Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 287 (5461): 2229-2234

Copyright © 2000 by the American Association for the Advancement of Science

A Drosophila Mechanosensory Transduction Channel

Richard G. Walker, 1 Aarron T. Willingham, 1 Charles S. Zuker 2*

Mechanosensory transduction underlies a wide range of senses, including proprioception, touch, balance, and hearing. The pivotal element of these senses is a mechanically gated ion channel that transduces sound, pressure, or movement into changes in excitability of specialized sensory cells. Despite the prevalence of mechanosensory systems, little is known about the molecular nature of the transduction channels. To identify such a channel, we analyzed Drosophila melanogaster mechanoreceptive mutants for defects in mechanosensory physiology. Loss-of-function mutations in the no mechanoreceptor potential C (nompC) gene virtually abolished mechanosensory signaling. nompC encodes a new ion channel that is essential for mechanosensory transduction. As expected for a transduction channel, D. melanogaster NOMPC and a Caenorhabditis elegans homolog were selectively expressed in mechanosensory organs.

1 Departments of Biology and Neurosciences and
2 Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0649, USA.
*   To whom correspondence should be addressed. E-mail: charles{at}

The stum Gene Is Essential for Mechanical Sensing in Proprioceptive Neurons.
B. S. Desai, A. Chadha, and B. Cook (2014)
Science 343, 1256-1259
   Abstract »    Full Text »    PDF »
Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae.
W. Zhang, Z. Yan, L. Y. Jan, and Y. N. Jan (2013)
PNAS 110, 13612-13617
   Abstract »    Full Text »    PDF »
Temperature Integration at the AC Thermosensory Neurons in Drosophila.
X. Tang, M. D. Platt, C. M. Lagnese, J. R. Leslie, and F. N. Hamada (2013)
J. Neurosci. 33, 894-901
   Abstract »    Full Text »    PDF »
Computation identifies structural features that govern neuronal firing properties in slowly adapting touch receptors.
D. R. Lesniak, K. L. Marshall, S. A. Wellnitz, B. A. Jenkins, Y. Baba, M. N. Rasband, G. J. Gerling, and E. A. Lumpkin (2013)
eLife Sci 3, e01488
   Abstract »    Full Text »    PDF »
Pickpocket1 Is an Ionotropic Molecular Sensory Transducer.
N. Boiko, V. Kucher, J. D. Stockand, and B. A. Eaton (2012)
J. Biol. Chem. 287, 39878-39886
   Abstract »    Full Text »    PDF »
Dissection of Gain Control Mechanisms in Drosophila Mechanotransduction.
A. Chadha and B. Cook (2012)
J. Neurosci. 32, 13052-13061
   Abstract »    Full Text »    PDF »
TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells.
K. Quick, J. Zhao, N. Eijkelkamp, J. E. Linley, F. Rugiero, J. J. Cox, R. Raouf, M. Gringhuis, J. E. Sexton, J. Abramowitz, et al. (2012)
Open Bio 2, 120068
   Abstract »    Full Text »    PDF »
Permeation properties of the hair cell mechanotransducer channel provide insight into its molecular structure.
B. Pan, J. Waguespack, M. E. Schnee, C. LeBlanc, and A. J. Ricci (2012)
J Neurophysiol 107, 2408-2420
   Abstract »    Full Text »    PDF »
Osmosensory Mechanisms in Cellular and Systemic Volume Regulation.
S. F. Pedersen, A. Kapus, and E. K. Hoffmann (2011)
J. Am. Soc. Nephrol. 22, 1587-1597
   Abstract »    Full Text »    PDF »
Polycystin-1 Is Required for Stereocilia Structure But Not for Mechanotransduction in Inner Ear Hair Cells.
K. A. Steigelman, A. Lelli, X. Wu, J. Gao, S. Lin, K. Piontek, C. Wodarczyk, A. Boletta, H. Kim, F. Qian, et al. (2011)
J. Neurosci. 31, 12241-12250
   Abstract »    Full Text »    PDF »
The Robustness of Caenorhabditis elegans Male Mating Behavior Depends on the Distributed Properties of Ray Sensory Neurons and Their Output through Core and Male-Specific Targets.
P. K. Koo, X. Bian, A. L. Sherlekar, M. R. Bunkers, and R. Lints (2011)
J. Neurosci. 31, 7497-7510
   Abstract »    Full Text »    PDF »
Review series: The cell biology of touch.
E. A. Lumpkin, K. L. Marshall, and A. M. Nelson (2010)
J. Cell Biol. 191, 237-248
   Abstract »    Full Text »    PDF »
Fine Thermotactic Discrimination between the Optimal and Slightly Cooler Temperatures via a TRPV Channel in Chordotonal Neurons.
Y. Kwon, W. L. Shen, H.-S. Shim, and C. Montell (2010)
J. Neurosci. 30, 10465-10471
   Abstract »    Full Text »    PDF »
touche Is Required for Touch-Evoked Generator Potentials within Vertebrate Sensory Neurons.
S. E. Low, J. Ryan, S. M. Sprague, H. Hirata, W. W. Cui, W. Zhou, R. I. Hume, J. Y. Kuwada, and L. Saint-Amant (2010)
J. Neurosci. 30, 9359-9367
   Abstract »    Full Text »    PDF »
Kinetic properties of mechanically activated currents in spinal sensory neurons.
F. Rugiero, L. J. Drew, and J. N. Wood (2010)
J. Physiol. 588, 301-314
   Abstract »    Full Text »    PDF »
Using Drosophila for studying fundamental processes in hearing.
Q. Lu, P. R. Senthilan, T. Effertz, B. Nadrowski, and M. C. Gopfert (2009)
Integr. Comp. Biol. 49, 674-680
   Abstract »    Full Text »    PDF »
TRPA1 Modulates Mechanotransduction in Cutaneous Sensory Neurons.
K. Y. Kwan, J. M. Glazer, D. P. Corey, F. L. Rice, and C. L. Stucky (2009)
J. Neurosci. 29, 4808-4819
   Abstract »    Full Text »    PDF »
Multiple Unbiased Prospective Screens Identify TRP Channels and Their Conserved Gating Elements.
B. R. Myers, Y. Saimi, D. Julius, and C. Kung (2008)
J. Gen. Physiol. 132, 481-486
   Full Text »    PDF »
Zebrafish TRPA1 Channels Are Required for Chemosensation But Not for Thermosensation or Mechanosensory Hair Cell Function.
D. A. Prober, S. Zimmerman, B. R. Myers, B. M. McDermott Jr, S.-H. Kim, S. Caron, J. Rihel, L. Solnica-Krezel, D. Julius, A. J. Hudspeth, et al. (2008)
J. Neurosci. 28, 10102-10110
   Abstract »    Full Text »    PDF »
Microscale sensors based on silicon carbide and silicon.
R. Cheung and P. Argyrakis (2008)
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, 19-26
   Abstract »    PDF »
Nanoscale Organization of the MEC-4 DEG/ENaC Sensory Mechanotransduction Channel in Caenorhabditis elegans Touch Receptor Neurons.
J. G. Cueva, A. Mulholland, and M. B. Goodman (2007)
J. Neurosci. 27, 14089-14098
   Abstract »    Full Text »    PDF »
A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse.
C. Grimm, M. P. Cuajungco, A. F. J. van Aken, M. Schnee, S. Jors, C. J. Kros, A. J. Ricci, and S. Heller (2007)
PNAS 104, 19583-19588
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Cation Channels in Disease.
B. Nilius, G. Owsianik, T. Voets, and J. A. Peters (2007)
Physiol Rev 87, 165-217
   Abstract »    Full Text »    PDF »
TRP channels and lipids: from Drosophila to mammalian physiology.
R. C. Hardie (2007)
J. Physiol. 578, 9-24
   Abstract »    Full Text »    PDF »
A Specific Subset of Transient Receptor Potential Vanilloid-Type Channel Subunits in Caenorhabditis elegans Endocrine Cells Function as Mixed Heteromers to Promote Neurotransmitter Release.
A. M. Jose, I. A. Bany, D. L. Chase, and M. R. Koelle (2007)
Genetics 175, 93-105
   Abstract »    Full Text »    PDF »
Transient receptor potential vanilloid channels functioning in transduction of osmotic stimuli.
W. Liedtke (2006)
J. Endocrinol. 191, 515-523
   Abstract »    Full Text »    PDF »
What is the hair cell transduction channel?.
D. P. Corey (2006)
J. Physiol. 576, 23-28
   Abstract »    Full Text »    PDF »
Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells.
J.-B. Shin, D. Adams, M. Paukert, M. Siba, S. Sidi, M. Levin, P. G. Gillespie, and S. Grunder (2005)
PNAS 102, 12572-12577
   Abstract »    Full Text »    PDF »
Gating of TRP channels: a voltage connection?.
B. Nilius, K. Talavera, G. Owsianik, J. Prenen, G. Droogmans, and T. Voets (2005)
J. Physiol. 567, 35-44
   Abstract »    Full Text »    PDF »
Nociceptor and Hair Cell Transducer Properties of TRPA1, a Channel for Pain and Hearing.
K. Nagata, A. Duggan, G. Kumar, and J. Garcia-Anoveros (2005)
J. Neurosci. 25, 4052-4061
   Abstract »    Full Text »    PDF »
The TRP Superfamily of Cation Channels.
C. Montell (2005)
Sci. STKE 2005, re3
   Abstract »    Full Text »    PDF »
Conversion of Mechanical Force into Biochemical Signaling.
B. Han, X.-H. Bai, M. Lodyga, J. Xu, B. B. Yang, S. Keshavjee, M. Post, and M. Liu (2004)
J. Biol. Chem. 279, 54793-54801
   Abstract »    Full Text »    PDF »
Molecules and Mechanisms of Mechanotransduction.
M. B. Goodman, E. A. Lumpkin, A. Ricci, W. D. Tracey, M. Kernan, and T. Nicolson (2004)
J. Neurosci. 24, 9220-9222
   Full Text »    PDF »
Two Interdependent TRPV Channel Subunits, Inactive and Nanchung, Mediate Hearing in Drosophila.
Z. Gong, W. Son, Y. Doo Chung, J. Kim, D. W. Shin, C. A. McClung, Y. Lee, H. W. Lee, D.-J. Chang, B.-K. Kaang, et al. (2004)
J. Neurosci. 24, 9059-9066
   Abstract »    Full Text »    PDF »
Genetic Models of Mechanotransduction: The Nematode Caenorhabditis elegans.
P. Syntichaki and N. Tavernarakis (2004)
Physiol Rev 84, 1097-1153
   Abstract »    Full Text »    PDF »
Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP.
D. J. Beech, K. Muraki, and R. Flemming (2004)
J. Physiol. 559, 685-706
   Abstract »    Full Text »    PDF »
Probing the pore of the auditory hair cell mechanotransducer channel in turtle.
H. E. Farris, C. L. LeBlanc, J. Goswami, and A. J. Ricci (2004)
J. Physiol. 558, 769-792
   Abstract »    Full Text »    PDF »
Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing.
C. Roza, J.-L. Puel, M. Kress, A. Baron, S. Diochot, M. Lazdunski, and R. Waldmann (2004)
J. Physiol. 558, 659-669
   Abstract »    Full Text »    PDF »
The Transient Receptor Potential Superfamily of Ion Channels.
C.-L. Huang (2004)
J. Am. Soc. Nephrol. 15, 1690-1699
   Abstract »    Full Text »    PDF »
Mechanosensitive ion channels: molecules of mechanotransduction.
B. Martinac (2004)
J. Cell Sci. 117, 2449-2460
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Vanilloid 4 Is Essential in Chemotherapy-Induced Neuropathic Pain in the Rat.
N. Alessandri-Haber, O. A. Dina, J. J. Yeh, C. A. Parada, D. B. Reichling, and J. D. Levine (2004)
J. Neurosci. 24, 4444-4452
   Abstract »    Full Text »    PDF »
Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones.
L. J. Drew, D. K. Rohrer, M. P. Price, K. E. Blaver, D. A. Cockayne, P. Cesare, and J. N. Wood (2004)
J. Physiol. 556, 691-710
   Abstract »    Full Text »    PDF »
From The Cover: Mutation of the zebrafish choroideremia gene encoding Rab escort protein 1 devastates hair cells.
C. J. Starr, J. A. Kappler, D. K. Chan, R. Kollmar, and A. J. Hudspeth (2004)
PNAS 101, 2572-2577
   Abstract »    Full Text »    PDF »
Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms.
S. Sukharev and D. P. Corey (2004)
Sci. STKE 2004, re4
   Abstract »    Full Text »    PDF »
Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants.
J. C. Caldwell, M. M. Miller, S. Wing, D. R. Soll, and D. F. Eberl (2003)
PNAS 100, 16053-16058
   Abstract »    Full Text »    PDF »
Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5.
D. Liu and E. R. Liman (2003)
PNAS 100, 15160-15165
   Abstract »    Full Text »    PDF »
Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans.
W. Liedtke, D. M. Tobin, C. I. Bargmann, and J. M. Friedman (2003)
PNAS 100, 14531-14536
   Abstract »    Full Text »
Functional tests of enhancer conservation between distantly related species.
I. Ruvinsky and G. Ruvkun (2003)
Development 130, 5133-5142
   Abstract »    Full Text »    PDF »
Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior.
H. Yu, R. F. Pretot, T. R. Burglin, and P. W. Sternberg (2003)
Development 130, 5217-5227
   Abstract »    Full Text »    PDF »
Structure-based substitutions for increased solubility of a designed protein.
L. K. Mosavi and Z.-y. Peng (2003)
Protein Eng. Des. Sel. 16, 739-745
   Abstract »    Full Text »    PDF »
NompC TRP Channel Required for Vertebrate Sensory Hair Cell Mechanotransduction.
S. Sidi, R. W. Friedrich, and T. Nicolson (2003)
Science 301, 96-99
   Abstract »    Full Text »    PDF »
GAP43 stimulates inositol trisphosphate-mediated calcium release in response to hypotonicity.
M. Caprini, A. Gomis, H. Cabedo, R. Planells-Cases, C. Belmonte, F. Viana, and A. Ferrer-Montiel (2003)
EMBO J. 22, 3004-3014
   Abstract »    Full Text »    PDF »
The transient receptor potential channel on the yeast vacuole is mechanosensitive.
X.-L. Zhou, A. F. Batiza, S. H. Loukin, C. P. Palmer, C. Kung, and Y. Saimi (2003)
PNAS 100, 7105-7110
   Abstract »    Full Text »    PDF »
Lighting up the Senses: FM1-43 Loading of Sensory Cells through Nonselective Ion Channels.
J. R. Meyers, R. B. MacDonald, A. Duggan, D. Lenzi, D. G. Standaert, J. T. Corwin, and D. P. Corey (2003)
J. Neurosci. 23, 4054-4065
   Abstract »    Full Text »    PDF »
More whistles and bells for fly hearing.
R. G. Walker (2003)
PNAS 100, 5581-5582
   Full Text »    PDF »
Motion generation by Drosophila mechanosensory neurons.
M. C. Gopfert and D. Robert (2003)
PNAS 100, 5514-5519
   Abstract »    Full Text »    PDF »
From Genes to Integrative Physiology: Ion Channel and Transporter Biology in Caenorhabditis elegans.
K. Strange (2003)
Physiol Rev 83, 377-415
   Abstract »    Full Text »    PDF »
Designed to be stable: Crystal structure of a consensus ankyrin repeat protein.
A. Kohl, H. K. Binz, P. Forrer, M. T. Stumpp, A. Pluckthun, and M. G. Grutter (2003)
PNAS 100, 1700-1705
   Abstract »    Full Text »    PDF »
Energy Integration Describes Sound-Intensity Coding in an Insect Auditory System.
T. Gollisch, H. Schutze, J. Benda, and A. V. M. Herz (2002)
J. Neurosci. 22, 10434-10448
   Abstract »    Full Text »    PDF »
Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice.
F. Di Palma, I. A. Belyantseva, H. J. Kim, T. F. Vogt, B. Kachar, and K. Noben-Trauth (2002)
PNAS 99, 14994-14999
   Abstract »    Full Text »    PDF »
Biophysics of the cochlea - biomechanics and ion channelopathies.
J. Ashmore (2002)
Br. Med. Bull. 63, 59-72
   Abstract »    Full Text »    PDF »
Studies of mechanosensation using the fly.
A. P. Jarman (2002)
Hum. Mol. Genet. 11, 1215-1218
   Abstract »    Full Text »    PDF »
The mechanical basis of Drosophila audition.
M. C. Gopfert and D. Robert (2002)
J. Exp. Biol. 205, 1199-1208
   Abstract »    Full Text »    PDF »
Essential Hydrophilic Carboxyl-terminal Regions Including Cysteine Residues of the Yeast Stretch-activated Calcium-permeable Channel Mid1.
T. Maruoka, Y. Nagasoe, S. Inoue, Y. Mori, J. Goto, M. Ikeda, and H. Iida (2002)
J. Biol. Chem. 277, 11645-11652
   Abstract »    Full Text »    PDF »
TRP Channel Proteins and Signal Transduction.
B. Minke and B. Cook (2002)
Physiol Rev 82, 429-472
   Abstract »    Full Text »    PDF »
Phototransduction in Drosophila melanogaster.
R. C. Hardie (2002)
J. Exp. Biol. 204, 3403-3409
   Abstract »    Full Text »    PDF »
Mechanosensitive Ion Channels in Cultured Sensory Neurons of Neonatal Rats.
H. Cho, J. Shin, C. Y. Shin, S.-Y. Lee, and U. Oh (2002)
J. Neurosci. 22, 1238-1247
   Abstract »    Full Text »    PDF »
Drosophila Regulatory factor X is necessary for ciliated sensory neuron differentiation.
R. Dubruille, A. Laurencon, C. Vandaele, E. Shishido, M. Coulon-Bublex, P. Swoboda, P. Couble, M. Kernan, and B. Durand (2002)
Development 129, 5487-5498
   Abstract »    Full Text »    PDF »
Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform.
X.- Z. S. Xu, F. Moebius, D. L. Gill, and C. Montell (2001)
PNAS 98, 10692-10697
   Abstract »    Full Text »    PDF »
technical knockout, a Drosophila Model of Mitochondrial Deafness.
J. M. Toivonen, K. M. C. O'Dell, N. Petit, S. C. Irvine, G. K. Knight, M. Lehtonen, M. Longmuir, K. Luoto, S. Touraille, Z. Wang, et al. (2001)
Genetics 159, 241-254
   Abstract »    Full Text »    PDF »
Characterization of Two HKT1 Homologues from Eucalyptus camaldulensis That Display Intrinsic Osmosensing Capability.
W. Liu, D. J. Fairbairn, R. J. Reid, and D. P. Schachtman (2001)
Plant Physiology 127, 283-294
   Abstract »    Full Text »    PDF »
Physiology, Phylogeny, and Functions of the TRP Superfamily of Cation Channels.
C. Montell (2001)
Sci. STKE 2001, re1
   Abstract »    Full Text »    PDF »
A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane.
C. P. Palmer, X.-L. Zhou, J. Lin, S. H. Loukin, C. Kung, and Y. Saimi (2001)
PNAS 98, 7801-7805
   Abstract »    Full Text »    PDF »
Molecular Basis of Mechanotransduction in Living Cells.
O. P. Hamill and B. Martinac (2001)
Physiol Rev 81, 685-740
   Abstract »    Full Text »    PDF »
Notch signaling in the development of the inner ear: Lessons from Drosophila.
M. Eddison, I. Le Roux, and J. Lewis (2000)
PNAS 97, 11692-11699
   Abstract »    Full Text »    PDF »
Genetically Similar Transduction Mechanisms for Touch and Hearing in Drosophila.
D. F. Eberl, R. W. Hardy, and M. J. Kernan (2000)
J. Neurosci. 20, 5981-5988
   Abstract »    Full Text »    PDF »
Expression of CaT-like, a Novel Calcium-selective Channel, Correlates with the Malignancy of Prostate Cancer.
U. Wissenbach, B. A. Niemeyer, T. Fixemer, A. Schneidewind, C. Trost, A. Cavalie, K. Reus, E. Meese, H. Bonkhoff, and V. Flockerzi (2001)
J. Biol. Chem. 276, 19461-19468
   Abstract »    Full Text »    PDF »
A Glu-496 to Ala Polymorphism Leads to Loss of Function of the Human P2X7 Receptor.
B. J. Gu, W. Zhang, R. A. Worthington, R. Sluyter, P. Dao-Ung, S. Petrou, J. A. Barden, and J. S. Wiley (2001)
J. Biol. Chem. 276, 11135-11142
   Abstract »    Full Text »    PDF »
A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane.
C. P. Palmer, X.-L. Zhou, J. Lin, S. H. Loukin, C. Kung, and Y. Saimi (2001)
PNAS 98, 7801-7805
   Abstract »    Full Text »    PDF »
Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform.
X.- Z. S. Xu, F. Moebius, D. L. Gill, and C. Montell (2001)
PNAS 98, 10692-10697
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882