chem. 279, 19665-19682
   Abstract »    Full Text »    PDF »
Ways of dying: multiple pathways to apoptosis.
J. M. Adams (2003)
Genes & Dev. 17, 2481-2495
   Full Text »    PDF »
The Snail-like CES-1 protein of C. elegans can block the expression of theBH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins.
M. Thellmann, J. Hatzold, and B. Conradt (2003)
Development 130, 4057-4071
   Abstract »    Full Text »    PDF »
Mitochondrially Localized Active Caspase-9 and Caspase-3 Result Mostly from Translocation from the Cytosol and Partly from Caspase-mediated Activation in the Organelle. LACK OF EVIDENCE FOR Apaf-1-MEDIATED PROCASPASE-9 ACTIVATION IN THE MITOCHONDRIA.
D. Chandra and D. G. Tang (2003)
J. Biol. Chem. 278, 17408-17420
   Abstract »    Full Text »    PDF »
Mechanisms of AIF-Mediated Apoptotic DNA Degradation in Caenorhabditis elegans.
X. Wang, C. Yang, J. Chai, Y. Shi, and D. Xue (2002)
Science 298, 1587-1592
   Abstract »    Full Text »    PDF »
Mitochondrial GFA2 Is Required for Synergid Cell Death in Arabidopsis.
C. A. Christensen, S. W. Gorsich, R. H. Brown, L. G. Jones, J. Brown, J. M. Shaw, and G. N. Drews (2002)
PLANT CELL 14, 2215-2232
   Abstract »    Full Text »    PDF »
Distinct Functions of the Unique C Terminus of LAP2alpha in Cell Proliferation and Nuclear Assembly.
S. Vlcek, B. Korbei, and R. Foisner (2002)
J. Biol. Chem. 277, 18898-18907
   Abstract »    Full Text »    PDF »
BH3-only proteins -- evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death.
P. Bouillet and A. Strasser (2002)
J. Cell Sci. 115, 1567-1574
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types.
B. M. Hersh, E. Hartwieg, and H. R. Horvitz (2002)
PNAS 99, 4355-4360
   Abstract »    Full Text »    PDF »
Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins.
D. G. Stupack, X. S. Puente, S. Boutsaboualoy, C. M. Storgard, and D. A. Cheresh (2001)
J. Cell Biol. 155, 459-470
   Abstract »    Full Text »    PDF »
Molecular Cloning and Characterization of DEFCAP-L and -S, Two Isoforms of a Novel Member of the Mammalian Ced-4 Family of Apoptosis Proteins.
T. Hlaing, R.-F. Guo, K. A. Dilley, J. M. Loussia, T. A. Morrish, M. M. Shi, C. Vincenz, and P. A. Ward (2001)
J. Biol. Chem. 276, 9230-9238
   Abstract »    Full Text »    PDF »
Environment and health: 7. Species loss and ecosystem disruption -- the implications for human health.
E. Chivian (2001)
Can. Med. Assoc. J. 164, 66-69
   Full Text »    PDF »
Proteases for Cell Suicide: Functions and Regulation of Caspases.
H. Y. Chang and X. Yang (2000)
Microbiol. Mol. Biol. Rev. 64, 821-846
   Abstract »    Full Text »    PDF »
Dissociation of Staurosporine-induced Apoptosis from G2-M Arrest in SW620 Human Colonic Carcinoma Cells: Initiation of the Apoptotic Cascade Is Associated with Elevation of the Mitochondrial Membrane Potential ({{Delta}}{{psi}}m).
B. G. Heerdt, M. A. Houston, J. M. Mariadason, and L. H. Augenlicht (2000)
Cancer Res. 60, 6704-6713
   Abstract »    Full Text »
Posttranslational N-Myristoylation of BID as a Molecular Switch for Targeting Mitochondria and Apoptosis.
J. Zha, S. Weiler, K. J. Oh, M. C. Wei, and S. J. Korsmeyer (2000)
Science 290, 1761-1765
   Abstract »    Full Text »
Essential Roles for Caenorhabditis elegans Lamin Gene in Nuclear Organization, Cell Cycle Progression, and Spatial Organization of Nuclear Pore Complexes.
J. Liu, T. R. Ben-Shahar, D. Riemer, M. Treinin, P. Spann, K. Weber, A. Fire, and Y. Gruenbaum (2000)
Mol. Biol. Cell 11, 3937-3947
   Abstract »    Full Text »
Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors.
J. Parrish, H. Metters, L. Chen, and D. Xue (2000)
PNAS 97, 11916-11921
   Abstract »    Full Text »    PDF »
Cytochrome c Promotes Caspase-9 Activation by Inducing Nucleotide Binding to Apaf-1.
X. Jiang and X. Wang (2000)
J. Biol. Chem. 275, 31199-31203
   Abstract »    Full Text »    PDF »
C. elegans Nuclear Envelope Proteins Emerin, MAN1, Lamin, and Nucleoporins Reveal Unique Timing of Nuclear Envelope Breakdown during Mitosis.
K. K. Lee, Y. Gruenbaum, P. Spann, J. Liu, and K. L. Wilson (2000)
Mol. Biol. Cell 11, 3089-3099
   Abstract »    Full Text »
Mitochondria Localization and Dimerization Are Required for CIDE-B to Induce Apoptosis.
Z. Chen, K. Guo, S. Y. Toh, Z. Zhou, and P. Li (2000)
J. Biol. Chem. 275, 22619-22622
   Abstract »    Full Text »    PDF »
DNA-damage-induced Checkpoint Pathways in the Nematode Caenorhabditis elegans.
E.R. HOFMANN, S. MILSTEIN, and M.O. HENGARTNER (2000)
Cold Spring Harb Symp Quant Biol 65, 467-474
   Abstract »    PDF »
Mitochondria localization and dimerization are required for CIDE-B to induce apoptosis.
Z. Chen, K. Guo, S. Y. Toh, Z. Zhou, and P. Li (2000)
J. Biol. Chem.
   Abstract »
Cytochrome c Promotes Caspase-9 Activation by Inducing Nucleotide Binding to Apaf-1.
X. Jiang and X. Wang (2000)
J. Biol. Chem.
   Abstract »
Disruption of the CED-9{middle dot}CED-4 Complex by EGL-1 Is a Critical Step for Programmed Cell Death in Caenorhabditis elegans.
L. del Peso, V. M. Gonzalez, N. Inohara, R. E. Ellis, and G. Nunez (2000)
J. Biol. Chem. 275, 27205-27211
   Abstract »    Full Text »    PDF »
Molecular cloning and characterization of DEFCAP-L and -S, two isoforms of a novel member of the mammalian Ced-4 family of apoptosis proteins.
T. Hlaing, R.-F. Guo, K. A. Dilley, J. M. Loussia, T. A. Morrish, M. M. Shi, C. Vincenz, and P. A. Ward (2000)
J. Biol. Chem.
   Abstract »
The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types.
B. M. Hersh, E. Hartwieg, and H. R. Horvitz (2002)
PNAS 99, 4355-4360
   Abstract »    Full Text »    PDF »
Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors.
J. Parrish, H. Metters, L. Chen, and D. Xue (2000)
PNAS 97, 11916-11921
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882