Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 288 (5475): 2354-2357

Copyright © 2000 by the American Association for the Advancement of Science

Fas Preassociation Required for Apoptosis Signaling and Dominant Inhibition by Pathogenic Mutations

Richard M. Siegel, 1 John K. Frederiksen, 1 David A. Zacharias, 2 Francis Ka-Ming Chan, 1 Michele Johnson, 1 David Lynch, 3 Roger Y. Tsien, 2 Michael J. Lenardo 1*

Heterozygous mutations encoding abnormal forms of the death receptor Fas dominantly interfere with Fas-induced lymphocyte apoptosis in human autoimmune lymphoproliferative syndrome. This effect, rather than depending on ligand-induced receptor oligomerization, was found to stem from ligand- independent interaction of wild-type and mutant Fas receptors through a specific region in the extracellular domain. Preassociated Fas complexes were found in living cells by means of fluorescence resonance energy transfer between variants of green fluorescent protein. These results show that formation of preassociated receptor complexes is necessary for Fas signaling and dominant interference in human disease.

1 Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
2 Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA.
3 Immunex Corporation, 51 University Street, Seattle, WA 98101, USA.
*   To whom correspondence should be addressed. E-mail: lenardo{at}

Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations.
S. Price, P. A. Shaw, A. Seitz, G. Joshi, J. Davis, J. E. Niemela, K. Perkins, R. L. Hornung, L. Folio, P. S. Rosenberg, et al. (2014)
Blood 123, 1989-1999
   Abstract »    Full Text »    PDF »
Intra- and Interdimeric Caspase-8 Self-Cleavage Controls Strength and Timing of CD95-Induced Apoptosis.
S. M. Kallenberger, J. Beaudouin, J. Claus, C. Fischer, P. K. Sorger, S. Legewie, and R. Eils (2014)
Science Signaling 7, ra23
   Abstract »    Full Text »    PDF »
Cysteine-rich Domain 1 of CD40 Mediates Receptor Self-assembly.
C. R. Smulski, J. Beyrath, M. Decossas, N. Chekkat, P. Wolff, K. Estieu-Gionnet, G. Guichard, D. Speiser, P. Schneider, and S. Fournel (2013)
J. Biol. Chem. 288, 10914-10922
   Abstract »    Full Text »    PDF »
Autoimmunity: Twenty Years in the Fas Lane.
M. Ramaswamy and R. M. Siegel (2012)
J. Immunol. 189, 5097-5100
   Full Text »    PDF »
Signaling Active CD95 Receptor Molecules Trigger Co-translocation of Inactive CD95 Molecules into Lipid Rafts.
I. Lang, A. Fick, V. Schafer, T. Giner, D. Siegmund, and H. Wajant (2012)
J. Biol. Chem. 287, 24026-24042
   Abstract »    Full Text »    PDF »
The Tumor Necrosis Factor Receptor Stalk Regions Define Responsiveness to Soluble versus Membrane-Bound Ligand.
C. Richter, S. Messerschmidt, G. Holeiter, J. Tepperink, S. Osswald, A. Zappe, M. Branschadel, V. Boschert, D. A. Mann, P. Scheurich, et al. (2012)
Mol. Cell. Biol. 32, 2515-2529
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Induces Death Receptor 5 Networks That Are Highly Organized.
C. C. Valley, A. K. Lewis, D. J. Mudaliar, J. D. Perlmutter, A. R. Braun, C. B. Karim, D. D. Thomas, J. R. Brody, and J. N. Sachs (2012)
J. Biol. Chem. 287, 21265-21278
   Abstract »    Full Text »    PDF »
Pancreatic Islets Engineered with SA-FasL Protein Establish Robust Localized Tolerance by Inducing Regulatory T Cells in Mice.
E. S. Yolcu, H. Zhao, L. Bandura-Morgan, C. Lacelle, K. B. Woodward, N. Askenasy, and H. Shirwan (2011)
J. Immunol. 187, 5901-5909
   Abstract »    Full Text »    PDF »
How I treat autoimmune lymphoproliferative syndrome.
V. K. Rao and J. B. Oliveira (2011)
Blood 118, 5741-5751
   Abstract »    Full Text »    PDF »
Molecular and Therapeutic Characterization of Anti-ectodysplasin A Receptor (EDAR) Agonist Monoclonal Antibodies.
C. Kowalczyk, N. Dunkel, L. Willen, M. L. Casal, E. A. Mauldin, O. Gaide, A. Tardivel, G. Badic, A.-L. Etter, M. Favre, et al. (2011)
J. Biol. Chem. 286, 30769-30779
   Abstract »    Full Text »    PDF »
Calmodulin Mediates Fas-induced FADD-independent Survival Signaling in Pancreatic Cancer Cells via Activation of Src-Extracellular Signal-regulated Kinase (ERK).
K. Yuan, G. Jing, J. Chen, H. Liu, K. Zhang, Y. Li, H. Wu, J. M. McDonald, and Y. Chen (2011)
J. Biol. Chem. 286, 24776-24784
   Abstract »    Full Text »    PDF »
FAS Haploinsufficiency Is a Common Disease Mechanism in the Human Autoimmune Lymphoproliferative Syndrome.
H. S. Kuehn, I. Caminha, J. E. Niemela, V. K. Rao, J. Davis, T. A. Fleisher, and J. B. Oliveira (2011)
J. Immunol. 186, 6035-6043
   Abstract »    Full Text »    PDF »
Progranulin Resolves Inflammation.
H. Wu and R. M. Siegel (2011)
Science 332, 427-428
   Abstract »    Full Text »    PDF »
Unraveling the Binding Mechanism of Trivalent Tumor Necrosis Factor Ligands and Their Receptors.
C. R. Reis, A. H. G. van Assen, W. J. Quax, and R. H. Cool (2011)
Mol. Cell. Proteomics 10, M110.002808
   Abstract »    Full Text »    PDF »
Solution of the Structure of the TNF-TNFR2 Complex.
Y. Mukai, T. Nakamura, M. Yoshikawa, Y. Yoshioka, S.-i. Tsunoda, S. Nakagawa, Y. Yamagata, and Y. Tsutsumi (2010)
Science Signaling 3, ra83
   Abstract »    Full Text »    PDF »
Synergistic Effects of Topoisomerase I Inhibitor, SN38, on Fas-mediated Apoptosis.
Anticancer Res 30, 3911-3917
   Abstract »    Full Text »    PDF »
Hepatocyte Death: A Clear and Present Danger.
H. Malhi, M. E. Guicciardi, and G. J. Gores (2010)
Physiol Rev 90, 1165-1194
   Abstract »    Full Text »    PDF »
Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome.
K. C. Dowdell, J. E. Niemela, S. Price, J. Davis, R. L. Hornung, J. B. Oliveira, J. M. Puck, E. S. Jaffe, S. Pittaluga, J. I. Cohen, et al. (2010)
Blood 115, 5164-5169
   Abstract »    Full Text »    PDF »
Cisplatin Augments FAS-mediated Apoptosis through Lipid Rafts.
C.-R. HUANG, Z.-X. JIN, L. DONG, X.-P. TONG, S. YUE, T. KAWANAMI, T. SAWAKI, T. SAKAI, M. MIKI, H. IWAO, et al. (2010)
Anticancer Res 30, 2065-2071
   Abstract »    Full Text »    PDF »
The murine equivalent of the A181E TACI mutation associated with common variable immunodeficiency severely impairs B-cell function.
J. J. Lee, I. Rauter, L. Garibyan, E. Ozcan, T. Sannikova, S. R. Dillon, A. C. Cruz, R. M. Siegel, R. Bram, H. Jabara, et al. (2009)
Blood 114, 2254-2262
   Abstract »    Full Text »    PDF »
Life and death by death receptors.
M. E. Guicciardi and G. J. Gores (2009)
FASEB J 23, 1625-1637
   Abstract »    Full Text »    PDF »
Mechanism of Fas Signaling Regulation by Human Herpesvirus 8 K1 Oncoprotein.
Z. Berkova, S. Wang, J. F. Wise, H. Maeng, Y. Ji, and F. Samaniego (2009)
J Natl Cancer Inst 101, 399-411
   Abstract »    Full Text »    PDF »
Rho-ROCK-Dependent Ezrin-Radixin-Moesin Phosphorylation Regulates Fas-Mediated Apoptosis in Jurkat Cells.
M. Hebert, S. Potin, M. Sebbagh, J. Bertoglio, J. Breard, and J. Hamelin (2008)
J. Immunol. 181, 5963-5973
   Abstract »    Full Text »    PDF »
Oxidative Stress Promotes Ligand-independent and Enhanced Ligand-dependent Tumor Necrosis Factor Receptor Signaling.
H. Z. Ozsoy, N. Sivasubramanian, E. D. Wieder, S. Pedersen, and D. L. Mann (2008)
J. Biol. Chem. 283, 23419-23428
   Abstract »    Full Text »    PDF »
Interleukin-5 Receptor Subunit Oligomerization and Rearrangement Revealed by Fluorescence Resonance Energy Transfer Imaging.
M. Zaks-Zilberman, A. E. Harrington, T. Ishino, and I. M. Chaiken (2008)
J. Biol. Chem. 283, 13398-13406
   Abstract »    Full Text »    PDF »
Semaphorin3A signaling controls Fas (CD95)-mediated apoptosis by promoting Fas translocation into lipid rafts.
S. Moretti, A. Procopio, R. Lazzarini, M. R. Rippo, R. Testa, M. Marra, L. Tamagnone, and A. Catalano (2008)
Blood 111, 2290-2299
   Abstract »    Full Text »    PDF »
Cutting Edge: Identification of a Pre-Ligand Assembly Domain (PLAD) and Ligand Binding Site in the IL-17 Receptor.
J. M. Kramer, W. Hanel, F. Shen, N. Isik, J. P. Malone, A. Maitra, W. Sigurdson, D. Swart, J. Tocker, T. Jin, et al. (2007)
J. Immunol. 179, 6379-6383
   Abstract »    Full Text »    PDF »
A Role for the Fas/FasL System in Modulating Genetic Susceptibility to T-Cell Lymphoblastic Lymphomas.
M. Villa-Morales, J. Santos, E. Perez-Gomez, M. Quintanilla, and J. Fernandez-Piqueras (2007)
Cancer Res. 67, 5107-5116
   Abstract »    Full Text »    PDF »
Molecular Animation of Cell Death Mediated by the Fas Pathway.
D. Berry (2007)
Sci. STKE 2007, tr1
   Abstract »    Full Text »    PDF »
Key Note Lecture: Toward a Mechanistic Taxonomy for Cell Death Programs.
D. E. Bredesen (2007)
Stroke 38, 652-660
   Abstract »    Full Text »    PDF »
Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling.
C. Feig, V. Tchikov, S. Schutze, and M. E. Peter (2007)
EMBO J. 26, 221-231
   Abstract »    Full Text »    PDF »
Dominant-Negative Fas Mutation Is Reversed by Down-expression of c-FLIP.
M. Beneteau, S. Daburon, J.-F. Moreau, J.-L. Taupin, and P. Legembre (2007)
Cancer Res. 67, 108-115
   Abstract »    Full Text »    PDF »
GGA1 Acts as a Spatial Switch Altering Amyloid Precursor Protein Trafficking and Processing.
C. A. F. von Arnim, R. Spoelgen, I. D. Peltan, M. Deng, S. Courchesne, M. Koker, T. Matsui, H. Kowa, S. F. Lichtenthaler, M. C. Irizarry, et al. (2006)
J. Neurosci. 26, 9913-9922
   Abstract »    Full Text »    PDF »
Poxvirus Tumor Necrosis Factor Receptor (TNFR)-Like T2 Proteins Contain a Conserved Preligand Assembly Domain That Inhibits Cellular TNFR1-Induced Cell Death.
L. M. Sedger, S. R. Osvath, X.-M. Xu, G. Li, F. K.-M. Chan, J. W. Barrett, and G. McFadden (2006)
J. Virol. 80, 9300-9309
   Abstract »    Full Text »    PDF »
Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS).
A. A. Lobito, F. C. Kimberley, J. R. Muppidi, H. Komarow, A. J. Jackson, K. M. Hull, D. L. Kastner, G. R. Screaton, and R. M. Siegel (2006)
Blood 108, 1320-1327
   Abstract »    Full Text »    PDF »
Radiation-Induced Caspase-8 Mediates p53-Independent Apoptosis in Glioma Cells..
G. Afshar, N. Jelluma, X. Yang, D. Basila, N. D. Arvold, A. Karlsson, G. L. Yount, T. B. Dansen, E. Koller, and D. A. Haas-Kogan (2006)
Cancer Res. 66, 4223-4232
   Abstract »    Full Text »    PDF »
The role of receptor internalization in CD95 signaling.
K.-H. Lee, C. Feig, V. Tchikov, R. Schickel, C. Hallas, S. Schutze, M. E. Peter, and A. C. Chan (2006)
EMBO J. 25, 1009-1023
   Abstract »    Full Text »    PDF »
Cutting Edge: Evidence for Ligand-Independent Multimerization of the IL-17 Receptor.
J. M. Kramer, L. Yi, F. Shen, A. Maitra, X. Jiao, T. Jin, and S. L. Gaffen (2006)
J. Immunol. 176, 711-715
   Abstract »    Full Text »    PDF »
Physiological and pathophysiological aspects of ceramide.
E. Gulbins and P. L. Li (2006)
Am J Physiol Regulatory Integrative Comp Physiol 290, R11-R26
   Abstract »    Full Text »    PDF »
Raf-1 sets the threshold of Fas sensitivity by modulating Rok-{alpha} signaling.
D. Piazzolla, K. Meissl, L. Kucerova, C. Rubiolo, and M. Baccarini (2005)
J. Cell Biol. 171, 1013-1022
   Abstract »    Full Text »    PDF »
Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis.
L. Clancy, K. Mruk, K. Archer, M. Woelfel, J. Mongkolsapaya, G. Screaton, M. J. Lenardo, and F. K.-M. Chan (2005)
PNAS 102, 18099-18104
   Abstract »    Full Text »    PDF »
Imaging Signal Transduction in Living Cells with Fluorescent Proteins.
M. R. Philips (2005)
Sci. STKE 2005, tr28
   Abstract »    Full Text »    PDF »
Mycoplasma alligatoris Infection Promotes CD95 (FasR) Expression and Apoptosis of Primary Cardiac Fibroblasts.
M. E. Hunt and D. R. Brown (2005)
Clin. Vaccine Immunol. 12, 1370-1377
   Abstract »    Full Text »    PDF »
Different cell surface oligomeric states of B7-1 and B7-2: Implications for signaling.
S. Bhatia, M. Edidin, S. C. Almo, and S. G. Nathenson (2005)
PNAS 102, 15569-15574
   Abstract »    Full Text »    PDF »
Haploinsufficiency, rather than the effect of an excessive production of soluble CD95 (CD95{Delta}TM), is the basis for ALPS Ia in a family with duplicated 3' splice site AG in CD95 intron 5 on one allele.
J. Roesler, J.-M. Izquierdo, M. Ryser, A. Rosen-Wolff, M. Gahr, J. Valcarcel, M. J. Lenardo, and L. Zheng (2005)
Blood 106, 1652-1659
   Abstract »    Full Text »    PDF »
Death Receptor-Induced Signaling Pathways Are Differentially Regulated by Gamma Interferon Upstream of Caspase 8 Processing.
D. Siegmund, A. Wicovsky, I. Schmitz, K. Schulze-Osthoff, S. Kreuz, M. Leverkus, O. Dittrich-Breiholz, M. Kracht, and H. Wajant (2005)
Mol. Cell. Biol. 25, 6363-6379
   Abstract »    Full Text »    PDF »
Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis.
M. Miyaji, Z.-X. Jin, S. Yamaoka, R. Amakawa, S. Fukuhara, S. B. Sato, T. Kobayashi, N. Domae, T. Mimori, E. T. Bloom, et al. (2005)
J. Exp. Med. 202, 249-259
   Abstract »    Full Text »    PDF »
Effects of Bcl-2 Levels on Fas Signaling-Induced Caspase-3 Activation: Molecular Genetic Tests of Computational Model Predictions.
F. Hua, M. G. Cornejo, M. H. Cardone, C. L. Stokes, and D. A. Lauffenburger (2005)
J. Immunol. 175, 985-995
   Abstract »    Full Text »    PDF »
Caspase-dependent and -independent Activation of Acid Sphingomyelinase Signaling.
J. A. Rotolo, J. Zhang, M. Donepudi, H. Lee, Z. Fuks, and R. Kolesnick (2005)
J. Biol. Chem. 280, 26425-26434
   Abstract »    Full Text »    PDF »
cMet and Fas Receptor Interaction Inhibits Death-Inducing Signaling Complex Formation in Endothelial Cells.
L. A. Smyth and H. J.M. Brady (2005)
Hypertension 46, 100-106
   Abstract »    Full Text »    PDF »
The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability.
F. Henkler, E. Behrle, K. M. Dennehy, A. Wicovsky, N. Peters, C. Warnke, K. Pfizenmaier, and H. Wajant (2005)
J. Cell Biol. 168, 1087-1098
   Abstract »    Full Text »    PDF »
Functional Proteomic Screen Identifies a Modulating Role for CD44 in Death Receptor-Mediated Apoptosis.
R. S. Hauptschein, K. E. Sloan, C. Torella, R. Moezzifard, M. Giel-Moloney, C. Zehetmeier, C. Unger, L. L. Ilag, and D. G. Jay (2005)
Cancer Res. 65, 1887-1896
   Abstract »    Full Text »    PDF »
Induction of tolerance using Fas ligand: a double-edged immunomodulator.
N. Askenasy, E. S. Yolcu, I. Yaniv, and H. Shirwan (2005)
Blood 105, 1396-1404
   Abstract »    Full Text »    PDF »
p38{alpha}, but not p38{beta}, inhibits the phosphorylation and presence of c-FLIPS in DISC to potentiate Fas-mediated caspase-8 activation and type I apoptotic signaling.
L. Tourian Jr, H. Zhao, and C. B. Srikant (2004)
J. Cell Sci. 117, 6459-6471
   Abstract »    Full Text »    PDF »
The C-terminal Tails of Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) and Fas Receptors Have Opposing Functions in Fas-associated Death Domain (FADD) Recruitment and Can Regulate Agonist-specific Mechanisms of Receptor Activation.
L. R. Thomas, R. L. Johnson, J. C. Reed, and A. Thorburn (2004)
J. Biol. Chem. 279, 52479-52486
   Abstract »    Full Text »    PDF »
SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane.
R. M. Siegel, J. R. Muppidi, M. Sarker, A. Lobito, M. Jen, D. Martin, S. E. Straus, and M. J. Lenardo (2004)
J. Cell Biol. 167, 735-744
   Abstract »    Full Text »    PDF »
The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis.
M. T. Crow, K. Mani, Y.-J. Nam, and R. N. Kitsis (2004)
Circ. Res. 95, 957-970
   Abstract »    Full Text »    PDF »
Induction of apoptosis and activation of NF-{kappa}B by CD95 require different signalling thresholds.
P. Legembre, B. C. Barnhart, L. Zheng, S. Vijayan, S. E. Straus, J. Puck, J. K. Dale, M. Lenardo, and M. E. Peter (2004)
EMBO Rep. 5, 1084-1089
   Abstract »    Full Text »    PDF »
Reactive Nitrogen Species-Induced Cell Death Requires Fas-Dependent Activation of c-Jun N-Terminal Kinase.
P. Shrivastava, C. Pantano, R. Watkin, B. McElhinney, A. Guala, M. L. Poynter, R. L. Persinger, R. Budd, and Y. Janssen-Heininger (2004)
Mol. Cell. Biol. 24, 6763-6772
   Abstract »    Full Text »    PDF »
Direct Binding of Fas-associated Death Domain (FADD) to the Tumor Necrosis Factor-related Apoptosis-inducing Ligand Receptor DR5 Is Regulated by the Death Effector Domain of FADD.
L. R. Thomas, A. Henson, J. C. Reed, F. R. Salsbury, and A. Thorburn (2004)
J. Biol. Chem. 279, 32780-32785
   Abstract »    Full Text »    PDF »
Cisplatin-Induced CD95 Redistribution into Membrane Lipid Rafts of HT29 Human Colon Cancer Cells.
S. Lacour, A. Hammann, S. Grazide, D. Lagadic-Gossmann, A. Athias, O. Sergent, G. Laurent, P. Gambert, E. Solary, and M.-T. Dimanche-Boitrel (2004)
Cancer Res. 64, 3593-3598
   Abstract »    Full Text »    PDF »
KSHV vFLIP Is Essential for the Survival of Infected Lymphoma Cells.
I. Guasparri, S. A. Keller, and E. Cesarman (2004)
J. Exp. Med. 199, 993-1003
   Abstract »    Full Text »    PDF »
Caspase-3 Is a Component of Fas Death-Inducing Signaling Complex in Lipid Rafts and Its Activity Is Required for Complete Caspase-8 Activation during Fas-Mediated Cell Death.
S. M. Aouad, L. Y. Cohen, E. Sharif-Askari, E. K. Haddad, A. Alam, and R.-P. Sekaly (2004)
J. Immunol. 172, 2316-2323
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-{beta}1 Induces Apoptosis through Fas Ligand-independent Activation of the Fas Death Pathway in Human Gastric SNU-620 Carcinoma Cells.
S. G. Kim, H.-S. Jong, T.-Y. Kim, J. W. Lee, N. K. Kim, S. H. Hong, and Y.-J. Bang (2004)
Mol. Biol. Cell 15, 420-434
   Abstract »    Full Text »    PDF »
CD23 Trimers Are Preassociated on the Cell Surface Even in the Absence of Its Ligand, IgE.
M. A. Kilmon, A. E. Shelburne, Y. Chan-Li, K. L. Holmes, and D. H. Conrad (2004)
J. Immunol. 172, 1065-1073
   Abstract »    Full Text »    PDF »
Cutting Edge: SDS-Stable Fas Microaggregates: An Early Event of Fas Activation Occurring with Agonistic Anti-Fas Antibody but Not with Fas Ligand.
P. Legembre, M. Beneteau, S. Daburon, J.-F. Moreau, and J.-L. Taupin (2003)
J. Immunol. 171, 5659-5662
   Abstract »    Full Text »    PDF »
Role of Complement-Binding CD21/CD19/CD81 in Enhancing Human B Cell Protection from Fas-Mediated Apoptosis.
P. K. A. Mongini, A. E. Jackson, S. Tolani, R. J. Fattah, and J. K. Inman (2003)
J. Immunol. 171, 5244-5254
   Abstract »    Full Text »    PDF »
Oligomerization of Soluble Fas Antigen Induces Its Cytotoxicity.
O. V. Proussakova, N. A. Rabaya, A. B. Moshnikova, E. S. Telegina, A. Turanov, M. G. Nanazashvili, and I. P. Beletsky (2003)
J. Biol. Chem. 278, 36236-36241
   Abstract »    Full Text »    PDF »
Autosomal Recessive Hypercholesterolemia Protein Interacts with and Regulates the Cell Surface Level of Alzheimer's Amyloid {beta} Precursor Protein.
C. Noviello, P. Vito, P. Lopez, M. Abdallah, and L. D'Adamio (2003)
J. Biol. Chem. 278, 31843-31847
   Abstract »    Full Text »    PDF »
Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes.
A. Kinoshita, H. Fukumoto, T. Shah, C. M. Whelan, M. C. Irizarry, and B. T. Hyman (2003)
J. Cell Sci. 116, 3339-3346
   Abstract »    Full Text »    PDF »
Constitutive Caspase Activation and Impaired Death-Inducing Signaling Complex Formation in CD95-Resistant, Long-Term Activated, Antigen-Specific T Cells.
G. Strauss, I. Knape, I. Melzner, and K.-M. Debatin (2003)
J. Immunol. 171, 1172-1182
   Abstract »    Full Text »    PDF »
Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model.
G. Vereb, J. Szollosi, J. Matko, P. Nagy, T. Farkas, L. Vigh, L. Matyus, T. A. Waldmann, and S. Damjanovich (2003)
PNAS 100, 8053-8058
   Abstract »    Full Text »    PDF »
Role of SODD in Regulation of Tumor Necrosis Factor Responses.
H. Takada, N.-J. Chen, C. Mirtsos, S. Suzuki, N. Suzuki, A. Wakeham, T. W. Mak, and W.-C. Yeh (2003)
Mol. Cell. Biol. 23, 4026-4033
   Abstract »    Full Text »    PDF »
Why Target Apoptosis in Cancer Treatment?.
S. Kasibhatla and B. Tseng (2003)
Mol. Cancer Ther. 2, 573-580
   Abstract »    Full Text »    PDF »
The receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract.
D. Wengier, I. Valsecchi, M. L. Cabanas, W.-h. Tang, S. McCormick, and J. Muschietti (2003)
PNAS 100, 6860-6865
   Abstract »    Full Text »    PDF »
Isolation, maturational level, and functional capacity of human colon lamina propria plasma cells.
F Medina, C Segundo, A Campos-Caro, I Salcedo, A Garcia-Poley, and J A Brieva (2003)
Gut 52, 383-389
   Abstract »    Full Text »    PDF »
Two Adjacent Trimeric Fas Ligands Are Required for Fas Signaling and Formation of a Death-Inducing Signaling Complex.
N. Holler, A. Tardivel, M. Kovacsovics-Bankowski, S. Hertig, O. Gaide, F. Martinon, A. Tinel, D. Deperthes, S. Calderara, T. Schulthess, et al. (2003)
Mol. Cell. Biol. 23, 1428-1440
   Abstract »    Full Text »    PDF »
Temperature Effect on IgE Binding to CD23 Versus Fc{epsilon}RI.
B.-H. Chen, M. A. Kilmon, C. Ma, T. H. Caven, Y. Chan-Li, A. E. Shelburne, R. M. Tombes, E. Roush, and D. H. Conrad (2003)
J. Immunol. 170, 1839-1845
   Abstract »    Full Text »    PDF »
Interaction of Histone Acetylases and Deacetylases In Vivo.
S. Yamagoe, T. Kanno, Y. Kanno, S. Sasaki, R. M. Siegel, M. J. Lenardo, G. Humphrey, Y. Wang, Y. Nakatani, B. H. Howard, et al. (2003)
Mol. Cell. Biol. 23, 1025-1033
   Abstract »    Full Text »    PDF »
Enhancement of T cell apoptosis correlates with increased serum levels of soluble Fas (CD95/Apo-I) in active lupus.
F Silvestris, D Grinello, M Tucci, P Cafforio, and F Dammacco (2003)
Lupus 12, 8-14
   Abstract »    PDF »
LF 15-0195 immunosuppressive agent enhances activation-induced T-cell death by facilitating caspase-8 and caspase-10 activation at the DISC level.
P. Ducoroy, O. Micheau, S. Perruche, L. Dubrez-Daloz, D. de Fornel, P. Dutartre, P. Saas, and E. Solary (2003)
Blood 101, 194-201
   Abstract »    Full Text »    PDF »
Fas Activation Induces Renal Tubular Epithelial Cell beta 8 Integrin Expression and Function in the Absence of Apoptosis.
G. Jarad, B. Wang, S. Khan, J. DeVore, H. Miao, K. Wu, S. L. Nishimura, B. A. Wible, M. Konieczkowski, J. R. Sedor, et al. (2002)
J. Biol. Chem. 277, 47826-47833
   Abstract »    Full Text »    PDF »
The Long Form of FLIP Is an Activator of Caspase-8 at the Fas Death-inducing Signaling Complex.
O. Micheau, M. Thome, P. Schneider, N. Holler, J. Tschopp, D. W. Nicholson, C. Briand, and M. G. Grutter (2002)
J. Biol. Chem. 277, 45162-45171
   Abstract »    Full Text »    PDF »
A Novel Splice Variant of the Fas Gene in Patients with Cutaneous T-Cell Lymphoma.
R. van Doorn, R. Dijkman, M. H. Vermeer, T. M. Starink, R. Willemze, and C. P. Tensen (2002)
Cancer Res. 62, 5389-5392
   Abstract »    Full Text »    PDF »
Seeing the Light: Preassembly and Ligand-Induced Changes of the Interferon {gamma} Receptor Complex in Cells.
C. D. Krause, E. Mei, J. Xie, Y. Jia, M. A. Bopp, R. M. Hochstrasser, and S. Pestka (2002)
Mol. Cell. Proteomics 1, 805-815
   Abstract »    Full Text »    PDF »
Disabling Receptor Ensembles with Rationally Designed Interface Peptidomimetics.
A. Berezov, J. Chen, Q. Liu, H.-T. Zhang, M. I. Greene, and R. Murali (2002)
J. Biol. Chem. 277, 28330-28339
   Abstract »    Full Text »    PDF »
Resistance to Infection by Subgroups B, D, and E Avian Sarcoma and Leukosis Viruses Is Explained by a Premature Stop Codon within a Resistance Allele of the tvb Receptor Gene.
S. Klucking, H. B. Adkins, and J. A. T. Young (2002)
J. Virol. 76, 7918-7921
   Abstract »    Full Text »    PDF »
Cowpox virus encodes a fifth member of the tumor necrosis factor receptor family: A soluble, secreted CD30 homologue.
J. F. Panus, C. A. Smith, C. A. Ray, T. D. Smith, D. D. Patel, and D. J. Pickup (2002)
PNAS 99, 8348-8353
   Abstract »    Full Text »    PDF »
A Fifteen-Amino-Acid TVB Peptide Serves as a Minimal Soluble Receptor for Subgroup B Avian Leukosis and Sarcoma Viruses.
D. J. Knauss and J. A. T. Young (2002)
J. Virol. 76, 5404-5410
   Abstract »    Full Text »    PDF »
Fas-Dependent Elimination of Nonselected CD8 Cells and lpr Disease.
L. A. Trimble, K. A. Prince, G. A. Pestano, J. Daley, and H. Cantor (2002)
J. Immunol. 168, 4960-4967
   Abstract »    Full Text »    PDF »
Sticky Caveats in an Otherwise Glowing Report: Oligomerizing Fluorescent Proteins and Their Use in Cell Biology.
D. A. Zacharias (2002)
Sci. STKE 2002, pe23
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor Receptor 1 Is an ATPase Regulated by Silencer of Death Domain.
K. Miki and E. M. Eddy (2002)
Mol. Cell. Biol. 22, 2536-2543
   Abstract »    Full Text »    PDF »
Amyloid beta Binds Trimers as Well as Monomers of the 75-kDa Neurotrophin Receptor and Activates Receptor Signaling.
M. Yaar, S. Zhai, R. E. Fine, P. B. Eisenhauer, B. L. Arble, K. B. Stewart, and B. A. Gilchrest (2002)
J. Biol. Chem. 277, 7720-7725
   Abstract »    Full Text »    PDF »
All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction.
J. Y. Chung, Y. C. Park, H. Ye, and H. Wu (2002)
J. Cell Sci. 115, 679-688
   Abstract »    Full Text »    PDF »
An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes.
A.-O. Hueber, A.-M. Bernard, Z. Herincs, A. Couzinet, and H.-T. He (2002)
EMBO Rep. 3, 190-196
   Abstract »    Full Text »    PDF »
Phorbol 12-myristate 13-Acetate Inhibits Death Receptor-mediated Apoptosis in Jurkat Cells by Disrupting Recruitment of Fas-associated Polypeptide with Death Domain.
X. W. Meng, M. P. Heldebrant, and S. H. Kaufmann (2002)
J. Biol. Chem. 277, 3776-3783
   Abstract »    Full Text »    PDF »
Binding of FADD and Caspase-8 to Molluscum Contagiosum Virus MC159 v-FLIP Is Not Sufficient for Its Antiapoptotic Function.
T. L. Garvey, J. Bertin, R. M. Siegel, G.-h. Wang, M. J. Lenardo, and J. I. Cohen (2002)
J. Virol. 76, 697-706
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882