Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 288 (5468): 1013-1019

Copyright © 2000 by the American Association for the Advancement of Science

Interacting Molecular Loops in the Mammalian Circadian Clock

Lauren P. Shearman, 1* Sathyanarayanan Sriram, 1* David R. Weaver, 1 Elizabeth S. Maywood, 2 In&etilde;s Chaves, 3 Binhai Zheng, 4 Kazuhiko Kume, 1 Cheng Chi Lee, 4 Gijsbertus T. J. van der , Horst, 3 Michael H. Hastings, 2 Steven M. Reppert 1dagger

We show that, in the mouse, the core mechanism for the master circadian clock consists of interacting positive and negative transcription and translation feedback loops. Analysis of Clock/Clock mutant mice, homozygous Period2Brdm1 mutants, and Cryptochrome-deficient mice reveals substantially altered Bmal1 rhythms, consistent with a dominant role of PERIOD2 in the positive regulation of the Bmal1 loop. In vitro analysis of CRYPTOCHROME inhibition of CLOCK: BMAL1-mediated transcription shows that the inhibition is through direct protein:protein interactions, independent of the PERIOD and TIMELESS proteins. PERIOD2 is a positive regulator of the Bmal1 loop, and CRYPTOCHROMES are the negative regulators of the Period and Cryptochrome cycles.

1 Laboratory of Developmental Chronobiology, MassGeneral Hospital for Children, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA.
2 Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
3 Medical Genetic Center, Department of Cell Biology and Genetics, Erasmus University, 3000 DR Rotterdam, Netherlands.
4 Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: reppert{at}helix.mgh.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A mechanism for robust circadian timekeeping via stoichiometric balance.
J. K. Kim and D. B. Forger (2014)
Mol Syst Biol 8, 630
   Abstract »    Full Text »    PDF »
MiR-29a/b/c regulate human circadian gene hPER1 expression by targeting its 3'UTR.
X. Zhao, X. Zhu, S. Cheng, Y. Xie, Z. Wang, Y. Liu, Z. Jiang, J. Xiao, H. Guo, and Y. Wang (2014)
Acta Biochim Biophys Sin 46, 313-317
   Abstract »    Full Text »    PDF »
Gene Model 129 (Gm129) Encodes a Novel Transcriptional Repressor That Modulates Circadian Gene Expression.
Y. Annayev, S. Adar, Y.-Y. Chiou, J. D. Lieb, A. Sancar, and R. Ye (2014)
J. Biol. Chem. 289, 5013-5024
   Abstract »    Full Text »    PDF »
Development and entrainment of the colonic circadian clock during ontogenesis.
L. Polidarova, L. Olejnikova, L. Pauslyova, M. Sladek, M. Sotak, J. Pacha, and A. Sumova (2014)
Am J Physiol Gastrointest Liver Physiol 306, G346-G356
   Abstract »    Full Text »    PDF »
Circadian Rhythms in Cell Maturation.
B. C. Du Pre, T. A. B. Van Veen, M. E. Young, M. A. Vos, P. A. Doevendans, and L. W. Van Laake (2014)
Physiology 29, 72-83
   Abstract »    Full Text »    PDF »
Time-Place Learning and Memory Persist in Mice Lacking Functional Per1 and Per2 Clock Genes.
C. Mulder, E. A. Van Der Zee, R. A. Hut, and M. P. Gerkema (2013)
J Biol Rhythms 28, 367-379
   Abstract »    Full Text »    PDF »
Blue Light-Dependent Interaction between Cryptochrome2 and CIB1 Regulates Transcription and Leaf Senescence in Soybean.
Y. Meng, H. Li, Q. Wang, B. Liu, and C. Lin (2013)
PLANT CELL 25, 4405-4420
   Abstract »    Full Text »    PDF »
High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice.
J. L. Barclay, A. Shostak, A. Leliavski, A. H. Tsang, O. Johren, H. Muller-Fielitz, D. Landgraf, N. Naujokat, G. T. J. van der Horst, and H. Oster (2013)
Am J Physiol Endocrinol Metab 304, E1053-E1063
   Abstract »    Full Text »    PDF »
Presentation of the 2012 Paleontological Society Medal to Bill Schopf.
D. Bottjer (2013)
Journal of Paleontology 87, 526-529
   Full Text »    PDF »
Aryl Hydrocarbon Receptor Activation Attenuates Per1 Gene Induction and Influences Circadian Clock Resetting.
C.-X. Xu, C. Wang, S. L. Krager, K. M. Bottum, and S. A. Tischkau (2013)
Toxicol. Sci. 132, 368-378
   Abstract »    Full Text »    PDF »
Interactions between the circadian clock and metabolism: there are good times and bad times.
M. Shi and X. Zheng (2013)
Acta Biochim Biophys Sin 45, 61-69
   Abstract »    Full Text »    PDF »
A non-canonical E-box within the MyoD core enhancer is necessary for circadian expression in skeletal muscle.
X. Zhang, S. P. Patel, J. J. McCarthy, A. G. Rabchevsky, D. J. Goldhamer, and K. A. Esser (2012)
Nucleic Acids Res. 40, 3419-3430
   Abstract »    Full Text »    PDF »
A Baculovirus Photolyase with DNA Repair Activity and Circadian Clock Regulatory Function.
M. A. Biernat, A. P. M. Eker, M. M. van Oers, J. M. Vlak, G. T. J. van der Horst, and I. Chaves (2012)
J Biol Rhythms 27, 3-11
   Abstract »    Full Text »    PDF »
Genetic Interaction of Per1 and Dec1/2 in the Regulation of Circadian Locomotor Activity.
B. Bode, A. Shahmoradi, M. J. Rossner, and H. Oster (2011)
J Biol Rhythms 26, 530-540
   Abstract »    PDF »
Biochemical Analysis of the Canonical Model for the Mammalian Circadian Clock.
R. Ye, C. P. Selby, N. Ozturk, Y. Annayev, and A. Sancar (2011)
J. Biol. Chem. 286, 25891-25902
   Abstract »    Full Text »    PDF »
Development, Maturation, and Necessity of Transcription Factors in the Mouse Suprachiasmatic Nucleus.
C. VanDunk, L. A. Hunter, and P. A. Gray (2011)
J. Neurosci. 31, 6457-6467
   Abstract »    Full Text »    PDF »
Significant dissociation of expression patterns of the basic helix-loop-helix transcription factors Dec1 and Dec2 in rat kidney.
T. Wu, Y. Ni, F. ZhuGe, L. Sun, B. Xu, H. Kato, and Z. Fu (2011)
J. Exp. Biol. 214, 1257-1263
   Abstract »    Full Text »    PDF »
CREB Influences Timing and Entrainment of the SCN Circadian Clock.
B. Lee, Aiqing Li, K. F. Hansen, Ruifeng Cao, Jae Hwa Yoon, and K. Obrietan (2010)
J Biol Rhythms 25, 410-420
   Abstract »    PDF »
Identification of functional clock-controlled elements involved in differential timing of Per1 and Per2 transcription.
D. Yamajuku, Y. Shibata, M. Kitazawa, T. Katakura, H. Urata, T. Kojima, O. Nakata, and S. Hashimoto (2010)
Nucleic Acids Res. 38, 7964-7973
   Abstract »    Full Text »    PDF »
hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb {alpha} via IRES-mediated translation.
D.-Y. Kim, K.-C. Woo, K.-H. Lee, T.-D. Kim, and K.-T. Kim (2010)
Nucleic Acids Res. 38, 7068-7078
   Abstract »    Full Text »    PDF »
Exposure of Pregnant Rats to Restricted Feeding Schedule Synchronizes the SCN Clocks of Their Fetuses under Constant Light but Not under a Light-Dark Regime.
M. Novakova, M. Sladek, and A. Sumova (2010)
J Biol Rhythms 25, 350-360
   Abstract »    PDF »
Physiology of Circadian Entrainment.
D. A. Golombek and R. E. Rosenstein (2010)
Physiol Rev 90, 1063-1102
   Abstract »    Full Text »    PDF »
Flexible phase adjustment of circadian albumin D site-binding protein (Dbp) gene expression by CRYPTOCHROME1.
M. Stratmann, F. Stadler, F. Tamanini, G. T. J. van der Horst, and J. A. Ripperger (2010)
Genes & Dev. 24, 1317-1328
   Abstract »    Full Text »    PDF »
Interaction of MAGED1 with nuclear receptors affects circadian clock function.
X. Wang, J. Tang, L. Xing, G. Shi, H. Ruan, X. Gu, Z. Liu, X. Wu, X. Gao, and Y. Xu (2010)
EMBO J. 29, 1389-1400
   Abstract »    Full Text »    PDF »
Cryptochromes--a potential magnetoreceptor: what do we know and what do we want to know?.
M. Liedvogel and H. Mouritsen (2010)
J R Soc Interface 7, S147-S162
   Abstract »    Full Text »    PDF »
DYRK1A and Glycogen Synthase Kinase 3{beta}, a Dual-Kinase Mechanism Directing Proteasomal Degradation of CRY2 for Circadian Timekeeping.
N. Kurabayashi, T. Hirota, M. Sakai, K. Sanada, and Y. Fukada (2010)
Mol. Cell. Biol. 30, 1757-1768
   Abstract »    Full Text »    PDF »
Different mechanisms of adjustment to a change of the photoperiod in the suprachiasmatic and liver circadian clocks.
S. Sosniyenko, D. Parkanova, H. Illnerova, M. Sladek, and A. Sumova (2010)
Am J Physiol Regulatory Integrative Comp Physiol 298, R959-R971
   Abstract »    Full Text »    PDF »
Role of mutation of the circadian clock gene Per2 in cardiovascular circadian rhythms.
A. Vukolic, V. Antic, B. N. Van Vliet, Z. Yang, U. Albrecht, and J.-P. Montani (2010)
Am J Physiol Regulatory Integrative Comp Physiol 298, R627-R634
   Abstract »    Full Text »    PDF »
Regulation of circadian gene expression in the kidney by light and food cues in rats.
T. Wu, Y. Ni, Y. Dong, J. Xu, X. Song, H. Kato, and Z. Fu (2010)
Am J Physiol Regulatory Integrative Comp Physiol 298, R635-R641
   Abstract »    Full Text »    PDF »
Attenuation of myocardial injury in mice with functional deletion of the circadian rhythm gene mPer2.
J. A. I. Virag, J. L. Dries, P. R. Easton, A. M. Friesland, J. H. DeAntonio, V. Chintalgattu, E. Cozzi, B. D. Lehmann, J. M. Ding, and R. M. Lust (2010)
Am J Physiol Heart Circ Physiol 298, H1088-H1095
   Abstract »    Full Text »    PDF »
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors.
I. Schmutz, J. A. Ripperger, S. Baeriswyl-Aebischer, and U. Albrecht (2010)
Genes & Dev. 24, 345-357
   Abstract »    Full Text »    PDF »
Circadian Expression of Clock Genes in Two Mosquito Disease Vectors: cry2 Is Different.
C. Gentile, G. B. S. Rivas, A. C. A. Meireles-Filho, J. B. P. Lima, and A. A. Peixoto (2009)
J Biol Rhythms 24, 444-451
   Abstract »    PDF »
Circadian Disruption, Per3, and Human Cytokine Secretion.
J. Guess, J. B. Burch, K. Ogoussan, C. A. Armstead, Hongmei Zhang, S. Wagner, J. R. Hebert, P. Wood, S. D. Youngstedt, L. J. Hofseth, et al. (2009)
Integr Cancer Ther 8, 329-336
   Abstract »    PDF »
How nuclear receptors tell time.
M. Teboul, A. Grechez-Cassiau, F. Guillaumond, and F. Delaunay (2009)
J Appl Physiol 107, 1965-1971
   Abstract »    Full Text »    PDF »
ID2 (Inhibitor of DNA Binding 2) Is a Rhythmically Expressed Transcriptional Repressor Required for Circadian Clock Output in Mouse Liver.
T. Y. Hou, S. M. Ward, J. M. Murad, N. P. Watson, M. A. Israel, and G. E. Duffield (2009)
J. Biol. Chem. 284, 31735-31745
   Abstract »    Full Text »    PDF »
Proximate mechanisms driving circadian control of neuroendocrine function: Lessons from the young and old.
W. P. Williams III, E. M. Gibson, C. Wang, S. Tjho, N. Khattar, G. E. Bentley, K. Tsutsui, and L. J. Kriegsfeld (2009)
Integr. Comp. Biol. 49, 519-537
   Abstract »    Full Text »    PDF »
Generation of a Novel Allelic Series of Cryptochrome Mutants via Mutagenesis Reveals Residues Involved in Protein-Protein Interaction and CRY2-Specific Repression.
E. V. McCarthy, J. E. Baggs, J. M. Geskes, J. B. Hogenesch, and C. B. Green (2009)
Mol. Cell. Biol. 29, 5465-5476
   Abstract »    Full Text »    PDF »
Effects of acute hypoxia and hyperthermia on the permeability of the blood-brain barrier in adult rats.
S. S. Natah, S. Srinivasan, Q. Pittman, Z. Zhao, and J. F. Dunn (2009)
J Appl Physiol 107, 1348-1356
   Abstract »    Full Text »    PDF »
A Role for the Clock Gene Per1 in Prostate Cancer.
Q. Cao, S. Gery, A. Dashti, D. Yin, Y. Zhou, J. Gu, and H. P. Koeffler (2009)
Cancer Res. 69, 7619-7625
   Abstract »    Full Text »    PDF »
Rhythmic Expression of MicroRNA-26a Regulates the L-type Voltage-gated Calcium Channel {alpha}1C Subunit in Chicken Cone Photoreceptors.
L. Shi, M. L. Ko, and G. Y.-P. Ko (2009)
J. Biol. Chem. 284, 25791-25803
   Abstract »    Full Text »    PDF »
Negative feedback maintenance of heme homeostasis by its receptor, Rev-erb{alpha}.
N. Wu, L. Yin, E. A. Hanniman, S. Joshi, and M. A. Lazar (2009)
Genes & Dev. 23, 2201-2209
   Abstract »    Full Text »    PDF »
Preferential Inhibition of BMAL2-CLOCK Activity by PER2 Reemphasizes Its Negative Role and a Positive Role of BMAL2 in the Circadian Transcription.
M. Sasaki, H. Yoshitane, N.-H. Du, T. Okano, and Y. Fukada (2009)
J. Biol. Chem. 284, 25149-25159
   Abstract »    Full Text »    PDF »
A model of the cell-autonomous mammalian circadian clock.
H. P. Mirsky, A. C. Liu, D. K. Welsh, S. A. Kay, and F. J. Doyle III (2009)
PNAS 106, 11107-11112
   Abstract »    Full Text »    PDF »
Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock.
K.-F. Storch and C. J. Weitz (2009)
PNAS 106, 6808-6813
   Abstract »    Full Text »    PDF »
Clock Gene Mouse Period2 Overexpression Inhibits Growth of Human Pancreatic Cancer Cells and Has Synergistic Effect with Cisplatin.
A. ODA, Y. KATAYOSE, S. YABUUCHI, K. YAMAMOTO, M. MIZUMA, S. SHIRASOU, T. ONOGAWA, H. OHTSUKA, H. YOSHIDA, H. HAYASHI, et al. (2009)
Anticancer Res 29, 1201-1209
   Abstract »    Full Text »    PDF »
A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock.
B. Maier, S. Wendt, J. T. Vanselow, T. Wallach, S. Reischl, S. Oehmke, A. Schlosser, and A. Kramer (2009)
Genes & Dev. 23, 708-718
   Abstract »    Full Text »    PDF »
Molecular characterization of Mybbp1a as a co-repressor on the Period2 promoter.
Y. Hara, Y. Onishi, K. Oishi, K. Miyazaki, A. Fukamizu, and N. Ishida (2009)
Nucleic Acids Res. 37, 1115-1126
   Abstract »    Full Text »    PDF »
Circadian Rhythm of Osteocalcin in the Maxillomandibular Complex.
Y. Gafni, A. A. Ptitsyn, Y. Zilberman, G. Pelled, J. M. Gimble, and D. Gazit (2009)
Journal of Dental Research 88, 45-50
   Abstract »    PDF »
Mouse period 2 mRNA circadian oscillation is modulated by PTB-mediated rhythmic mRNA degradation.
K.-C. Woo, T.-D. Kim, K.-H. Lee, D.-Y. Kim, W. Kim, K.-Y. Lee, and K.-T. Kim (2009)
Nucleic Acids Res. 37, 26-37
   Abstract »    Full Text »    PDF »
Closing the circadian negative feedback loop: FRQ-dependent clearance of WC-1 from the nucleus.
C. I. Hong, P. Ruoff, J. J. Loros, and J. C. Dunlap (2008)
Genes & Dev. 22, 3196-3204
   Abstract »    Full Text »    PDF »
Maternal Control of the Fetal and Neonatal Rat Suprachiasmatic Nucleus.
R. El-Hennamy, K. Mateju, Z. Bendova, S. Sosniyenko, and A. Sumova (2008)
J Biol Rhythms 23, 435-444
   Abstract »    PDF »
Diurnal variations in myocardial metabolism.
M. S. Bray and M. E. Young (2008)
Cardiovasc Res 79, 228-237
   Abstract »    Full Text »    PDF »
Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen.
S. Sathyanarayanan, X. Zheng, S. Kumar, C.-H. Chen, D. Chen, B. Hay, and A. Sehgal (2008)
Genes & Dev. 22, 1522-1533
   Abstract »    Full Text »    PDF »
Rhythmic SAF-A Binding Underlies Circadian Transcription of the Bmal1 Gene.
Y. Onishi, S. Hanai, T. Ohno, Y. Hara, and N. Ishida (2008)
Mol. Cell. Biol. 28, 3477-3488
   Abstract »    Full Text »    PDF »
Genetic Components of the Circadian Clock Regulate Thrombogenesis In Vivo.
E. J. Westgate, Y. Cheng, D. F. Reilly, T. S. Price, J. A. Walisser, C. A. Bradfield, and G. A. FitzGerald (2008)
Circulation 117, 2087-2095
   Abstract »    Full Text »    PDF »
Disruption of Clock Gene Expression Alters Responses of the Aryl Hydrocarbon Receptor Signaling Pathway in the Mouse Mammary Gland.
X. Qu, R. P. Metz, W. W. Porter, V. M. Cassone, and D. J. Earnest (2007)
Mol. Pharmacol. 72, 1349-1358
   Abstract »    Full Text »    PDF »
Knockdown of clock genes in the suprachiasmatic nucleus blocks prolactin surges and alters FRA expression in the locus coeruleus of female rats.
M. O. Poletini, D. T. McKee, J. E. Kennett, J. Doster, and M. E. Freeman (2007)
Am J Physiol Endocrinol Metab 293, E1325-E1334
   Abstract »    Full Text »    PDF »
Circadian Rhythm Gene Regulation in the Housefly Musca domestica.
V. Codd, D. Dolezel, J. Stehlik, A. Piccin, K. J. Garner, S. N. Racey, K. R. Straatman, E. J. Louis, R. Costa, I. Sauman, et al. (2007)
Genetics 177, 1539-1551
   Abstract »    Full Text »    PDF »
Circadian control by the reduction/oxidation pathway: Catalase represses light-dependent clock gene expression in the zebrafish.
J. Hirayama, S. Cho, and P. Sassone-Corsi (2007)
PNAS 104, 15747-15752
   Abstract »    Full Text »    PDF »
{beta}-TrCP1-Mediated Degradation of PERIOD2 Is Essential for Circadian Dynamics.
S. Reischl, K. Vanselow, P. O. Westermark, N. Thierfelder, B. Maier, H. Herzel, and A. Kramer (2007)
J Biol Rhythms 22, 375-386
   Abstract »    PDF »
Up-regulation of Per1 expression by estradiol and progesterone in the rat uterus.
P.-J. He, M. Hirata, N. Yamauchi, and M.-a. Hattori (2007)
J. Endocrinol. 194, 511-519
   Abstract »    Full Text »    PDF »
Tumor Suppression and Circadian Function.
M. Chen-Goodspeed and Cheng Chi Lee (2007)
J Biol Rhythms 22, 291-298
   Abstract »    PDF »
Multifactorial Regulation of Daily Rhythms in Expression of the Metabolically Responsive Gene Spot14 in the Mouse Liver.
A. Ishihara, E. Matsumoto, K. Horikawa, T. Kudo, E. Sakao, A. Nemoto, K. Iwase, H. Sugiyama, Y. Tamura, S. Shibata, et al. (2007)
J Biol Rhythms 22, 324-334
   Abstract »    PDF »
The disruption of circadian clockwork in differentiating cells from rat reproductive tissues as identified by in vitro real-time monitoring system.
P.-J. He, M. Hirata, N. Yamauchi, S. Hashimoto, and M.-a. Hattori (2007)
J. Endocrinol. 193, 413-420
   Abstract »    Full Text »    PDF »
Dynamics of the Adjustment of Clock Gene Expression in the Rat Suprachiasmatic Nucleus to an Asymmetrical Change from a Long to a Short Photoperiod.
A. Sumova, Z. Kovacikova, and H. Illnerova (2007)
J Biol Rhythms 22, 259-267
   Abstract »    PDF »
SCFFbxl3 Controls the Oscillation of the Circadian Clock by Directing the Degradation of Cryptochrome Proteins.
L. Busino, F. Bassermann, A. Maiolica, C. Lee, P. M. Nolan, S. I. H. Godinho, G. F. Draetta, and M. Pagano (2007)
Science 316, 900-904
   Abstract »    Full Text »    PDF »
TIME FOR COFFEE Encodes a Nuclear Regulator in the Arabidopsis thaliana Circadian Clock.
Z. Ding, A. J. Millar, A. M. Davis, and S. J. Davis (2007)
PLANT CELL 19, 1522-1536
   Abstract »    Full Text »    PDF »
Phase Sensitivity Analysis of Circadian Rhythm Entrainment.
R. Gunawan and F. J. Doyle III (2007)
J Biol Rhythms 22, 180-194
   Abstract »    PDF »
Inter-subject differences in constitutive expression levels of the clock gene in man.
A. J Balmforth, P. J Grant, E. M Scott, S. B Wheatcroft, M. T Kearney, B. Staels, and N. Marx (2007)
Diabetes and Vascular Disease Research 4, 39-43
   Abstract »    PDF »
Circadian variation of blood pressure and the vascular response to asynchronous stress.
A. M. Curtis, Y. Cheng, S. Kapoor, D. Reilly, T. S. Price, and G. A. FitzGerald (2007)
PNAS 104, 3450-3455
   Abstract »    Full Text »    PDF »
The Multiple Facets of Per2.
U. Albrecht, A. Bordon, I. Schmutz, and J. Ripperger (2007)
Cold Spring Harb Symp Quant Biol 72, 95-104
   Abstract »    PDF »
Structure Function Analysis of Mammalian Cryptochromes.
F. Tamanini, I. Chaves, M. I. Bajek, and G. T. J. van der Horst (2007)
Cold Spring Harb Symp Quant Biol 72, 133-139
   Abstract »    PDF »
Posttranslational Control of the Neurospora Circadian Clock.
J. Cha, G. Huang, J. Guo, and Y. Liu (2007)
Cold Spring Harb Symp Quant Biol 72, 185-191
   Abstract »    PDF »
Complexity of the Neurospora crassa Circadian Clock System: Multiple Loops and Oscillators.
R. M. de Paula, M. W. Vitalini, R. H. Gomer, and D. Bell-Pedersen (2007)
Cold Spring Harb Symp Quant Biol 72, 345-351
   Abstract »    PDF »
Systems Biology of Mammalian Circadian Clocks.
H. R. Ueda (2007)
Cold Spring Harb Symp Quant Biol 72, 365-380
   Abstract »    PDF »
Nuclear Receptors, Metabolism, and the Circadian Clock.
X. Yang, K. A. Lamia, and R. M. Evans (2007)
Cold Spring Harb Symp Quant Biol 72, 387-394
   Abstract »    PDF »
The Role of Circadian Regulation in Cancer.
S. Gery and H. P. Koeffler (2007)
Cold Spring Harb Symp Quant Biol 72, 459-464
   Abstract »    PDF »
Molecular components of the mammalian circadian clock.
C. H. Ko and J. S. Takahashi (2006)
Hum. Mol. Genet. 15, R271-R277
   Abstract »    Full Text »    PDF »
BMAL1 Shuttling Controls Transactivation and Degradation of the CLOCK/BMAL1 Heterodimer.
I. Kwon, J. Lee, S. H. Chang, N. C. Jung, B. J. Lee, G. H. Son, K. Kim, and K. H. Lee (2006)
Mol. Cell. Biol. 26, 7318-7330
   Abstract »    Full Text »    PDF »
Functional central rhythmicity and light entrainment, but not liver and muscle rhythmicity, are Clock independent.
D. J. Kennaway, J. A. Owens, A. Voultsios, and T. J. Varcoe (2006)
Am J Physiol Regulatory Integrative Comp Physiol 291, R1172-R1180
   Abstract »    Full Text »    PDF »
Circadian Clock Gene Expression in the Ovary: Effects of Luteinizing Hormone.
B. N. Karman and S. A. Tischkau (2006)
Biol Reprod 75, 624-632
   Abstract »    Full Text »    PDF »
Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS).
K. Vanselow, J. T. Vanselow, P. O. Westermark, S. Reischl, B. Maier, T. Korte, A. Herrmann, H. Herzel, A. Schlosser, and A. Kramer (2006)
Genes & Dev. 20, 2660-2672
   Abstract »    Full Text »    PDF »
CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop.
Q. He, J. Cha, Q. He, H.-C. Lee, Y. Yang, and Y. Liu (2006)
Genes & Dev. 20, 2552-2565
   Abstract »    Full Text »    PDF »
Circadian Rhythms in Neurospora crassa and Other Filamentous Fungi.
Y. Liu and D. Bell-Pedersen (2006)
Eukaryot. Cell 5, 1184-1193
   Full Text »    PDF »
Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5.
C. L. Partch, K. F. Shields, C. L. Thompson, C. P. Selby, and A. Sancar (2006)
PNAS 103, 10467-10472
   Abstract »    Full Text »    PDF »
Development of a Two-Dimension Manifold to Represent High Dimension Mathematical Models of the Intracellular Mammalian Circadian Clock.
P. Indic, K. Gurdziel, R. E. Kronauer, and E. B. Klerman (2006)
J Biol Rhythms 21, 222-232
   Abstract »    PDF »
Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora..
M. Brunner and T. Schafmeier (2006)
Genes & Dev. 20, 1061-1074
   Abstract »    Full Text »    PDF »
Anatomical and functional characterization of clock gene expression in neuroendocrine dopaminergic neurons.
M. T. Sellix, M. Egli, M. O. Poletini, D. T. McKee, M. D. Bosworth, C. A. Fitch, and M. E. Freeman (2006)
Am J Physiol Regulatory Integrative Comp Physiol 290, R1309-R1323
   Abstract »    Full Text »    PDF »
The expression of the clock protein PER2 in the limbic forebrain is modulated by the estrous cycle.
J. S. Perrin, L. A. Segall, V. L. Harbour, B. Woodside, and S. Amir (2006)
PNAS 103, 5591-5596
   Abstract »    Full Text »    PDF »
Expression of Clock and Clock-Driven Genes in the Rat Suprachiasmatic Nucleus during Late Fetal and Early Postnatal Development.
Z. Kovacikova, M. Sladek, Z. Bendova, H. Illnerova, and A. Sumova (2006)
J Biol Rhythms 21, 140-148
   Abstract »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882