Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 288 (5467): 859-863

Copyright © 2000 by the American Association for the Advancement of Science

Direct Targeting of Light Signals to a Promoter Element-Bound Transcription Factor

Jaime F. Martínez-García, Enamul Huq, Peter H. Quail *

Light signals perceived by the phytochrome family of sensory photoreceptors are transduced to photoresponsive genes by an unknown mechanism. Here, we show that the basic helix-loop-helix transcription factor PIF3 binds specifically to a G-box DNA-sequence motif present in various light-regulated gene promoters, and that phytochrome B binds reversibly to G-box-bound PIF3 specifically upon light-triggered conversion of the photoreceptor to its biologically active conformer. We suggest that the phytochromes may function as integral light-switchable components of transcriptional regulator complexes, permitting continuous and immediate sensing of changes in this environmental signal directly at target gene promoters.

Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, and U.S. Department of Agriculture-Agricultural Research Service Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA.
*   To whom correspondence should be addressed. E-mail: quail{at}

Systems biology flowering in the plant clock field.
H. R. Ueda (2014)
Mol Syst Biol 2, 60
   Full Text »    PDF »
Extension of a genetic network model by iterative experimentation and mathematical analysis.
J. C. W. Locke, M. M. Southern, L. Kozma-Bognar, V. Hibberd, P. E. Brown, M. S. Turner, and A. J. Millar (2014)
Mol Syst Biol 1, 2005.0013
   Abstract »    Full Text »    PDF »
Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis.
J. Bou-Torrent, A. Galstyan, M. Gallemi, N. Cifuentes-Esquivel, M. J. Molina-Contreras, M. Salla-Martret, Y. Jikumaru, S. Yamaguchi, Y. Kamiya, and J. F. Martinez-Garcia (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
PIFs: Systems Integrators in Plant Development.
P. Leivar and E. Monte (2014)
PLANT CELL 26, 56-78
   Abstract »    Full Text »    PDF »
Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks.
C. M. Prasch and U. Sonnewald (2013)
Plant Physiology 162, 1849-1866
   Abstract »    Full Text »    PDF »
Phytochrome-Interacting Factors (PIFs) as Bridges between Environmental Signals and the Circadian Clock: Diurnal Regulation of Growth and Development.
J. Shin, M. U. Anwer, and S. J. Davis (2013)
Mol Plant 6, 592-595
   Full Text »    PDF »
Antagonistic Basic Helix-Loop-Helix/bZIP Transcription Factors Form Transcriptional Modules That Integrate Light and Reactive Oxygen Species Signaling in Arabidopsis.
D. Chen, G. Xu, W. Tang, Y. Jing, Q. Ji, Z. Fei, and R. Lin (2013)
PLANT CELL 25, 1657-1673
   Abstract »    Full Text »    PDF »
PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated Arabidopsis Seedlings.
X. Liu, C.-Y. Chen, K.-C. Wang, M. Luo, R. Tai, L. Yuan, M. Zhao, S. Yang, G. Tian, Y. Cui, et al. (2013)
PLANT CELL 25, 1258-1273
   Abstract »    Full Text »    PDF »
BRANCHED1 Promotes Axillary Bud Dormancy in Response to Shade in Arabidopsis.
E. Gonzalez-Grandio, C. Poza-Carrion, C. O. S. Sorzano, and P. Cubas (2013)
PLANT CELL 25, 834-850
   Abstract »    Full Text »    PDF »
Diverse Roles of Strigolactones in Plant Development.
P. B. Brewer, H. Koltai, and C. A. Beveridge (2013)
Mol Plant 6, 18-28
   Abstract »    Full Text »    PDF »
Arabidopsis bZIP16 Transcription Factor Integrates Light and Hormone Signaling Pathways to Regulate Early Seedling Development.
W.-P. Hsieh, H.-L. Hsieh, and S.-H. Wu (2012)
PLANT CELL 24, 3997-4011
   Abstract »    Full Text »    PDF »
Functional characterization of two almond C-repeat-binding factors involved in cold response.
P. M. Barros, N. Goncalves, N. J. M. Saibo, and M. M. Oliveira (2012)
Tree Physiol 32, 1113-1128
   Abstract »    Full Text »    PDF »
Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis.
R. M. Galvao, M. Li, S. M. Kothadia, J. D. Haskel, P. V. Decker, E. K. Van Buskirk, and M. Chen (2012)
Genes & Dev. 26, 1851-1863
   Abstract »    Full Text »    PDF »
Linking photoreceptor excitation to changes in plant architecture.
L. Li, K. Ljung, G. Breton, R. J. Schmitz, J. Pruneda-Paz, C. Cowing-Zitron, B. J. Cole, L. J. Ivans, U. V. Pedmale, H.-S. Jung, et al. (2012)
Genes & Dev. 26, 785-790
   Abstract »    Full Text »    PDF »
Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive Transcriptional Network in Arabidopsis.
P. Leivar, J. M. Tepperman, M. M. Cohn, E. Monte, B. Al-Sady, E. Erickson, and P. H. Quail (2012)
PLANT CELL 24, 1398-1419
   Abstract »    Full Text »    PDF »
Phytochrome regulates translation of mRNA in the cytosol.
I. Paik, S. Yang, and G. Choi (2012)
PNAS 109, 1335-1340
   Abstract »    Full Text »    PDF »
Functional Profiling Identifies Genes Involved in Organ-Specific Branches of the PIF3 Regulatory Network in Arabidopsis.
M. Sentandreu, G. Martin, N. Gonzalez-Schain, P. Leivar, J. Soy, J. M. Tepperman, P. H. Quail, and E. Monte (2011)
PLANT CELL 23, 3974-3991
   Abstract »    Full Text »    PDF »
SclR, a Basic Helix-Loop-Helix Transcription Factor, Regulates Hyphal Morphology and Promotes Sclerotial Formation in Aspergillus oryzae.
F. J. Jin, T. Takahashi, K.-i. Matsushima, S. Hara, Y. Shinohara, J.-i. Maruyama, K. Kitamoto, and Y. Koyama (2011)
Eukaryot. Cell 10, 945-955
   Abstract »    Full Text »    PDF »
A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation.
X. Wang, I. Roig-Villanova, S. Khan, H. Shanahan, P. H. Quail, J. F. Martinez-Garcia, and P. F. Devlin (2011)
J. Exp. Bot. 62, 2973-2987
   Abstract »    Full Text »    PDF »
DELLAs Regulate Chlorophyll and Carotenoid Biosynthesis to Prevent Photooxidative Damage during Seedling Deetiolation in Arabidopsis.
S. Cheminant, M. Wild, F. Bouvier, S. Pelletier, J.-P. Renou, M. Erhardt, S. Hayes, M. J. Terry, P. Genschik, and P. Achard (2011)
PLANT CELL 23, 1849-1860
   Abstract »    Full Text »    PDF »
Phosphorylation by CK2 Enhances the Rapid Light-induced Degradation of Phytochrome Interacting Factor 1 in Arabidopsis.
Q. Bu, L. Zhu, M. D. Dennis, L. Yu, S. X. Lu, M. D. Person, E. M. Tobin, K. S. Browning, and E. Huq (2011)
J. Biol. Chem. 286, 12066-12074
   Abstract »    Full Text »    PDF »
A DELLA in Disguise: SPATULA Restrains the Growth of the Developing Arabidopsis Seedling.
E.-M. Josse, Y. Gan, J. Bou-Torrent, K. L. Stewart, A. D. Gilday, C. E. Jeffree, F. E. Vaistij, J. F. Martinez-Garcia, F. Nagy, I. A. Graham, et al. (2011)
PLANT CELL 23, 1337-1351
   Abstract »    Full Text »    PDF »
High-Resolution Temporal Profiling of Transcripts during Arabidopsis Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation.
E. Breeze, E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, S. Kiddle, Y.-s. Kim, C. A. Penfold, D. Jenkins, et al. (2011)
PLANT CELL 23, 873-894
   Abstract »    Full Text »    PDF »
Differentiation of Arabidopsis Guard Cells: Analysis of the Networks Incorporating the Basic Helix-Loop-Helix Transcription Factor, FAMA.
C. Hachez, K. Ohashi-Ito, J. Dong, and D. C. Bergmann (2011)
Plant Physiology 155, 1458-1472
   Abstract »    Full Text »    PDF »
Post-transcriptional control of circadian rhythms.
S. Kojima, D. L. Shingle, and C. B. Green (2011)
J. Cell Sci. 124, 311-320
   Abstract »    Full Text »    PDF »
Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors.
K. Kim, J. Shin, S.-H. Lee, H.-S. Kweon, J. N. Maloof, and G. Choi (2011)
PNAS 108, 1729-1734
   Abstract »    Full Text »    PDF »
Genetic Differentiation, Clinal Variation and Phenotypic Associations With Growth Cessation Across the Populus tremula Photoperiodic Pathway.
X.-F. Ma, D. Hall, K. R. S. Onge, S. Jansson, and P. K. Ingvarsson (2010)
Genetics 186, 1033-1044
   Abstract »    Full Text »    PDF »
Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis.
J. Li, Y. Li, S. Chen, and L. An (2010)
J. Exp. Bot. 61, 4221-4230
   Abstract »    Full Text »    PDF »
Functional Analysis of Amino-Terminal Domains of the Photoreceptor Phytochrome B.
A. Palagyi, K. Terecskei, E. Adam, E. Kevei, S. Kircher, Z. Merai, E. Schafer, F. Nagy, and L. Kozma-Bognar (2010)
Plant Physiology 153, 1834-1845
   Abstract »    Full Text »    PDF »
Arabidopsis PHYTOCHROME INTERACTING FACTOR Proteins Promote Phytochrome B Polyubiquitination by COP1 E3 Ligase in the Nucleus.
I.-C. Jang, R. Henriques, H. S. Seo, A. Nagatani, and N.-H. Chua (2010)
PLANT CELL 22, 2370-2383
   Abstract »    Full Text »    PDF »
Genome-Wide Classification and Evolutionary Analysis of the bHLH Family of Transcription Factors in Arabidopsis, Poplar, Rice, Moss, and Algae.
L. Carretero-Paulet, A. Galstyan, I. Roig-Villanova, J. F. Martinez-Garcia, J. R. Bilbao-Castro, and D. L. Robertson (2010)
Plant Physiology 153, 1398-1412
   Abstract »    Full Text »    PDF »
Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors.
G. Toledo-Ortiz, E. Huq, and M. Rodriguez-Concepcion (2010)
PNAS 107, 11626-11631
   Abstract »    Full Text »    PDF »
Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants.
N. Pires and L. Dolan (2010)
Mol. Biol. Evol. 27, 862-874
   Abstract »    Full Text »    PDF »
The ABORTED MICROSPORES Regulatory Network Is Required for Postmeiotic Male Reproductive Development in Arabidopsis thaliana.
J. Xu, C. Yang, Z. Yuan, D. Zhang, M. Y. Gondwe, Z. Ding, W. Liang, D. Zhang, and Z. A. Wilson (2010)
PLANT CELL 22, 91-107
   Abstract »    Full Text »    PDF »
Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers.
P. Hornitschek, S. Lorrain, V. Zoete, O. Michielin, and C. Fankhauser (2009)
EMBO J. 28, 3893-3902
   Abstract »    Full Text »    PDF »
A T9G Mutation in the Prototype TATA-Box TCACTATATATAG Determines Nucleosome Formation and Synergy with Upstream Activator Sequences in Plant Promoters.
A. Ranjan, S. A. Ansari, R. Srivastava, S. Mantri, M. H. Asif, S. V. Sawant, and R. Tuli (2009)
Plant Physiology 151, 2174-2186
   Abstract »    Full Text »    PDF »
Definition of Early Transcriptional Circuitry Involved in Light-Induced Reversal of PIF-Imposed Repression of Photomorphogenesis in Young Arabidopsis Seedlings.
P. Leivar, J. M. Tepperman, E. Monte, R. H. Calderon, T. L. Liu, and P. H. Quail (2009)
PLANT CELL 21, 3535-3553
   Abstract »    Full Text »    PDF »
Evolutionarily Conserved Regulatory Motifs in the Promoter of the Arabidopsis Clock Gene LATE ELONGATED HYPOCOTYL.
M. Spensley, J.-Y. Kim, E. Picot, J. Reid, S. Ott, C. Helliwell, and I. A. Carre (2009)
PLANT CELL 21, 2606-2623
   Abstract »    Full Text »    PDF »
Genome-Wide Analysis Revealed the Complex Regulatory Network of Brassinosteroid Effects in Photomorphogenesis.
L. Song, X.-Y. Zhou, L. Li, L.-J. Xue, X. Yang, and H.-W. Xue (2009)
Mol Plant 2, 755-772
   Abstract »    Full Text »    PDF »
CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL Function Synergistically in the Circadian Clock of Arabidopsis.
S. X. Lu, S. M. Knowles, C. Andronis, M. S. Ong, and E. M. Tobin (2009)
Plant Physiology 150, 834-843
   Abstract »    Full Text »    PDF »
Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis.
H. Liu, X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, and C. Lin (2008)
Science 322, 1535-1539
   Abstract »    Full Text »    PDF »
PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis.
J. Moon, L. Zhu, H. Shen, and E. Huq (2008)
PNAS 105, 9433-9438
   Abstract »    Full Text »    PDF »
Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus.
T. Y. P. Chia, A. Muller, C. Jung, and E. S. Mutasa-Gottgens (2008)
J. Exp. Bot. 59, 2735-2748
   Abstract »    Full Text »    PDF »
Mechanistic duality of transcription factor function in phytochrome signaling.
B. Al-Sady, E. A. Kikis, E. Monte, and P. H. Quail (2008)
PNAS 105, 2232-2237
   Abstract »    Full Text »    PDF »
The Arabidopsis Phytochrome-Interacting Factor PIF7, Together with PIF3 and PIF4, Regulates Responses to Prolonged Red Light by Modulating phyB Levels.
P. Leivar, E. Monte, B. Al-Sady, C. Carle, A. Storer, J. M. Alonso, J. R. Ecker, and P. H. Quail (2008)
PLANT CELL 20, 337-352
   Abstract »    Full Text »    PDF »
The 14-3-3 Proteins {micro} and {upsilon} Influence Transition to Flowering and Early Phytochrome Response.
J. D. Mayfield, K. M. Folta, A.-L. Paul, and R. J. Ferl (2007)
Plant Physiology 145, 1692-1702
   Abstract »    Full Text »    PDF »
Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins.
I. Roig-Villanova, J. Bou-Torrent, A. Galstyan, L. Carretero-Paulet, S. Portoles, M. Rodriguez-Concepcion, and J. F. Martinez-Garcia (2007)
EMBO J. 26, 4756-4767
   Abstract »    Full Text »    PDF »
Phytochrome Induces Rapid PIF5 Phosphorylation and Degradation in Response to Red-Light Activation.
Y. Shen, R. Khanna, C. M. Carle, and P. H. Quail (2007)
Plant Physiology 145, 1043-1051
   Abstract »    Full Text »    PDF »
Out of the dark: how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling.
E. Monte, B. Al-Sady, P. Leivar, and P. H. Quail (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Many hands make light work.
P. F. Devlin, J. M. Christie, and M. J. Terry (2007)
J. Exp. Bot. 58, 3071-3077
   Full Text »    PDF »
Glutathione S-Transferase Interacting with Far-Red Insensitive 219 Is Involved in Phytochrome A-Mediated Signaling in Arabidopsis.
I.-C. Chen, I-C. Huang, M.-J. Liu, Z.-G. Wang, S.-S. Chung, and H.-L. Hsieh (2007)
Plant Physiology 143, 1189-1202
   Abstract »    Full Text »    PDF »
CRYPTOCHROME2 in Vascular Bundles Regulates Flowering in Arabidopsis.
M. Endo, N. Mochizuki, T. Suzuki, and A. Nagatani (2007)
PLANT CELL 19, 84-93
   Abstract »    Full Text »    PDF »
Light signals and flowering.
B. Thomas (2006)
J. Exp. Bot. 57, 3387-3393
   Abstract »    Full Text »    PDF »
Gene profiling of the red light signalling pathways in roots.
M. L. Molas, J. Z. Kiss, and M. J. Correll (2006)
J. Exp. Bot. 57, 3217-3229
   Abstract »    Full Text »    PDF »
Functional Profiling Reveals That Only a Small Number of Phytochrome-Regulated Early-Response Genes in Arabidopsis Are Necessary for Optimal Deetiolation.
R. Khanna, Y. Shen, G. Toledo-Ortiz, E. A. Kikis, H. Johannesson, Y.-S. Hwang, and P. H. Quail (2006)
PLANT CELL 18, 2157-2171
   Abstract »    Full Text »    PDF »
FHY1 and FHL Act Together to Mediate Nuclear Accumulation of the Phytochrome A Photoreceptor.
A. Hiltbrunner, A. Tscheuschler, A. Viczian, T. Kunkel, S. Kircher, and E. Schafer (2006)
Plant Cell Physiol. 47, 1023-1034
   Abstract »    Full Text »    PDF »
Genome-Wide Analysis of Basic/Helix-Loop-Helix Transcription Factor Family in Rice and Arabidopsis.
X. Li, X. Duan, H. Jiang, Y. Sun, Y. Tang, Z. Yuan, J. Guo, W. Liang, L. Chen, J. Yin, et al. (2006)
Plant Physiology 141, 1167-1184
   Abstract »    Full Text »    PDF »
Identification of Primary Target Genes of Phytochrome Signaling. Early Transcriptional Control during Shade Avoidance Responses in Arabidopsis.
I. Roig-Villanova, J. Bou, C. Sorin, P. F. Devlin, and J. F. Martinez-Garcia (2006)
Plant Physiology 141, 85-96
   Abstract »    Full Text »    PDF »
Plant Circadian Rhythms.
C. R. McClung (2006)
PLANT CELL 18, 792-803
   Full Text »    PDF »
Arabidopsis CONSTANS-LIKE3 Is a Positive Regulator of Red Light Signaling and Root Growth.
S. Datta, G.H.C.M. Hettiarachchi, X.-W. Deng, and M. Holm (2006)
PLANT CELL 18, 70-84
   Abstract »    Full Text »    PDF »
Genetic and Molecular Analysis of Phytochromes from the Filamentous Fungus Neurospora crassa.
A. C. Froehlich, B. Noh, R. D. Vierstra, J. Loros, and J. C. Dunlap (2005)
Eukaryot. Cell 4, 2140-2152
   Abstract »    Full Text »    PDF »
Conservation and Divergence of Light-Regulated Genome Expression Patterns during Seedling Development in Rice and Arabidopsis.
Y. Jiao, L. Ma, E. Strickland, and X. W. Deng (2005)
PLANT CELL 17, 3239-3256
   Abstract »    Full Text »    PDF »
Functional Characterization of Phytochrome Interacting Factor 3 for the Arabidopsis thaliana Circadian Clockwork.
A. Viczian, S. Kircher, E. Fejes, A. J. Millar, E. Schafer, L. Kozma-Bognar, and F. Nagy (2005)
Plant Cell Physiol. 46, 1591-1602
   Abstract »    Full Text »    PDF »
AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana.
N. O. Steffens, C. Galuschka, M. Schindler, L. Bulow, and R. Hehl (2005)
Nucleic Acids Res. 33, W397-W402
   Abstract »    Full Text »    PDF »
A Basic Helix-Loop-Helix Transcription Factor in Arabidopsis, MYC2, Acts as a Repressor of Blue Light-Mediated Photomorphogenic Growth.
V. Yadav, C. Mallappa, S. N. Gangappa, S. Bhatia, and S. Chattopadhyay (2005)
PLANT CELL 17, 1953-1966
   Abstract »    Full Text »    PDF »
Arabidopsis HAF2 Gene Encoding TATA-binding Protein (TBP)-associated Factor TAF1, Is Required to Integrate Light Signals to Regulate Gene Expression and Growth.
C. Bertrand, M. Benhamed, Y.-F. Li, M. Ayadi, G. Lemonnier, J.-P. Renou, M. Delarue, and D.-X. Zhou (2005)
J. Biol. Chem. 280, 1465-1473
   Abstract »    Full Text »    PDF »
Biography of Peter H. Quail.
O. Yun (2004)
PNAS 101, 16088-16090
   Full Text »    PDF »
The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development.
E. Monte, J. M. Tepperman, B. Al-Sady, K. A. Kaczorowski, J. M. Alonso, J. R. Ecker, X. Li, Y. Zhang, and P. H. Quail (2004)
PNAS 101, 16091-16098
   Abstract »    Full Text »    PDF »
A Novel Molecular Recognition Motif Necessary for Targeting Photoactivated Phytochrome Signaling to Specific Basic Helix-Loop-Helix Transcription Factors.
R. Khanna, E. Huq, E. A. Kikis, B. Al-Sady, C. Lanzatella, and P. H. Quail (2004)
PLANT CELL 16, 3033-3044
   Abstract »    Full Text »    PDF »
The Arabidopsis thaliana Clock.
P. A. Salome and C. R. McClung (2004)
J Biol Rhythms 19, 425-435
   Abstract »    PDF »
Phytochrome Phosphorylation Modulates Light Signaling by Influencing the Protein-Protein Interaction.
J.-I. Kim, Y. Shen, Y.-J. Han, J.-E. Park, D. Kirchenbauer, M.-S. Soh, F. Nagy, E. Schafer, and P.-S. Song (2004)
PLANT CELL 16, 2629-2640
   Abstract »    Full Text »    PDF »
PHYTOCHROME-INTERACTING FACTOR 1 Is a Critical bHLH Regulator of Chlorophyll Biosynthesis.
E. Huq, B. Al-Sady, M. Hudson, C. Kim, K. Apel, and P. H. Quail (2004)
Science 305, 1937-1941
   Abstract »    Full Text »    PDF »
Degradation of Phytochrome Interacting Factor 3 in Phytochrome-Mediated Light Signaling.
E. Park, J. Kim, Y. Lee, J. Shin, E. Oh, W.-I. Chung, J. R. Liu, and G. Choi (2004)
Plant Cell Physiol. 45, 968-975
   Abstract »    Full Text »    PDF »
Circadian-Controlled Basic/Helix-Loop-Helix Factor, PIL6, Implicated in Light-Signal Transduction in Arabidopsis thaliana.
T. Fujimori, T. Yamashino, T. Kato, and T. Mizuno (2004)
Plant Cell Physiol. 45, 1078-1086
   Abstract »    Full Text »    PDF »
Functional Analysis of a 450-Amino Acid N-Terminal Fragment of Phytochrome B in Arabidopsis.
Y. Oka, T. Matsushita, N. Mochizuki, T. Suzuki, S. Tokutomi, and A. Nagatani (2004)
PLANT CELL 16, 2104-2116
   Abstract »    Full Text »    PDF »
Constitutive Photomorphogenesis 1 and Multiple Photoreceptors Control Degradation of Phytochrome Interacting Factor 3, a Transcription Factor Required for Light Signaling in Arabidopsis.
D. Bauer, A. Viczian, S. Kircher, T. Nobis, R. Nitschke, T. Kunkel, K. C.S. Panigrahi, E. Adam, E. Fejes, E. Schafer, et al. (2004)
PLANT CELL 16, 1433-1445
   Abstract »    Full Text »    PDF »
Multiple Pathways in the Decision to Flower: Enabling, Promoting, and Resetting.
P. K. Boss, R. M. Bastow, J. S. Mylne, and C. Dean (2004)
PLANT CELL 16, S18-S31
   Full Text »    PDF »
Input signals to the plant circadian clock.
A. J. Millar (2004)
J. Exp. Bot. 55, 277-283
   Abstract »    Full Text »    PDF »
Light signals, phytochromes and cross-talk with other environmental cues.
K. A. Franklin and G. C. Whitelam (2004)
J. Exp. Bot. 55, 271-276
   Abstract »    Full Text »    PDF »
The Red Side of Photomorphogenesis.
B. M. Parks (2003)
Plant Physiology 133, 1437-1444
   Full Text »
Identification of Promoter Motifs Involved in the Network of Phytochrome A-Regulated Gene Expression by Combined Analysis of Genomic Sequence and Microarray Data.
M. E. Hudson and P. H. Quail (2003)
Plant Physiology 133, 1605-1616
   Abstract »    Full Text »
A Growth Regulatory Loop That Provides Homeostasis to Phytochrome A Signaling.
P. Lariguet, H. E. Boccalandro, J. M. Alonso, J. R. Ecker, J. Chory, J. J. Casal, and C. Fankhauser (2003)
PLANT CELL 15, 2966-2978
   Abstract »    Full Text »    PDF »
HY5, Circadian Clock-Associated 1, and a cis-Element, DET1 Dark Response Element, Mediate DET1 Regulation of Chlorophyll a/b-Binding Protein 2 Expression.
B. B. Maxwell, C. R. Andersson, D. S. Poole, S. A. Kay, and J. Chory (2003)
Plant Physiology 133, 1565-1577
   Abstract »    Full Text »
EARLY FLOWERING 4 Functions in Phytochrome B-Regulated Seedling De-Etiolation.
R. Khanna, E. A. Kikis, and P. H. Quail (2003)
Plant Physiology 133, 1530-1538
   Abstract »    Full Text »
A Genomic Analysis of the Shade Avoidance Response in Arabidopsis.
P. F. Devlin, M. J. Yanovsky, and S. A. Kay (2003)
Plant Physiology 133, 1617-1629
   Abstract »    Full Text »
Arabidopsis PSEUDO-RESPONSE REGULATOR7 Is a Signaling Intermediate in Phytochrome-Regulated Seedling Deetiolation and Phasing of the Circadian Clock.
K. A. Kaczorowski and P. H. Quail (2003)
PLANT CELL 15, 2654-2665
   Abstract »    Full Text »    PDF »
DFL2, a New Member of the Arabidopsis GH3 Gene Family, is Involved in Red Light-Specific Hypocotyl Elongation.
T. Takase, M. Nakazawa, A. Ishikawa, K. Manabe, and M. Matsui (2003)
Plant Cell Physiol. 44, 1071-1080
   Abstract »    Full Text »    PDF »
Functional Characterization of Phytochrome Interacting Factor 3 in Phytochrome-Mediated Light Signal Transduction.
J. Kim, H. Yi, G. Choi, B. Shin, P.-S. Song, and G. Choi (2003)
PLANT CELL 15, 2399-2407
   Abstract »    Full Text »    PDF »
The Novel MYB Protein EARLY-PHYTOCHROME-RESPONSIVE1 Is a Component of a Slave Circadian Oscillator in Arabidopsis.
N. Kuno, S. G. Moller, T. Shinomura, X. Xu, N.-H. Chua, and M. Furuya (2003)
PLANT CELL 15, 2476-2488
   Abstract »    Full Text »    PDF »
Light-mediated regulation defines a minimal promoter region of TOP2.
G. H. C. M. Hettiarachchi, V. Yadav, M. K. Reddy, S. Chattopadhyay, and S. K. Sopory (2003)
Nucleic Acids Res. 31, 5256-5265
   Abstract »    Full Text »    PDF »
The Arabidopsis Basic/Helix-Loop-Helix Transcription Factor Family.
G. Toledo-Ortiz, E. Huq, and P. H. Quail (2003)
PLANT CELL 15, 1749-1770
   Abstract »    Full Text »    PDF »
The Arabidopsis Cupin Domain Protein AtPirin1 Interacts with the G Protein {alpha}-Subunit GPA1 and Regulates Seed Germination and Early Seedling Development.
Y. R. Lapik and L. S. Kaufman (2003)
PLANT CELL 15, 1578-1590
   Abstract »    Full Text »    PDF »
A Link between Circadian-Controlled bHLH Factors and the APRR1/TOC1 Quintet in Arabidopsis thaliana.
T. Yamashino, A. Matsushika, T. Fujimori, S. Sato, T. Kato, S. Tabata, and T. Mizuno (2003)
Plant Cell Physiol. 44, 619-629
   Abstract »    Full Text »    PDF »
A Suite of Photoreceptors Entrains the Plant Circadian Clock.
A. J. Millar (2003)
J Biol Rhythms 18, 217-226
   Abstract »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882