Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 289 (5476): 107-110

Copyright © 2000 by the American Association for the Advancement of Science

Interconnected Feedback Loops in the Neurospora Circadian System

Kwangwon Lee, 1 Jennifer J. Loros, 2* Jay C. Dunlap 1*

In Neurospora crassa, white collar 1 (WC-1), a transcriptional activator and positive clock element, is rhythmically expressed from a nonrhythmic steady-state pool of wc-1 transcript, consistent with posttranscriptional regulation of rhythmicity. Mutations in frq influence both the level and periodicity of WC-1 expression, and driven FRQ expression not only depresses its own endogenous levels, but positively regulates WC-1 synthesis with a lag of about 8 hours, a delay similar to that seen in the wild-type clock. FRQ thus plays dual roles in the Neurospora clock and thereby, with WC-1, forms a second feedback loop that would promote robustness and stability in this circadian system. The existence also of interlocked loops in Drosophila melanogaster and mouse clocks suggests that such interlocked loops may be a conserved aspect of circadian timing systems.

1 Department of Genetics and
2 Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755-3844, USA.
*   To whom correspondence should be addressed. E-mail: jennifer.loros{at}dartmouth.edu (J.J.L.); jay.c.dunlap{at}dartmouth.edu (J.C.D.).


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Isoform switching facilitates period control in the Neurospora crassa circadian clock.
O. E. Akman, J. C. W. Locke, S. Tang, I. Carre, A. J. Millar, and D. A. Rand (2014)
Mol Syst Biol 4, 164
   Abstract »    Full Text »    PDF »
Extension of a genetic network model by iterative experimentation and mathematical analysis.
J. C. W. Locke, M. M. Southern, L. Kozma-Bognar, V. Hibberd, P. E. Brown, M. S. Turner, and A. J. Millar (2014)
Mol Syst Biol 1, 2005.0013
   Abstract »    Full Text »    PDF »
Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock.
Z. Zhou, X. Liu, Q. Hu, N. Zhang, G. Sun, J. Cha, Y. Wang, Y. Liu, and Q. He (2013)
PNAS 110, E4867-E4874
   Abstract »    Full Text »    PDF »
Regulation of Gene Expression in Neurospora crassa with a Copper Responsive Promoter.
T. M. Lamb, J. Vickery, and D. Bell-Pedersen (2013)
g3 3, 2273-2280
   Abstract »    Full Text »    PDF »
The Ccr4-Not Protein Complex Regulates the Phase of the Neurospora Circadian Clock by Controlling WHITE COLLAR Protein Stability and Activity.
G. Huang, Q. He, J. Guo, J. Cha, and Y. Liu (2013)
J. Biol. Chem. 288, 31002-31009
   Abstract »    Full Text »    PDF »
Methylation of Histone H3 on Lysine 4 by the Lysine Methyltransferase SET1 Protein Is Needed for Normal Clock Gene Expression.
H. Raduwan, A. L. Isola, and W. J. Belden (2013)
J. Biol. Chem. 288, 8380-8390
   Abstract »    Full Text »    PDF »
Methodological Issues for Studying the Rest-Activity Cycle and Sleep Disturbances: A Chronobiological Approach Using Actigraphy Data.
G. Calogiuri, A. Weydahl, and F. Carandente (2013)
Biol Res Nurs 15, 5-12
   Abstract »    PDF »
Glycogen Synthase Kinase Is a Regulator of the Circadian Clock of Neurospora crassa.
O. Tataroglu, L. Lauinger, G. Sancar, K. Jakob, M. Brunner, and A. C. R. Diernfellner (2012)
J. Biol. Chem. 287, 36936-36943
   Abstract »    Full Text »    PDF »
Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa.
A. Brenna, B. Grimaldi, P. Filetici, and P. Ballario (2012)
Mol. Biol. Cell 23, 3863-3872
   Abstract »    Full Text »    PDF »
Temperature-Sensitive and Circadian Oscillators of Neurospora crassa Share Components.
S. Hunt, M. Elvin, and C. Heintzen (2012)
Genetics 191, 119-131
   Abstract »    Full Text »    PDF »
Effects of Sleep Loss and Strenuous Physical Activity on the Rest-Activity Circadian Rhythm: A Study on 500 km and 1,000 km Dogsled Racers.
G. Calogiuri, A. Weydahl, and E. Roveda (2011)
Biol Res Nurs 13, 409-418
   Abstract »    PDF »
Post-transcriptional control of circadian rhythms.
S. Kojima, D. L. Shingle, and C. B. Green (2011)
J. Cell Sci. 124, 311-320
   Abstract »    Full Text »    PDF »
LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 Form a Positive Feedback Regulatory Loop in the Arabidopsis Circadian Clock.
Y. Wang, J.-F. Wu, N. Nakamichi, H. Sakakibara, H.-G. Nam, and S.-H. Wu (2011)
PLANT CELL 23, 486-498
   Abstract »    Full Text »    PDF »
Genetic and Molecular Characterization of a Cryptochrome from the Filamentous Fungus Neurospora crassa.
A. C. Froehlich, C. H. Chen, W. J. Belden, C. Madeti, T. Roenneberg, M. Merrow, J. J. Loros, and J. C. Dunlap (2010)
Eukaryot. Cell 9, 738-750
   Abstract »    Full Text »    PDF »
Functional Significance of FRH in Regulating the Phosphorylation and Stability of Neurospora Circadian Clock Protein FRQ.
J. Guo, P. Cheng, and Y. Liu (2010)
J. Biol. Chem. 285, 11508-11515
   Abstract »    Full Text »    PDF »
FRQ-Interacting RNA Helicase Mediates Negative and Positive Feedback in the Neurospora Circadian Clock.
M. Shi, M. Collett, J. J. Loros, and J. C. Dunlap (2010)
Genetics 184, 351-361
   Abstract »    Full Text »    PDF »
Dependence of the period on the rate of protein degradation in minimal models for circadian oscillations.
C. Gerard, D. Gonze, and A. Goldbeter (2009)
Phil Trans R Soc A 367, 4665-4683
   Abstract »    Full Text »    PDF »
ID2 (Inhibitor of DNA Binding 2) Is a Rhythmically Expressed Transcriptional Repressor Required for Circadian Clock Output in Mouse Liver.
T. Y. Hou, S. M. Ward, J. M. Murad, N. P. Watson, M. A. Israel, and G. E. Duffield (2009)
J. Biol. Chem. 284, 31735-31745
   Abstract »    Full Text »    PDF »
Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale.
A. C.R. Diernfellner, C. Querfurth, C. Salazar, T. Hofer, and M. Brunner (2009)
Genes & Dev. 23, 2192-2200
   Abstract »    Full Text »    PDF »
Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora.
C.-H. Chen, C. S. Ringelberg, R. H. Gross, J. C. Dunlap, and J. J. Loros (2009)
EMBO J. 28, 1029-1042
   Abstract »    Full Text »    PDF »
Rhythmic Conidiation in Constant Light in Vivid Mutants of Neurospora crassa.
K. Schneider, S. Perrino, K. Oelhafen, S. Li, A. Zatsepin, P. Lakin-Thomas, and S. Brody (2009)
Genetics 181, 917-931
   Abstract »    Full Text »    PDF »
Control of WHITE COLLAR localization by phosphorylation is a critical step in the circadian negative feedback process.
J. Cha, S.-S. Chang, G. Huang, P. Cheng, and Y. Liu (2008)
EMBO J. 27, 3246-3255
   Abstract »    Full Text »    PDF »
Circadian activity and abundance rhythms of the Neurospora clock transcription factor WCC associated with rapid nucleo-cytoplasmic shuttling.
T. Schafmeier, A. Diernfellner, A. Schafer, O. Dintsis, A. Neiss, and M. Brunner (2008)
Genes & Dev. 22, 3397-3402
   Abstract »    Full Text »    PDF »
Closing the circadian negative feedback loop: FRQ-dependent clearance of WC-1 from the nucleus.
C. I. Hong, P. Ruoff, J. J. Loros, and J. C. Dunlap (2008)
Genes & Dev. 22, 3196-3204
   Abstract »    Full Text »    PDF »
Transcriptional regulation and function of the Neurospora clock gene white collar 2 and its isoforms.
A. Neiss, T. Schafmeier, and M. Brunner (2008)
EMBO Rep. 9, 788-794
   Abstract »    Full Text »    PDF »
Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops.
T. Y.-C. Tsai, Y. S. Choi, W. Ma, J. R. Pomerening, C. Tang, and J. E. Ferrell Jr. (2008)
Science 321, 126-129
   Abstract »    Full Text »    PDF »
Salad Days in the Rhythms Trade.
J. C. Dunlap (2008)
Genetics 178, 1-13
   Full Text »    PDF »
Conformational Switching in the Fungal Light Sensor Vivid.
B. D. Zoltowski, C. Schwerdtfeger, J. Widom, J. J. Loros, A. M. Bilwes, J. C. Dunlap, and B. R. Crane (2007)
Science 316, 1054-1057
   Abstract »    Full Text »    PDF »
Phase Sensitivity Analysis of Circadian Rhythm Entrainment.
R. Gunawan and F. J. Doyle III (2007)
J Biol Rhythms 22, 180-194
   Abstract »    PDF »
Circadian Rhythms in Neurospora crassa: Clock Mutant Effects in the Absence of a frq-Based Oscillator.
L. Lombardi, K. Schneider, M. Tsukamoto, and S. Brody (2007)
Genetics 175, 1175-1183
   Abstract »    Full Text »    PDF »
A genetic network for the clock of Neurospora crassa.
Y. Yu, W. Dong, C. Altimus, X. Tang, J. Griffith, M. Morello, L. Dudek, J. Arnold, and H.-B. Schuttler (2007)
PNAS 104, 2809-2814
   Abstract »    Full Text »    PDF »
A Circadian Clock in Neurospora: How Genes and Proteins Cooperate to Produce a Sustained, Entrainable, and Compensated Biological Oscillator with a Period of about a Day.
J.C. Dunlap, J.J. Loros, H.V. Colot, A. Mehra, W.J. Belden, M. Shi, C.I. Hong, L.F. Larrondo, C.L. Baker, C.-H. Chen, et al. (2007)
Cold Spring Harb Symp Quant Biol 72, 57-68
   Abstract »    PDF »
Posttranslational Regulation of Neurospora Circadian Clock by CK1a-dependent Phosphorylation.
C. Querfurth, A. Diernfellner, F. Heise, L. Lauinger, A. Neiss, O. Tataroglu, M. Brunner, and T. Schafmeier (2007)
Cold Spring Harb Symp Quant Biol 72, 177-183
   Abstract »    PDF »
Posttranslational Control of the Neurospora Circadian Clock.
J. Cha, G. Huang, J. Guo, and Y. Liu (2007)
Cold Spring Harb Symp Quant Biol 72, 185-191
   Abstract »    PDF »
Complexity of the Neurospora crassa Circadian Clock System: Multiple Loops and Oscillators.
R. M. de Paula, M. W. Vitalini, R. H. Gomer, and D. Bell-Pedersen (2007)
Cold Spring Harb Symp Quant Biol 72, 345-351
   Abstract »    PDF »
The Rhythms of Life: Circadian Output Pathways in Neurospora.
M. W. Vitalini, R. M. de Paula, W. D. Park, and D. Bell-Pedersen (2006)
J Biol Rhythms 21, 432-444
   Abstract »    PDF »
A Heteromeric RNA-Binding Protein Is Involved in Maintaining Acrophase and Period of the Circadian Clock.
D. Iliev, O. Voytsekh, E.-M. Schmidt, M. Fiedler, A. Nykytenko, and M. Mittag (2006)
Plant Physiology 142, 797-806
   Abstract »    Full Text »    PDF »
Proteins in the Neurospora Circadian Clockworks.
J. C. Dunlap (2006)
J. Biol. Chem. 281, 28489-28493
   Full Text »    PDF »
CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop.
Q. He, J. Cha, Q. He, H.-C. Lee, Y. Yang, and Y. Liu (2006)
Genes & Dev. 20, 2552-2565
   Abstract »    Full Text »    PDF »
The Neurospora Checkpoint Kinase 2: A Regulatory Link Between the Circadian and Cell Cycles.
A. M. Pregueiro, Q. Liu, C. L. Baker, J. C. Dunlap, and J. J. Loros (2006)
Science 313, 644-649
   Abstract »    Full Text »    PDF »
Circadian Rhythms in Neurospora crassa and Other Filamentous Fungi.
Y. Liu and D. Bell-Pedersen (2006)
Eukaryot. Cell 5, 1184-1193
   Full Text »    PDF »
Two Circadian Timing Circuits in Neurospora crassa Cells Share Components and Regulate Distinct Rhythmic Processes.
R. M. de Paula, Z. A. Lewis, A. V. Greene, K. S. Seo, L. W. Morgan, M. W. Vitalini, L. Bennett, R. H. Gomer, and D. Bell-Pedersen (2006)
J Biol Rhythms 21, 159-168
   Abstract »    PDF »
Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora..
M. Brunner and T. Schafmeier (2006)
Genes & Dev. 20, 1061-1074
   Abstract »    Full Text »    PDF »
Transcriptional regulation of the Neurospora circadian clock gene wc-1 affects the phase of circadian output.
K. Kaldi, B. H. Gonzalez, and M. Brunner (2006)
EMBO Rep. 7, 199-204
   Abstract »    Full Text »    PDF »
Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator.
T. Schafmeier, K. Kaldi, A. Diernfellner, C. Mohr, and M. Brunner (2006)
Genes & Dev. 20, 297-306
   Abstract »    Full Text »    PDF »
The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock.
P. Ruoff, J. J. Loros, and J. C. Dunlap (2005)
PNAS 102, 17681-17686
   Abstract »    Full Text »    PDF »
Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation.
Q. He and Y. Liu (2005)
Genes & Dev. 19, 2888-2899
   Abstract »    Full Text »    PDF »
Temperature-modulated Alternative Splicing and Promoter Use in the Circadian Clock Gene frequency.
H. V. Colot, J. J. Loros, and J. C. Dunlap (2005)
Mol. Biol. Cell 16, 5563-5571
   Abstract »    Full Text »    PDF »
Circuit topology and the evolution of robustness in two-gene circadian oscillators.
A. Wagner (2005)
PNAS 102, 11775-11780
   Abstract »    Full Text »    PDF »
Light-independent Phosphorylation of WHITE COLLAR-1 Regulates Its Function in the Neurospora Circadian Negative Feedback Loop.
Q. He, H. Shu, P. Cheng, S. Chen, L. Wang, and Y. Liu (2005)
J. Biol. Chem. 280, 17526-17532
   Abstract »    Full Text »    PDF »
Regulation of the Neurospora circadian clock by an RNA helicase.
P. Cheng, Q. He, Q. He, L. Wang, and Y. Liu (2005)
Genes & Dev. 19, 234-241
   Abstract »    Full Text »    PDF »
The Neurospora Circadian System.
J. C. Dunlap and J. J. Loros (2004)
J Biol Rhythms 19, 414-424
   Abstract »    PDF »
Clock Gene Evolution and Functional Divergence.
E. Tauber, K. S. Last, P. J.W. Olive, and C. P. Kyriacou (2004)
J Biol Rhythms 19, 445-458
   Abstract »    PDF »
A Genetic Selection for Circadian Output Pathway Mutations in Neurospora crassa.
M. W. Vitalini, L. W. Morgan, I. J. March, and D. Bell-Pedersen (2004)
Genetics 167, 119-129
   Abstract »    Full Text »    PDF »
Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism.
K. A. Borkovich, L. A. Alex, O. Yarden, M. Freitag, G. E. Turner, N. D. Read, S. Seiler, D. Bell-Pedersen, J. Paietta, N. Plesofsky, et al. (2004)
Microbiol. Mol. Biol. Rev. 68, 1-108
   Abstract »    Full Text »    PDF »
Opsin Photoisomerases in the Chick Retina and Pineal Gland: Characterization, Localization, and Circadian Regulation.
M. J. Bailey and V. M. Cassone (2004)
Invest. Ophthalmol. Vis. Sci. 45, 769-775
   Abstract »    Full Text »    PDF »
Phosphorylation of FREQUENCY Protein by Casein Kinase II Is Necessary for the Function of the Neurospora Circadian Clock.
Y. Yang, P. Cheng, Q. He, L. Wang, and Y. Liu (2003)
Mol. Cell. Biol. 23, 6221-6228
   Abstract »    Full Text »    PDF »
FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation.
Q. He, P. Cheng, Y. Yang, Q. He, H. Yu, and Y. Liu (2003)
EMBO J. 22, 4421-4430
   Abstract »    Full Text »    PDF »
The frequency Gene Is Required for Temperature-Dependent Regulation of Many Clock-Controlled Genes in Neurospora crassa.
M. Nowrousian, G. E. Duffield, J. J. Loros, and J. C. Dunlap (2003)
Genetics 164, 923-933
   Abstract »    Full Text »    PDF »
Toward a detailed computational model for the mammalian circadian clock.
J.-C. Leloup and A. Goldbeter (2003)
PNAS 100, 7051-7056
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Entrainment in the Neurospora Circadian Clock.
Y. Liu (2003)
J Biol Rhythms 18, 195-205
   Abstract »    PDF »
Enhancer Trapping Reveals Widespread Circadian Clock Transcriptional Control in Arabidopsis.
T. P. Michael and C. R. McClung (2003)
Plant Physiology 132, 629-639
   Abstract »    Full Text »    PDF »
Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY.
A. C. Froehlich, J. J. Loros, and J. C. Dunlap (2003)
PNAS 100, 5914-5919
   Abstract »    Full Text »    PDF »
What's in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence.
G. Mannhaupt, C. Montrone, D. Haase, H. W. Mewes, V. Aign, J. D. Hoheisel, B. Fartmann, G. Nyakatura, F. Kempken, J. Maier, et al. (2003)
Nucleic Acids Res. 31, 1944-1954
   Abstract »    Full Text »    PDF »
Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY.
J.-Y. Kim, H.-R. Song, B. L. Taylor, and I. A. Carre (2003)
EMBO J. 22, 935-944
   Abstract »    Full Text »    PDF »
WHITE COLLAR-1, a Multifunctional Neurospora Protein Involved in the Circadian Feedback Loops, Light Sensing, and Transcription Repression of wc-2.
P. Cheng, Y. Yang, L. Wang, Q. He, and Y. Liu (2003)
J. Biol. Chem. 278, 3801-3808
   Abstract »    Full Text »    PDF »
Roles for WHITE COLLAR-1 in Circadian and General Photoperception in Neurospora crassa.
K. Lee, J. C. Dunlap, and J. J. Loros (2003)
Genetics 163, 103-114
   Abstract »    Full Text »    PDF »
Dual Role of TOC1 in the Control of Circadian and Photomorphogenic Responses in Arabidopsis.
P. Mas, D. Alabadi, M. J. Yanovsky, T. Oyama, and S. A. Kay (2003)
PLANT CELL 15, 223-236
   Abstract »    Full Text »    PDF »
Saturation of Enzyme Kinetics in Circadian Clock Models.
G. Kurosawa and Y. Iwasa (2002)
J Biol Rhythms 17, 568-577
   Abstract »    PDF »
Phase-Specific Circadian Clock Regulatory Elements in Arabidopsis.
T. P. Michael and C. R. McClung (2002)
Plant Physiology 130, 627-638
   Abstract »    Full Text »    PDF »
White Collar-1, a Circadian Blue Light Photoreceptor, Binding to the frequency Promoter.
A. C. Froehlich, Y. Liu, J. J. Loros, and J. C. Dunlap (2002)
Science 297, 815-819
   Abstract »    Full Text »    PDF »
The out of phase 1 Mutant Defines a Role for PHYB in Circadian Phase Control in Arabidopsis.
P. A. Salome, T. P. Michael, E. V. Kearns, A. G. Fett-Neto, R. A. Sharrock, and C. R. McClung (2002)
Plant Physiology 129, 1674-1685
   Abstract »    Full Text »    PDF »
Light reception and circadian behavior in 'blind' and 'clock-less' mutants of Neurospora crassa.
Z. Dragovic, Y. Tan, M. Gorl, T. Roenneberg, and M. Merrow (2002)
EMBO J. 21, 3643-3651
   Abstract »    Full Text »    PDF »
MYB transcription factors in the Arabidopsis circadian clock.
I. A. Carre and J.-Y. Kim (2002)
J. Exp. Bot. 53, 1551-1557
   Abstract »    Full Text »    PDF »
Regulation of the Neurospora circadian clock by casein kinase II.
Y. Yang, P. Cheng, and Y. Liu (2002)
Genes & Dev. 16, 994-1006
   Abstract »    Full Text »    PDF »
Distinct Signaling Pathways from the Circadian Clock Participate in Regulation of Rhythmic Conidiospore Development in Neurospora crassa.
A. Correa and D. Bell-Pedersen (2002)
Eukaryot. Cell 1, 273-280
   Abstract »    Full Text »    PDF »
PAS Domain-Mediated WC-1/WC-2 Interaction Is Essential for Maintaining the Steady-State Level of WC-1 and the Function of Both Proteins in Circadian Clock and Light Responses of Neurospora.
P. Cheng, Y. Yang, K. H. Gardner, and Y. Liu (2002)
Mol. Cell. Biol. 22, 517-524
   Abstract »    Full Text »    PDF »
Light and Clock Expression of the Neurospora Clock Gene frequency Is Differentially Driven by but Dependent on WHITE COLLAR-2.
M. A. Collett, N. Garceau, J. C. Dunlap, and J. J. Loros (2002)
Genetics 160, 149-158
   Abstract »    Full Text »    PDF »
A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa.
M. Gorl, M. Merrow, B. Huttner, J. Johnson, T. Roenneberg, and M. Brunner (2001)
EMBO J. 20, 7074-7084
   Abstract »    Full Text »    PDF »
Epistatic and Synergistic Interactions Between Circadian Clock Mutations in Neurospora crassa.
L. W. Morgan and J. F. Feldman (2001)
Genetics 159, 537-543
   Abstract »    Full Text »    PDF »
Modeling Circadian Oscillations with Interlocking Positive and Negative Feedback Loops.
P. Smolen, D. A. Baxter, and J. H. Byrne (2001)
J. Neurosci. 21, 6644-6656
   Abstract »    Full Text »    PDF »
Seasonality and Photoperiodism in Fungi.
T. Roenneberg and M. Merrow (2001)
J Biol Rhythms 16, 403-414
   Abstract »    PDF »
Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock.
P. Cheng, Y. Yang, and Y. Liu (2001)
PNAS 98, 7408-7413
   Abstract »    Full Text »    PDF »
ELF3 Modulates Resetting of the Circadian Clock in Arabidopsis.
M. F. Covington, S. Panda, X. L. Liu, C. A. Strayer, D. R. Wagner, and S. A. Kay (2001)
PLANT CELL 13, 1305-1316
   Abstract »    Full Text »    PDF »
Circadian Clock-Specific Roles for the Light Response Protein WHITE COLLAR-2.
M. A. Collett, J. C. Dunlap, and J. J. Loros (2001)
Mol. Cell. Biol. 21, 2619-2628
   Abstract »    Full Text »    PDF »
Modeling the Molecular Calendar.
M. Hastings (2001)
J Biol Rhythms 16, 117-123
   PDF »
Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction.
S. Crosson and K. Moffat (2001)
PNAS 98, 2995-3000
   Abstract »    Full Text »    PDF »
The Neurospora crassa Genome: Cosmid Libraries Sorted by Chromosome.
H. S. Kelkar, J. Griffith, M. E. Case, S. F. Covert, R. D. Hall, C. H. Keith, J. S. Oliver, M. J. Orbach, M. S. Sachs, J. R. Wagner, et al. (2001)
Genetics 157, 979-990
   Abstract »    Full Text »    PDF »
Circadian regulation of the light input pathway in Neurospora crassa.
M. Merrow, L. Franchi, Z. Dragovic, M. Gorl, J. Johnson, M. Brunner, G. Macino, and T. Roenneberg (2001)
EMBO J. 20, 307-315
   Abstract »    Full Text »    PDF »
Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora.
P. Cheng, Y. Yang, C. Heintzen, and Y. Liu (2001)
EMBO J. 20, 101-108
   Abstract »    Full Text »    PDF »
WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora.
D. L. Denault, J. J. Loros, and J. C. Dunlap (2001)
EMBO J. 20, 109-117
   Abstract »    Full Text »    PDF »
Identification of a Calcium/Calmodulin-dependent Protein Kinase That Phosphorylates the Neurospora Circadian Clock Protein FREQUENCY.
Y. Yang, P. Cheng, G. Zhi, and Y. Liu (2001)
J. Biol. Chem. 276, 41064-41072
   Abstract »    Full Text »    PDF »
Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction.
S. Crosson and K. Moffat (2001)
PNAS 98, 2995-3000
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882