Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 288 (5473): 2013-2018

Copyright © 2000 by the American Association for the Advancement of Science

Gene Targeting by Homologous Recombination in Drosophila

Yikang S. Rong, Kent G. Golic *

Drosophila offers many advantages as an experimental organism. However, in comparison with yeast and mouse, two other widely used eukaryotic model systems, Drosophila suffers from an inability to perform homologous recombination between introduced DNA and the corresponding chromosomal loci. The ability to specifically modify the genomes of yeast and mouse provides a quick and easy way to generate or rescue mutations in genes for which a DNA clone or sequence is available. A method is described that enables analogous manipulations of the Drosophila genome. This technique may also be applicable to other organisms for which gene-targeting procedures do not yet exist.

Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
*   To whom correspondence should be addressed. E-mail: golic{at}bioscience.utah.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells.
R. Bottcher, M. Hollmann, K. Merk, V. Nitschko, C. Obermaier, J. Philippou-Massier, I. Wieland, U. Gaul, and K. Forstemann (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
CRISPR/Cas9 for genome editing: progress, implications and challenges.
F. Zhang, Y. Wen, and X. Guo (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
Generation of a Useful roX1 Allele by Targeted Gene Conversion.
M. S. Apte, V. A. Moran, D. U. Menon, B. P. Rattner, K. H. Barry, R. M. Zunder, R. Kelley, and V. H. Meller (2014)
g3 4, 155-162
   Abstract »    Full Text »    PDF »
Accelerated homologous recombination and subsequent genome modification in Drosophila.
L. A. Baena-Lopez, C. Alexandre, A. Mitchell, L. Pasakarnis, and J.-P. Vincent (2013)
Development 140, 4818-4825
   Abstract »    Full Text »    PDF »
Break-Induced DNA Replication.
R. P. Anand, S. T. Lovett, and J. E. Haber (2013)
Cold Spring Harb Perspect Biol 5, a010397
   Abstract »    Full Text »    PDF »
Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.
X. Ren, J. Sun, B. E. Housden, Y. Hu, C. Roesel, S. Lin, L.-P. Liu, Z. Yang, D. Mao, L. Sun, et al. (2013)
PNAS 110, 19012-19017
   Abstract »    Full Text »    PDF »
New Approaches for Studying Synaptic Development, Function, and Plasticity Using Drosophila as a Model System.
C. A. Frank, X. Wang, C. A. Collins, A. A. Rodal, Q. Yuan, P. Verstreken, and D. K. Dickman (2013)
J. Neurosci. 33, 17560-17568
   Abstract »    Full Text »    PDF »
Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination.
C. Chen, L. A. Fenk, and M. de Bono (2013)
Nucleic Acids Res. 41, e193
   Abstract »    Full Text »    PDF »
Highly Improved Gene Targeting by Germline-Specific Cas9 Expression in Drosophila.
S. Kondo and R. Ueda (2013)
Genetics 195, 715-721
   Abstract »    Full Text »    PDF »
Brinker possesses multiple mechanisms for repression because its primary co-repressor, Groucho, may be unavailable in some cell types.
P. Upadhyai and G. Campbell (2013)
Development 140, 4256-4265
   Abstract »    Full Text »    PDF »
RNA-Guided Nucleases: A New Era for Engineering the Genomes of Model and Nonmodel Organisms.
K. G. Golic (2013)
Genetics 195, 303-308
   Full Text »    PDF »
Highly Efficient Genome Modifications Mediated by CRISPR/Cas9 in Drosophila.
Z. Yu, M. Ren, Z. Wang, B. Zhang, Y. S. Rong, R. Jiao, and G. Gao (2013)
Genetics 195, 289-291
   Abstract »    Full Text »    PDF »
Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease.
S. J. Gratz, A. M. Cummings, J. N. Nguyen, D. C. Hamm, L. K. Donohue, M. M. Harrison, J. Wildonger, and K. M. O'Connor-Giles (2013)
Genetics 194, 1029-1035
   Abstract »    Full Text »    PDF »
Evidence of a triosephosphate isomerase non-catalytic function crucial to behavior and longevity.
B. P. Roland, K. A. Stuchul, S. B. Larsen, C. G. Amrich, A. P. VanDemark, A. M. Celotto, and M. J. Palladino (2013)
J. Cell Sci. 126, 3151-3158
   Abstract »    Full Text »    PDF »
Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila.
B. V. Shravage, J. H. Hill, C. M. Powers, L. Wu, and E. H. Baehrecke (2013)
Development 140, 1321-1329
   Abstract »    Full Text »    PDF »
Mutations to the piRNA Pathway Component Aubergine Enhance Meiotic Drive of Segregation Distorter in Drosophila melanogaster.
S. L. Gell and R. A. Reenan (2013)
Genetics 193, 771-784
   Abstract »    Full Text »    PDF »
Targeted Gene Replacement in Drosophila Goes the Distance.
K. N. Crown and J. Sekelsky (2013)
Genetics 193, 377-381
   Full Text »    PDF »
Captured Segment Exchange: A Strategy for Custom Engineering Large Genomic Regions in Drosophila melanogaster.
J. R. Bateman, M. F. Palopoli, S. T. Dale, J. E. Stauffer, A. L. Shah, J. E. Johnson, C. W. Walsh, H. Flaten, and C. M. Parsons (2013)
Genetics 193, 421-430
   Abstract »    Full Text »    PDF »
Long-Range Targeted Manipulation of the Drosophila Genome by Site-Specific Integration and Recombinational Resolution.
N. Wesolowska and Y. S. Rong (2013)
Genetics 193, 411-419
   Abstract »    Full Text »    PDF »
Drosophila as a Model to Study Mitochondrial Dysfunction in Parkinson's Disease.
M. Guo (2012)
Cold Spring Harb Perspect Med 2, a009944
   Abstract »    Full Text »    PDF »
A Knock-In Model of Human Epilepsy in Drosophila Reveals a Novel Cellular Mechanism Associated with Heat-Induced Seizure.
L. Sun, J. Gilligan, C. Staber, R. J. Schutte, V. Nguyen, D. K. O'Dowd, and R. Reenan (2012)
J. Neurosci. 32, 14145-14155
   Abstract »    Full Text »    PDF »
Molecular Genetic Analysis of Sexual Rejection: Roles of Octopamine and Its Receptor OAMB in Drosophila Courtship Conditioning.
C. Zhou, H. Huang, S. M. Kim, H. Lin, X. Meng, K.-A. Han, A.-S. Chiang, J. W. Wang, R. Jiao, and Y. Rao (2012)
J. Neurosci. 32, 14281-14287
   Abstract »    Full Text »    PDF »
Type-I Prenyl Protease Function Is Required in the Male Germline of Drosophila melanogaster.
K. Adolphsen, A. Amell, N. Havko, S. Kevorkian, K. Mears, H. Neher, D. Schwarz, and S. R. Schulze (2012)
g3 2, 629-642
   Abstract »    Full Text »    PDF »
In planta gene targeting.
F. Fauser, N. Roth, M. Pacher, G. Ilg, R. Sanchez-Fernandez, C. Biesgen, and H. Puchta (2012)
PNAS 109, 7535-7540
   Abstract »    Full Text »    PDF »
A Novel Approach for Directing Transgene Expression in Drosophila: T2A-Gal4 In-Frame Fusion.
F. Diao and B. H. White (2012)
Genetics 190, 1139-1144
   Abstract »    Full Text »    PDF »
Drosophila, Genetic Screens, and Cardiac Function.
M. J. Wolf and H. A. Rockman (2011)
Circ. Res. 109, 794-806
   Abstract »    Full Text »    PDF »
The seven-pass transmembrane cadherin Flamingo controls dendritic self-avoidance via its binding to a LIM domain protein, Espinas, in Drosophila sensory neurons.
D. Matsubara, S.-y. Horiuchi, K. Shimono, T. Usui, and T. Uemura (2011)
Genes & Dev. 25, 1982-1996
   Abstract »    Full Text »    PDF »
mir-11 limits the proapoptotic function of its host gene, dE2f1.
M. Truscott, A. B. M. M. K. Islam, N. Lopez-Bigas, and M. V. Frolov (2011)
Genes & Dev. 25, 1820-1834
   Abstract »    Full Text »    PDF »
Insect Population Control by Homing Endonuclease-Based Gene Drive: An Evaluation in Drosophila melanogaster.
Y.-S. Chan, D. A. Naujoks, D. S. Huen, and S. Russell (2011)
Genetics 188, 33-44
   Abstract »    Full Text »    PDF »
Engineered Alterations in RNA Editing Modulate Complex Behavior in Drosophila: REGULATORY DIVERSITY OF ADENOSINE DEAMINASE ACTING ON RNA (ADAR) TARGETS.
J. E. C. Jepson, Y. A. Savva, C. Yokose, A. U. Sugden, A. Sahin, and R. A. Reenan (2011)
J. Biol. Chem. 286, 8325-8337
   Abstract »    Full Text »    PDF »
The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy.
S. Arnould, C. Delenda, S. Grizot, C. Desseaux, F. Paques, G. H. Silva, and J. Smith (2011)
Protein Eng. Des. Sel. 24, 27-31
   Abstract »    Full Text »    PDF »
Drosophila provides rapid modeling of renal development, function, and disease.
J. A. T. Dow and M. F. Romero (2010)
Am J Physiol Renal Physiol 299, F1237-F1244
   Abstract »    Full Text »    PDF »
Drosophila von Hippel-Lindau Tumor Suppressor Gene Function in Epithelial Tubule Morphogenesis.
A. Hsouna, G. Nallamothu, N. Kose, M. Guinea, V. Dammai, and T. Hsu (2010)
Mol. Cell. Biol. 30, 3779-3794
   Abstract »    Full Text »    PDF »
Molecular Genetic Analysis of Chd3 and Polytene Chromosome Region 76B-D in Drosophila melanogaster.
M. T. Cooper, A. W. Conant, and J. A. Kennison (2010)
Genetics 185, 811-822
   Abstract »    Full Text »    PDF »
Drosophila Histone Deacetylase 6 Protects Dopaminergic Neurons against {alpha}-Synuclein Toxicity by Promoting Inclusion Formation.
G. Du, X. Liu, X. Chen, M. Song, Y. Yan, R. Jiao, and C.-c. Wang (2010)
Mol. Biol. Cell 21, 2128-2137
   Abstract »    Full Text »    PDF »
Sialyltransferase Regulates Nervous System Function in Drosophila.
E. Repnikova, K. Koles, M. Nakamura, J. Pitts, H. Li, A. Ambavane, M. J. Zoran, and V. M. Panin (2010)
J. Neurosci. 30, 6466-6476
   Abstract »    Full Text »    PDF »
Drosophila VHL tumor-suppressor gene regulates epithelial morphogenesis by promoting microtubule and aPKC stability.
S. Duchi, L. Fagnocchi, V. Cavaliere, A. Hsouna, G. Gargiulo, and T. Hsu (2010)
Development 137, 1493-1503
   Abstract »    Full Text »    PDF »
The Functional Genomics of Inbreeding Depression: A New Approach to an Old Problem.
K. N. Paige (2010)
BioScience 60, 267-277
   Abstract »    Full Text »    PDF »
Recombinase-Mediated Cassette Exchange Provides a Versatile Platform for Gene Targeting: Knockout of miR-31b.
R. Weng, Y.-W. Chen, N. Bushati, A. Cliffe, and S. M. Cohen (2009)
Genetics 183, 399-402
   Abstract »    Full Text »    PDF »
Large-Scale Functional Annotation and Expanded Implementations of the P{wHy} Hybrid Transposon in the Drosophila melanogaster Genome.
K. V. Myrick, F. Huet, S. E. Mohr, I. Alvarez-Garcia, J. T. Lu, M. A. Smith, M. A. Crosby, and W. M. Gelbart (2009)
Genetics 182, 653-660
   Abstract »    Full Text »    PDF »
Genetic Analysis of Zinc-Finger Nuclease-Induced Gene Targeting in Drosophila.
A. Bozas, K. J. Beumer, J. K. Trautman, and D. Carroll (2009)
Genetics 182, 641-651
   Abstract »    Full Text »    PDF »
SIRT Combines Homologous Recombination, Site-Specific Integration, and Bacterial Recombineering for Targeted Mutagenesis in Drosophila.
G. Gao, N. Wesolowska, and Y. S. Rong (2009)
Cold Spring Harb Protoc 2009, pdb.prot5236
   Abstract »    Full Text »    PDF »
Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering.
J. Huang, W. Zhou, W. Dong, A. M. Watson, and Y. Hong (2009)
PNAS 106, 8284-8289
   Abstract »    Full Text »    PDF »
Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator.
M. Lince-Faria, S. Maffini, B. Orr, Y. Ding, Claudia Florindo, C. E. Sunkel, A. Tavares, J. Johansen, K. M. Johansen, and H. Maiato (2009)
J. Cell Biol. 184, 647-657
   Abstract »    Full Text »    PDF »
The 2009 Novitski Prize.
J. E. Haber (2009)
Genetics 181, 837-838
   Full Text »    PDF »
Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases.
K. J. Beumer, J. K. Trautman, A. Bozas, J.-L. Liu, J. Rutter, J. G. Gall, and D. Carroll (2008)
PNAS 105, 19821-19826
   Abstract »    Full Text »    PDF »
Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster.
M. Rosenzweig, K. Kang, and P. A. Garrity (2008)
PNAS 105, 14668-14673
   Abstract »    Full Text »    PDF »
A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila.
G. Gao, C. McMahon, J. Chen, and Y. S. Rong (2008)
PNAS 105, 13999-14004
   Abstract »    Full Text »    PDF »
Efficient Ends-Out Gene Targeting In Drosophila.
J. Huang, W. Zhou, A. M. Watson, Y.-N. Jan, and Y. Hong (2008)
Genetics 180, 703-707
   Abstract »    Full Text »    PDF »
The origin recognition complex is dispensable for endoreplication in Drosophila.
S. Y. Park and M. Asano (2008)
PNAS 105, 12343-12348
   Abstract »    Full Text »    PDF »
The YPWM motif links Antennapedia to the basal transcriptional machinery.
F. Prince, T. Katsuyama, Y. Oshima, S. Plaza, D. Resendez-Perez, M. Berry, S. Kurata, and W. J. Gehring (2008)
Development 135, 1669-1679
   Abstract »    Full Text »    PDF »
Targeted Gene Deletion and Phenotypic Analysis of the Drosophila melanogaster Seminal Fluid Protease Inhibitor Acp62F.
J. L. Mueller, J. R. Linklater, K. Ravi Ram, T. Chapman, and M. F. Wolfner (2008)
Genetics 178, 1605-1614
   Abstract »    Full Text »    PDF »
Transgenesis upgrades for Drosophila melanogaster.
K. J. T. Venken and H. J. Bellen (2007)
Development 134, 3571-3584
   Abstract »    Full Text »    PDF »
Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos.
N. Windbichler, P. A. Papathanos, F. Catteruccia, H. Ranson, A. Burt, and A. Crisanti (2007)
Nucleic Acids Res. 35, 5922-5933
   Abstract »    Full Text »    PDF »
A Genetic Screen For DNA Double-Strand Break Repair Mutations in Drosophila.
D. S. Wei and Y. S. Rong (2007)
Genetics 177, 63-77
   Abstract »    Full Text »    PDF »
Rhythm Defects Caused by Newly Engineered Null Mutations in Drosophila's cryptochrome Gene.
E. Dolezelova, D. Dolezel, and J. C. Hall (2007)
Genetics 177, 329-345
   Abstract »    Full Text »    PDF »
Synthetic Lethality of Drosophila in the Absence of the MUS81 Endonuclease and the DmBlm Helicase Is Associated With Elevated Apoptosis.
K. Trowbridge, K. McKim, S. J. Brill, and J. Sekelsky (2007)
Genetics 176, 1993-2001
   Abstract »    Full Text »    PDF »
Characterization of BEAF Mutations Isolated by Homologous Recombination in Drosophila.
S. Roy, M. K. Gilbert, and C. M. Hart (2007)
Genetics 176, 801-813
   Abstract »    Full Text »    PDF »
Integrative physiology, functional genomics and the phenotype gap: a guide for comparative physiologists.
J. A. T. Dow (2007)
J. Exp. Biol. 210, 1632-1640
   Abstract »    Full Text »    PDF »
In Vivo Construction of Transgenes in Drosophila.
H. Takeuchi, O. Georgiev, M. Fetchko, M. Kappeler, W. Schaffner, and D. Egli (2007)
Genetics 175, 2019-2028
   Abstract »    Full Text »    PDF »
Drosophila ATR in Double-Strand Break Repair.
J. R. LaRocque, B. Jaklevic, T. T. Su, and J. Sekelsky (2007)
Genetics 175, 1023-1033
   Abstract »    Full Text »    PDF »
Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks.
V. Robert and J.-L. Bessereau (2007)
EMBO J. 26, 170-183
   Abstract »    Full Text »    PDF »
Homing endonuclease I-CreI derivatives with novel DNA target specificities.
L. E. Rosen, H. A. Morrison, S. Masri, M. J. Brown, B. Springstubb, D. Sussman, B. L. Stoddard, and L. M. Seligman (2006)
Nucleic Acids Res. 34, 4791-4800
   Abstract »    Full Text »    PDF »
Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc.
H. Yepiskoposyan, D. Egli, T. Fergestad, A. Selvaraj, C. Treiber, G. Multhaup, O. Georgiev, and W. Schaffner (2006)
Nucleic Acids Res. 34, 4866-4877
   Abstract »    Full Text »    PDF »
Site-Specific Transformation of Drosophila via {phi}C31 Integrase-Mediated Cassette Exchange.
J. R. Bateman, A. M. Lee, and C.-t. Wu (2006)
Genetics 173, 769-777
   Abstract »    Full Text »    PDF »
Molecular Genetics of Natural Populations.
A. J. Greenberg and C.-I Wu (2006)
Mol. Biol. Evol. 23, 883-886
   Abstract »    Full Text »    PDF »
Efficient Gene Targeting in Drosophila With Zinc-Finger Nucleases.
K. Beumer, G. Bhattacharyya, M. Bibikova, J. K. Trautman, and D. Carroll (2006)
Genetics 172, 2391-2403
   Abstract »    Full Text »    PDF »
Molecular Characterization of True and Ectopic Gene Targeting Events at the Acetolactate Synthase Gene in Arabidopsis.
M. Endo, K. Osakabe, H. Ichikawa, and S. Toki (2006)
Plant Cell Physiol. 47, 372-379
   Abstract »    Full Text »    PDF »
Pleiotropic functions of a conserved insect-specific Hox peptide motif.
C. T. Hittinger, D. L. Stern, and S. B. Carroll (2005)
Development 132, 5261-5270
   Abstract »    Full Text »    PDF »
In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination.
P. Chames, J.-C. Epinat, S. Guillier, A. Patin, E. Lacroix, and F. Paques (2005)
Nucleic Acids Res. 33, e178
   Abstract »    Full Text »    PDF »
Highly Efficient Sex Chromosome Interchanges Produced By I-CreI Expression in Drosophila.
K. A. Maggert and K. G. Golic (2005)
Genetics 171, 1103-1114
   Abstract »    Full Text »    PDF »
Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth.
N. S. Sokol and V. Ambros (2005)
Genes & Dev. 19, 2343-2354
   Abstract »    Full Text »    PDF »
Site-specific genomic targeting in Drosophila.
C. Horn and A. M. Handler (2005)
PNAS 102, 12483-12488
   Abstract »    Full Text »    PDF »
High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene.
H. Shaked, C. Melamed-Bessudo, and A. A. Levy (2005)
PNAS 102, 12265-12269
   Abstract »    Full Text »    PDF »
Drosophila ERCC1 Is Required for a Subset of MEI-9-Dependent Meiotic Crossovers.
S. J. Radford, E. Goley, K. Baxter, S. McMahan, and J. Sekelsky (2005)
Genetics 170, 1737-1745
   Abstract »    Full Text »    PDF »
I-ApeI: a novel intron-encoded LAGLIDADG homing endonuclease from the archaeon, Aeropyrum pernix K1.
N. Nomura, Y. Morinaga, N. Shirai, and Y. Sako (2005)
Nucleic Acids Res. 33, e116
   Abstract »    Full Text »    PDF »
Regulation of phototransduction responsiveness and retinal degeneration by a phospholipase D-generated signaling lipid.
M. M. LaLonde, H. Janssens, E. Rosenbaum, S.-Y. Choi, J. P. Gergen, N. J. Colley, W. S. Stark, and M. A. Frohman (2005)
J. Cell Biol. 169, 471-479
   Abstract »    Full Text »    PDF »
The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution.
H. Puchta (2005)
J. Exp. Bot. 56, 1-14
   Abstract »    Full Text »    PDF »
Genomic Deletions of the Drosophila melanogaster Hsp70 Genes.
W. J. Gong and K. G. Golic (2004)
Genetics 168, 1467-1476
   Abstract »    Full Text »    PDF »
Gene Deletions by Ends-In Targeting in Drosophila melanogaster.
H. B. Xie and K. G. Golic (2004)
Genetics 168, 1477-1489
   Abstract »    Full Text »    PDF »
Targeted Disruption of Drosophila Roc1b Reveals Functional Differences in the Roc Subunit of Cullin-dependent E3 Ubiquitin Ligases.
T. D. Donaldson, M. A. Noureddine, P. J. Reynolds, W. Bradford, and R. J. Duronio (2004)
Mol. Biol. Cell 15, 4892-4903
   Abstract »    Full Text »    PDF »
Functional Analysis of Drosophila melanogaster Gene Regulatory Sequences by Transgene Coplacement.
J. Parsch (2004)
Genetics 168, 559-561
   Abstract »    Full Text »    PDF »
Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication.
E. L. Beall, M. Bell, D. Georlette, and M. R. Botchan (2004)
Genes & Dev. 18, 1667-1680
   Abstract »    Full Text »    PDF »
The Normal Function of a Speciation Gene, Odysseus, and Its Hybrid Sterility Effect.
S. Sun, C.-T. Ting, and C.-I Wu (2004)
Science 305, 81-83
   Abstract »    Full Text »    PDF »
An Efficient Method to Generate Chromosomal Rearrangements by Targeted DNA Double-Strand Breaks in Drosophila melanogaster.
D. Egli, E. Hafen, and W. Schaffner (2004)
Genome Res. 14, 1382-1393
   Abstract »    Full Text »    PDF »
Construction of Transgenic Drosophila by Using the Site-Specific Integrase From Phage {phi}C31.
A. C. Groth, M. Fish, R. Nusse, and M. P. Calos (2004)
Genetics 166, 1775-1782
   Abstract »    Full Text »    PDF »
Conserved selenoprotein synthesis is not critical for oxidative stress defence and the lifespan of Drosophila.
M. Hirosawa-Takamori, H.-R. Chung, and H. Jackle (2004)
EMBO Rep. 5, 317-322
   Abstract »    Full Text »    PDF »
A lysosomal tetraspanin associated with retinal degeneration identified via a genome-wide screen.
H. Xu, S.-J. Lee, E. Suzuki, K. D. Dugan, A. Stoddard, H.-S. Li, L. A. Chodosh, and C. Montell (2004)
EMBO J. 23, 811-822
   Abstract »    Full Text »    PDF »
Homologous gene targeting in Caenorhabditis elegans by biolistic transformation.
E. Berezikov, C. I. Bargmann, and R. H. A. Plasterk (2004)
Nucleic Acids Res. 32, e40
   Abstract »    Full Text »    PDF »
The Homologous Chromosome Is an Effective Template for the Repair of Mitotic DNA Double-Strand Breaks in Drosophila.
Y. S. Rong and K. G. Golic (2003)
Genetics 165, 1831-1842
   Abstract »    Full Text »    PDF »
The Drosophila melanogaster DNA Ligase IV Gene Plays a Crucial Role in the Repair of Radiation-Induced DNA Double-Strand Breaks and Acts Synergistically With Rad54.
M. M. Gorski, J. C. J. Eeken, A. W. M. de Jong, I. Klink, M. Loos, R. J. Romeijn, B. L. van Veen, L. H. Mullenders, W. Ferro, and A. Pastink (2003)
Genetics 165, 1929-1941
   Abstract »    Full Text »    PDF »
High efficiency, site-specific excision of a marker gene by the phage P1 cre-loxP system in the yellow fever mosquito, Aedes aegypti.
N. Jasinskiene, C. J. Coates, A. Ashikyan, and A. A. James (2003)
Nucleic Acids Res. 31, e147
   Abstract »    Full Text »    PDF »
Targeted Mutation of a Drosophila Odor Receptor Defines Receptor Requirement in a Novel Class of Sensillum.
T. Elmore, R. Ignell, J. R. Carlson, and D. P. Smith (2003)
J. Neurosci. 23, 9906-9912
   Abstract »    Full Text »    PDF »
Genetic Analysis of the ADGF Multigene Family by Homologous Recombination and Gene Conversion in Drosophila.
T. Dolezal, M. Gazi, M. Zurovec, and P. J. Bryant (2003)
Genetics 165, 653-666
   Abstract »    Full Text »    PDF »
Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster.
H. Liu and E. Kubli (2003)
PNAS 100, 9929-9933
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882