Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 289 (5480): 765-768

Copyright © 2000 by the American Association for the Advancement of Science

CikA, a Bacteriophytochrome That Resets the Cyanobacterial Circadian Clock

Oliver Schmitz,1* Mitsunori Katayama,12 Stanly B. Williams,1 Takao Kondo,2 Susan S. Golden1dagger

The circadian oscillator of the cyanobacterium Synechococcus elongatus, like those in eukaryotes, is entrained by environmental cues. Inactivation of the gene cikA (circadian input kinase) shortens the circadian period of gene expression rhythms in S. elongatus by approximately 2 hours, changes the phasing of a subset of rhythms, and nearly abolishes resetting of phase by a pulse of darkness. The CikA protein sequence reveals that it is a divergent bacteriophytochrome with characteristic histidine protein kinase motifs and a cryptic response regulator motif. CikA is likely a key component of a pathway that provides environmental input to the circadian oscillator in S. elongatus.

1 Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
2 Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
*   Present address: Botanisches Institut, University of Cologne, Gyrhofstrasse 15, 50931 Cologne, Germany.

dagger    To whom correspondence should be addressed. E-mail: sgolden{at}

Hypersensitive Photic Responses and Intact Genome-Wide Transcriptional Control without the KaiC Phosphorylation Cycle in the Synechococcus Circadian System.
M. Umetani, N. Hosokawa, Y. Kitayama, and H. Iwasaki (2014)
J. Bacteriol. 196, 548-555
   Abstract »    Full Text »    PDF »
An allele of the crm gene blocks cyanobacterial circadian rhythms.
J. S. Boyd, J. R. Bordowitz, A. C. Bree, and S. S. Golden (2013)
PNAS 110, 13950-13955
   Abstract »    Full Text »    PDF »
Profile of Susan S. Golden.
S. Gupta (2013)
PNAS 110, 8758-8760
   Full Text »    PDF »
Genome-Wide and Heterocyst-Specific Circadian Gene Expression in the Filamentous Cyanobacterium Anabaena sp. Strain PCC 7120.
H. Kushige, H. Kugenuma, M. Matsuoka, S. Ehira, M. Ohmori, and H. Iwasaki (2013)
J. Bacteriol. 195, 1276-1284
   Abstract »    Full Text »    PDF »
Engineering Synechococcus elongatus PCC 7942 for Continuous Growth under Diurnal Conditions.
J. T. McEwen, I. M. P. Machado, M. R. Connor, and S. Atsumi (2013)
Appl. Envir. Microbiol. 79, 1668-1675
   Abstract »    Full Text »    PDF »
Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator.
Y.-I. Kim, D. J. Vinyard, G. M. Ananyev, G. C. Dismukes, and S. S. Golden (2012)
PNAS 109, 17765-17769
   Abstract »    Full Text »    PDF »
Light-Driven Changes in Energy Metabolism Directly Entrain the Cyanobacterial Circadian Oscillator.
M. J. Rust, S. S. Golden, and E. K. O'Shea (2011)
Science 331, 220-223
   Abstract »    Full Text »    PDF »
The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor.
T. L. Wood, J. Bridwell-Rabb, Y.-I. Kim, T. Gao, Y.-G. Chang, A. LiWang, D. P. Barondeau, and S. S. Golden (2010)
PNAS 107, 5804-5809
   Abstract »    Full Text »    PDF »
Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria.
Y. Taniguchi, N. Takai, M. Katayama, T. Kondo, and T. Oyama (2010)
PNAS 107, 3263-3268
   Abstract »    Full Text »    PDF »
Cyanochromes Are Blue/Green Light Photoreversible Photoreceptors Defined by a Stable Double Cysteine Linkage to a Phycoviolobilin-type Chromophore.
A. T. Ulijasz, G. Cornilescu, D. von Stetten, C. Cornilescu, F. Velazquez Escobar, J. Zhang, R. J. Stankey, M. Rivera, P. Hildebrandt, and R. D. Vierstra (2009)
J. Biol. Chem. 284, 29757-29772
   Abstract »    Full Text »    PDF »
Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus.
H. Ito, M. Mutsuda, Y. Murayama, J. Tomita, N. Hosokawa, K. Terauchi, C. Sugita, M. Sugita, T. Kondo, and H. Iwasaki (2009)
PNAS 106, 14168-14173
   Abstract »    Full Text »    PDF »
The Evolution of the Cyanobacterial Posttranslational Clock from a Primitive "Phoscillator".
M. J.P. Simons (2009)
J Biol Rhythms 24, 175-182
   Abstract »    PDF »
Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein.
Y. Hirose, T. Shimada, R. Narikawa, M. Katayama, and M. Ikeuchi (2008)
PNAS 105, 9528-9533
   Abstract »    Full Text »    PDF »
Genome Streamlining Results in Loss of Robustness of the Circadian Clock in the Marine Cyanobacterium Prochlorococcus marinus PCC 9511.
J. Holtzendorff, F. Partensky, D. Mella, J.-F. Lennon, W. R. Hess, and L. Garczarek (2008)
J Biol Rhythms 23, 187-199
   Abstract »    PDF »
Proteins Found in a CikA Interaction Assay Link the Circadian Clock, Metabolism, and Cell Division in Synechococcus elongatus.
S. R. Mackey, J.-S. Choi, Y. Kitayama, H. Iwasaki, G. Dong, and S. S. Golden (2008)
J. Bacteriol. 190, 3738-3746
   Abstract »    Full Text »    PDF »
Structural and Biochemical Characterization of a Cyanobacterium Circadian Clock-modifier Protein.
K. Arita, H. Hashimoto, K. Igari, M. Akaboshi, S. Kutsuna, M. Sato, and T. Shimizu (2007)
J. Biol. Chem. 282, 1128-1135
   Abstract »    Full Text »    PDF »
Biological Rhythms Workshop IA: Molecular Basis of Rhythms Generation.
S. R. Mackey (2007)
Cold Spring Harb Symp Quant Biol 72, 7-19
   Abstract »    PDF »
Integrating the Circadian Oscillator into the Life of the Cyanobacterial Cell.
S. S. Golden (2007)
Cold Spring Harb Symp Quant Biol 72, 331-338
   Abstract »    PDF »
Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock.
N. B. Ivleva, T. Gao, A. C. LiWang, and S. S. Golden (2006)
PNAS 103, 17468-17473
   Abstract »    Full Text »    PDF »
G. Shen, N. A. Saunee, S. R. Williams, E. F. Gallo, W. M. Schluchter, and D. A. Bryant (2006)
J. Biol. Chem. 281, 17768-17778
   Abstract »    Full Text »    PDF »
Cyanobacterial Two-Component Proteins: Structure, Diversity, Distribution, and Evolution.
M. K. Ashby and J. Houmard (2006)
Microbiol. Mol. Biol. Rev. 70, 472-509
   Abstract »    Full Text »    PDF »
Real-Time Monitoring of Chloroplast Gene Expression by a Luciferase Reporter: Evidence for Nuclear Regulation of Chloroplast Circadian Period.
T. Matsuo, K. Onai, K. Okamoto, J. Minagawa, and M. Ishiura (2006)
Mol. Cell. Biol. 26, 863-870
   Abstract »    Full Text »    PDF »
Subfamilies of cpmA, a gene involved in circadian output, have different evolutionary histories in cyanobacteria.
V. Dvornyk (2006)
Microbiology 152, 75-84
   Abstract »    Full Text »    PDF »
Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes.
J. L. Ditty, S. R. Canales, B. E. Anderson, S. B. Williams, and S. S. Golden (2005)
Microbiology 151, 2605-2613
   Abstract »    Full Text »    PDF »
Inferring the connectivity of a regulatory network from mRNA quantification in Synechocystis PCC6803.
S. Lemeille, A. Latifi, and J. Geiselmann (2005)
Nucleic Acids Res. 33, 3381-3389
   Abstract »    Full Text »    PDF »
A Novel Mutation in kaiC Affects Resetting of the Cyanobacterial Circadian Clock.
Y. B. Kiyohara, M. Katayama, and T. Kondo (2005)
J. Bacteriol. 187, 2559-2564
   Abstract »    Full Text »    PDF »
LdpA: a component of the circadian clock senses redox state of the cell.
N. B. Ivleva, M. R. Bramlett, P. A. Lindahl, and S. S. Golden (2005)
EMBO J. 24, 1202-1210
   Abstract »    Full Text »    PDF »
PSEUDO-RESPONSE REGULATOR 7 and 9 Are Partially Redundant Genes Essential for the Temperature Responsiveness of the Arabidopsis Circadian Clock.
P. A. Salome and C. R. McClung (2005)
PLANT CELL 17, 791-803
   Abstract »    Full Text »    PDF »
No Transcription-Translation Feedback in Circadian Rhythm of KaiC Phosphorylation.
J. Tomita, M. Nakajima, T. Kondo, and H. Iwasaki (2005)
Science 307, 251-254
   Abstract »    Full Text »    PDF »
Cyanobacterial Phytochrome-like PixJ1 Holoprotein Shows Novel Reversible Photoconversion Between Blue- and Green-absorbing Forms.
S. Yoshihara, M. Katayama, X. Geng, and M. Ikeuchi (2004)
Plant Cell Physiol. 45, 1729-1737
   Abstract »    Full Text »    PDF »
Circadian Timing Mechanism in the Prokaryotic Clock System of Cyanobacteria.
H. Iwasaki and T. Kondo (2004)
J Biol Rhythms 19, 436-444
   Abstract »    PDF »
Structure and Molecular Phylogeny of sasA Genes in Cyanobacteria: Insights into Evolution of the Prokaryotic Circadian System.
V. Dvornyk, H.-W. Deng, and E. Nevo (2004)
Mol. Biol. Evol. 21, 1468-1476
   Abstract »    Full Text »    PDF »
Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: Implications for KaiC regulation.
I. Vakonakis and A. C. LiWang (2004)
PNAS 101, 10925-10930
   Abstract »    Full Text »    PDF »
PsfR, a factor that stimulates psbAI expression in the cyanobacterium Synechococcus elongatus PCC 7942.
C. Thomas, C. R. Andersson, S. R. Canales, and S. S. Golden (2004)
Microbiology 150, 1031-1040
   Abstract »    Full Text »    PDF »
The Art of Entrainment.
T. Roenneberg, S. Daan, and M. Merrow (2003)
J Biol Rhythms 18, 183-194
   Abstract »    PDF »
A Suite of Photoreceptors Entrains the Plant Circadian Clock.
A. J. Millar (2003)
J Biol Rhythms 18, 217-226
   Abstract »    PDF »
Biochemical Properties of CikA, an Unusual Phytochrome-like Histidine Protein Kinase That Resets the Circadian Clock in Synechococcus elongatus PCC 7942.
M. Mutsuda, K.-P. Michel, X. Zhang, B. L. Montgomery, and S. S. Golden (2003)
J. Biol. Chem. 278, 19102-19110
   Abstract »    Full Text »    PDF »
Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC.
Y. Xu, T. Mori, and C. H. Johnson (2003)
EMBO J. 22, 2117-2126
   Abstract »    Full Text »    PDF »
Prokaryotic Development: Emerging Insights.
L. Kroos and J. R. Maddock (2003)
J. Bacteriol. 185, 1128-1146
   Full Text »    PDF »
ldpA Encodes an Iron-Sulfur Protein Involved in Light-Dependent Modulation of the Circadian Period in the Cyanobacterium Synechococcuselongatus PCC 7942.
M. Katayama, T. Kondo, J. Xiong, and S. S. Golden (2003)
J. Bacteriol. 185, 1415-1422
   Abstract »    Full Text »    PDF »
The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function.
D. Staiger, L. Allenbach, N. Salathia, V. Fiechter, S. J. Davis, A. J. Millar, J. Chory, and C. Fankhauser (2003)
Genes & Dev. 17, 256-268
   Abstract »    Full Text »    PDF »
Roles for WHITE COLLAR-1 in Circadian and General Photoperception in Neurospora crassa.
K. Lee, J. C. Dunlap, and J. J. Loros (2003)
Genetics 163, 103-114
   Abstract »    Full Text »    PDF »
Nonlinear partial differential equations and applications: Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: A potential clock input mechanism.
S. B. Williams, I. Vakonakis, S. S. Golden, and A. C. LiWang (2002)
PNAS 99, 15357-15362
   Abstract »    Full Text »    PDF »
The out of phase 1 Mutant Defines a Role for PHYB in Circadian Phase Control in Arabidopsis.
P. A. Salome, T. P. Michael, E. V. Kearns, A. G. Fett-Neto, R. A. Sharrock, and C. R. McClung (2002)
Plant Physiology 129, 1674-1685
   Abstract »    Full Text »    PDF »
Roles for Sigma Factors in Global Circadian Regulation of the Cyanobacterial Genome.
U. Nair, J. L. Ditty, H. Min, and S. S. Golden (2002)
J. Bacteriol. 184, 3530-3538
   Abstract »    Full Text »    PDF »
Resetting of the Circadian Clock by Phytochromes and Cryptochromes in Arabidopsis.
M. J. Yanovsky, M. A. Mazzella, G. C. Whitelam, and J. J. Casal (2001)
J Biol Rhythms 16, 523-530
   Abstract »    PDF »
The Phytochromes, a Family of Red/Far-red Absorbing Photoreceptors.
C. Fankhauser (2001)
J. Biol. Chem. 276, 11453-11456
   Full Text »    PDF »
Time for Plants. Progress in Plant Chronobiology.
S. S. Golden and C. Strayer (2001)
Plant Physiology 125, 98-101
   Full Text »
Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor.
Y.-S. J. Ho, L. M. Burden, and J. H. Hurley (2000)
EMBO J. 19, 5288-5299
   Abstract »    Full Text »    PDF »
The Current State and Problems of Circadian Clock Studies in Cyanobacteria.
H. Iwasaki and T. Kondo (2000)
Plant Cell Physiol. 41, 1013-1020
   Abstract »    Full Text »    PDF »
The Phytochromes, a Family of Red/Far-red Absorbing Photoreceptors.
C. Fankhauser (2001)
J. Biol. Chem. 276, 11453-11456
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882