Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 289 (5480): 768-771

Copyright © 2000 by the American Association for the Advancement of Science

Cloning of the Arabidopsis Clock Gene TOC1, an Autoregulatory Response Regulator Homolog

Carl Strayer,12 Tokitaka Oyama,1 Thomas F. Schultz,1 Ramanujam Raman,1 David E. Somers,1* Paloma Más,1 Satchidananda Panda,1 Joel A. Kreps,1 Steve A. Kay1dagger ddagger

The toc1 mutation causes shortened circadian rhythms in light-grown Arabidopsis plants. Here, we report the same toc1 effect in the absence of light input to the clock. We also show that TOC1 controls photoperiodic flowering response through clock function. The TOC1 gene was isolated and found to encode a nuclear protein containing an atypical response regulator receiver domain and two motifs that suggest a role in transcriptional regulation: a basic motif conserved within the CONSTANS family of transcription factors and an acidic domain. TOC1 is itself circadianly regulated and participates in a feedback loop to control its own expression.

1 Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
2 Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
*   Present address: Department of Plant Biology, Ohio State University, Columbus, OH 43210, USA.

dagger    Present address: Novartis Agricultural Discovery Institute, San Diego, CA 92121, USA.

ddagger    To whom correspondence should be addressed. E-mail: stevek{at}scripps.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9.
M. N. Zeilinger, E. M. Farre, S. R. Taylor, S. A. Kay, and F. J. Doyle III (2014)
Mol Syst Biol 2, 58
   Abstract »    Full Text »    PDF »
Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana.
J. C. W. Locke, L. Kozma-Bognar, P. D. Gould, B. Feher, E. Kevei, F. Nagy, M. S. Turner, A. Hall, and A. J. Millar (2014)
Mol Syst Biol 2, 59
   Abstract »    Full Text »    PDF »
Extension of a genetic network model by iterative experimentation and mathematical analysis.
J. C. W. Locke, M. M. Southern, L. Kozma-Bognar, V. Hibberd, P. E. Brown, M. S. Turner, and A. J. Millar (2014)
Mol Syst Biol 1, 2005.0013
   Abstract »    Full Text »    PDF »
Ambient Temperature Signal Feeds into the Circadian Clock Transcriptional Circuitry Through the EC Night-Time Repressor in Arabidopsis thaliana.
T. Mizuno, Y. Nomoto, H. Oka, M. Kitayama, A. Takeuchi, M. Tsubouchi, and T. Yamashino (2014)
Plant Cell Physiol.
   Abstract »    Full Text »    PDF »
The impact of chromatin dynamics on plant light responses and circadian clock function.
F. Barneche, J. Malapeira, and P. Mas (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Multiple Layers of Posttranslational Regulation Refine Circadian Clock Activity in Arabidopsis.
P. J. Seo and P. Mas (2014)
PLANT CELL 26, 79-87
   Abstract »    Full Text »    PDF »
Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function.
R. Liu, Y.-H. Xu, S.-C. Jiang, K. Lu, Y.-F. Lu, X.-J. Feng, Z. Wu, S. Liang, Y.-T. Yu, X.-F. Wang, et al. (2013)
J. Exp. Bot. 64, 5443-5456
   Abstract »    Full Text »    PDF »
Iron Is Involved in the Maintenance of Circadian Period Length in Arabidopsis.
Y.-Y. Chen, Y. Wang, L.-J. Shin, J.-F. Wu, V. Shanmugam, M. Tsednee, J.-C. Lo, C.-C. Chen, S.-H. Wu, and K.-C. Yeh (2013)
Plant Physiology 161, 1409-1420
   Abstract »    Full Text »    PDF »
Accurate timekeeping is controlled by a cycling activator in Arabidopsis.
P. Y. Hsu, U. K. Devisetty, and S. L. Harmer (2013)
eLife Sci 2, e00473
   Abstract »    Full Text »    PDF »
OsELF3 Is Involved in Circadian Clock Regulation for Promoting Flowering under Long-Day Conditions in Rice.
Y. Yang, Q. Peng, G.-X. Chen, X.-H. Li, and C.-Y. Wu (2013)
Mol Plant 6, 202-215
   Abstract »    Full Text »    PDF »
Ordered changes in histone modifications at the core of the Arabidopsis circadian clock.
J. Malapeira, L. C. Khaitova, and P. Mas (2012)
PNAS 109, 21540-21545
   Abstract »    Full Text »    PDF »
Circadian Clock Regulates Dynamic Chromatin Modifications Associated with Arabidopsis CCA1/LHY and TOC1 Transcriptional Rhythms.
H. Hemmes, R. Henriques, I.-C. Jang, S. Kim, and N.-H. Chua (2012)
Plant Cell Physiol. 53, 2016-2029
   Abstract »    Full Text »    PDF »
Transcriptional repressor PRR5 directly regulates clock-output pathways.
N. Nakamichi, T. Kiba, M. Kamioka, T. Suzuki, T. Yamashino, T. Higashiyama, H. Sakakibara, and T. Mizuno (2012)
PNAS 109, 17123-17128
   Abstract »    Full Text »    PDF »
Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 Causes Circadian Clock Defects.
M. A. Jones, B. A. Williams, J. McNicol, C. G. Simpson, J. W. S. Brown, and S. L. Harmer (2012)
PLANT CELL 24, 4066-4082
   Abstract »    Full Text »    PDF »
The CRYPTOCHROME1-Dependent Response to Excess Light Is Mediated through the Transcriptional Activators ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 and ZML2 in Arabidopsis.
J. Shaikhali, J. de Dios Barajas-Lopez, K. Otvos, D. Kremnev, A. S. Garcia, V. Srivastava, G. Wingsle, L. Bako, and A. Strand (2012)
PLANT CELL 24, 3009-3025
   Abstract »    Full Text »    PDF »
Newly Described Components and Regulatory Mechanisms of Circadian Clock Function in Arabidopsis thaliana.
M. A. Troncoso-Ponce and P. Mas (2012)
Mol Plant 5, 545-553
   Abstract »    Full Text »    PDF »
Time for a Nuclear Meeting: Protein Trafficking and Chromatin Dynamics Intersect in the Plant Circadian System.
E. Herrero and S. J. Davis (2012)
Mol Plant 5, 554-565
   Abstract »    Full Text »    PDF »
GIGANTEA and EARLY FLOWERING 4 in Arabidopsis Exhibit Differential Phase-Specific Genetic Influences over a Diurnal Cycle.
Y. Kim, M. Yeom, H. Kim, J. Lim, H. J. Koo, D. Hwang, D. Somers, and H. G. Nam (2012)
Mol Plant 5, 678-687
   Abstract »    Full Text »    PDF »
Mapping the Core of the Arabidopsis Circadian Clock Defines the Network Structure of the Oscillator.
W. Huang, P. Perez-Garcia, A. Pokhilko, A. J. Millar, I. Antoshechkin, J. L. Riechmann, and P. Mas (2012)
Science 336, 75-79
   Abstract »    Full Text »    PDF »
Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two Arabidopsis Ecotypes and Their Reciprocal Hybrids.
H. Shen, H. He, J. Li, W. Chen, X. Wang, L. Guo, Z. Peng, G. He, S. Zhong, Y. Qi, et al. (2012)
PLANT CELL 24, 875-892
   Abstract »    Full Text »    PDF »
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
J. M. Gendron, J. L. Pruneda-Paz, C. J. Doherty, A. M. Gross, S. E. Kang, and S. A. Kay (2012)
PNAS 109, 3167-3172
   Abstract »    Full Text »    PDF »
Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis.
Y.-H. Xu, R. Liu, L. Yan, Z.-Q. Liu, S.-C. Jiang, Y.-Y. Shen, X.-F. Wang, and D.-P. Zhang (2012)
J. Exp. Bot. 63, 1095-1106
   Abstract »    Full Text »    PDF »
CCA1 and ELF3 Interact in the Control of Hypocotyl Length and Flowering Time in Arabidopsis.
S. X. Lu, C. J. Webb, S. M. Knowles, S. H. J. Kim, Z. Wang, and E. M. Tobin (2012)
Plant Physiology 158, 1079-1088
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Underlying the Arabidopsis Circadian Clock.
N. Nakamichi (2011)
Plant Cell Physiol. 52, 1709-1718
   Abstract »    Full Text »    PDF »
Characterization of Oncidium 'Gower Ramsey' Transcriptomes using 454 GS-FLX Pyrosequencing and Their Application to the Identification of Genes Associated with Flowering Time.
Y.-Y. Chang, Y.-W. Chu, C.-W. Chen, W.-M. Leu, H.-F. Hsu, and C.-H. Yang (2011)
Plant Cell Physiol. 52, 1532-1545
   Abstract »    Full Text »    PDF »
Conserved and Divergent Rhythms of Crassulacean Acid Metabolism-Related and Core Clock Gene Expression in the Cactus Opuntia ficus-indica.
I. Mallona, M. Egea-Cortines, and J. Weiss (2011)
Plant Physiology 156, 1978-1989
   Abstract »    Full Text »    PDF »
Circadian oscillation of gibberellin signaling in Arabidopsis.
M. V. Arana, N. Marin-de la Rosa, J. N. Maloof, M. A. Blazquez, and D. Alabadi (2011)
PNAS 108, 9292-9297
   Abstract »    Full Text »    PDF »
A High-Throughput Screening System for Arabidopsis Transcription Factors and Its Application to Med25-Dependent Transcriptional Regulation.
B. Ou, K.-Q. Yin, S.-N. Liu, Y. Yang, T. Gu, J. M. Wing Hui, L. Zhang, J. Miao, Y. Kondou, M. Matsui, et al. (2011)
Mol Plant 4, 546-555
   Abstract »    Full Text »    PDF »
Os-GIGANTEA Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field.
T. Izawa, M. Mihara, Y. Suzuki, M. Gupta, H. Itoh, A. J. Nagano, R. Motoyama, Y. Sawada, M. Yano, M. Y. Hirai, et al. (2011)
PLANT CELL 23, 1741-1755
   Abstract »    Full Text »    PDF »
Constitutive expression of the GIGANTEA Ortholog Affects Circadian Rhythms and Suppresses One-shot Induction of Flowering in Pharbitis nil, a Typical Short-day Plant.
Y. Higuchi, K. Sage-Ono, R. Sasaki, N. Ohtsuki, A. Hoshino, S. Iida, H. Kamada, and M. Ono (2011)
Plant Cell Physiol. 52, 638-650
   Abstract »    Full Text »    PDF »
Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA1 transcription factor.
J. d. D. Barajas-Lopez, A. J. Serrato, R. Cazalis, Y. Meyer, A. Chueca, J. P. Reichheld, and M. Sahrawy (2011)
J. Exp. Bot. 62, 2039-2051
   Abstract »    Full Text »    PDF »
BROTHER OF LUX ARRHYTHMO Is a Component of the Arabidopsis Circadian Clock.
S. Dai, X. Wei, L. Pei, R. L. Thompson, Y. Liu, J. E. Heard, T. G. Ruff, and R. N. Beachy (2011)
PLANT CELL 23, 961-972
   Abstract »    Full Text »    PDF »
Network Quantitative Trait Loci Mapping of Circadian Clock Outputs Identifies Metabolic Pathway-to-Clock Linkages in Arabidopsis.
R. E. Kerwin, J. M. Jimenez-Gomez, D. Fulop, S. L. Harmer, J. N. Maloof, and D. J. Kliebenstein (2011)
PLANT CELL 23, 471-485
   Abstract »    Full Text »    PDF »
LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 Form a Positive Feedback Regulatory Loop in the Arabidopsis Circadian Clock.
Y. Wang, J.-F. Wu, N. Nakamichi, H. Sakakibara, H.-G. Nam, and S.-H. Wu (2011)
PLANT CELL 23, 486-498
   Abstract »    Full Text »    PDF »
The Jumonji C Domain-Containing Protein JMJ30 Regulates Period Length in the Arabidopsis Circadian Clock.
S. X. Lu, S. M. Knowles, C. J. Webb, R. B. Celaya, C. Cha, J. P. Siu, and E. M. Tobin (2011)
Plant Physiology 155, 906-915
   Abstract »    Full Text »    PDF »
The Role of the Arabidopsis Morning Loop Components CCA1, LHY, PRR7, and PRR9 in Temperature Compensation.
P. A. Salome, D. Weigel, and C. R. McClung (2010)
PLANT CELL 22, 3650-3661
   Abstract »    Full Text »    PDF »
Genomewide Characterization of the Light-Responsive and Clock-Controlled Output Pathways in Lotus japonicus with Special Emphasis of its Uniqueness.
N. Ono, K. Ishida, T. Yamashino, H. Nakanishi, S. Sato, S. Tabata, and T. Mizuno (2010)
Plant Cell Physiol. 51, 1800-1814
   Abstract »    Full Text »    PDF »
Rapid Assessment of Gene Function in the Circadian Clock Using Artificial MicroRNA in Arabidopsis Mesophyll Protoplasts.
J. Kim and D. E. Somers (2010)
Plant Physiology 154, 611-621
   Abstract »    Full Text »    PDF »
Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees.
C. Ibanez, I. Kozarewa, M. Johansson, E. Ogren, A. Rohde, and M. E. Eriksson (2010)
Plant Physiology 153, 1823-1833
   Abstract »    Full Text »    PDF »
PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock.
L. Wang, S. Fujiwara, and D. E. Somers (2010)
EMBO J. 29, 1903-1915
   Abstract »    Full Text »    PDF »
Robust Circadian Rhythms of Gene Expression in Brassica rapa Tissue Culture.
X. Xu, Q. Xie, and C. R. McClung (2010)
Plant Physiology 153, 841-850
   Abstract »    Full Text »    PDF »
F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control Arabidopsis Clock Progression.
A. Baudry, S. Ito, Y. H. Song, A. A. Strait, T. Kiba, S. Lu, R. Henriques, J. L. Pruneda-Paz, N. H. Chua, E. M. Tobin, et al. (2010)
PLANT CELL 22, 606-622
   Abstract »    Full Text »    PDF »
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 Are Transcriptional Repressors in the Arabidopsis Circadian Clock.
N. Nakamichi, T. Kiba, R. Henriques, T. Mizuno, N. H. Chua, and H. Sakakibara (2010)
PLANT CELL 22, 594-605
   Abstract »    Full Text »    PDF »
Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock.
B. Thines and F. G. Harmon (2010)
PNAS 107, 3257-3262
   Abstract »    Full Text »    PDF »
TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought.
T. Legnaioli, J. Cuevas, and P. Mas (2009)
EMBO J. 28, 3745-3757
   Abstract »    Full Text »    PDF »
The Arabidopsis B-Box Zinc Finger Family.
R. Khanna, B. Kronmiller, D. R. Maszle, G. Coupland, M. Holm, T. Mizuno, and S.-H. Wu (2009)
PLANT CELL 21, 3416-3420
   Full Text »    PDF »
Clocks in the Green Lineage: Comparative Functional Analysis of the Circadian Architecture of the Picoeukaryote Ostreococcus.
F. Corellou, C. Schwartz, J.-P. Motta, E. B. Djouani-Tahri, F. Sanchez, and F.-Y. Bouget (2009)
PLANT CELL 21, 3436-3449
   Abstract »    Full Text »    PDF »
DIE NEUTRALIS and LATE BLOOMER 1 Contribute to Regulation of the Pea Circadian Clock.
L. C. Liew, V. Hecht, R. E. Laurie, C. L. Knowles, J. K. Vander Schoor, R. C. Macknight, and J. L. Weller (2009)
PLANT CELL 21, 3198-3211
   Abstract »    Full Text »    PDF »
Functional Analysis of Transcription Factors in Arabidopsis.
N. Mitsuda and M. Ohme-Takagi (2009)
Plant Cell Physiol. 50, 1232-1248
   Abstract »    Full Text »    PDF »
A Role for Multiple Circadian Clock Genes in the Response to Signals That Break Seed Dormancy in Arabidopsis.
S. Penfield and A. Hall (2009)
PLANT CELL 21, 1722-1732
   Abstract »    Full Text »    PDF »
Posttranslational Regulation of CIRCADIAN CLOCK ASSOCIATED1 in the Circadian Oscillator of Arabidopsis.
E. Yakir, D. Hilman, I. Kron, M. Hassidim, N. Melamed-Book, and R. M. Green (2009)
Plant Physiology 150, 844-857
   Abstract »    Full Text »    PDF »
Combinatorial Regulation by a Novel Arrangement of FruA and MrpC2 Transcription Factors during Myxococcus xanthus Development.
S. Mittal and L. Kroos (2009)
J. Bacteriol. 191, 2753-2763
   Abstract »    Full Text »    PDF »
The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana.
Y. Niwa, T. Yamashino, and T. Mizuno (2009)
Plant Cell Physiol. 50, 838-854
   Abstract »    Full Text »    PDF »
A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock.
J. L. Pruneda-Paz, G. Breton, A. Para, and S. A. Kay (2009)
Science 323, 1481-1485
   Abstract »    Full Text »    PDF »
Transcript Profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR Arrhythmic Triple Mutant Reveals a Role for the Circadian Clock in Cold Stress Response.
N. Nakamichi, M. Kusano, A. Fukushima, M. Kita, S. Ito, T. Yamashino, K. Saito, H. Sakakibara, and T. Mizuno (2009)
Plant Cell Physiol. 50, 447-462
   Abstract »    Full Text »    PDF »
A combination of unusual transcription factors binds cooperatively to control Myxococcus xanthus developmental gene expression.
S. Mittal and L. Kroos (2009)
PNAS 106, 1965-1970
   Abstract »    Full Text »    PDF »
A Genetic Study of the Arabidopsis Circadian Clock with Reference to the TIMING OF CAB EXPRESSION 1 (TOC1) Gene.
S. Ito, H. Kawamura, Y. Niwa, N. Nakamichi, T. Yamashino, and T. Mizuno (2009)
Plant Cell Physiol. 50, 290-303
   Abstract »    Full Text »    PDF »
Alterations in the Endogenous Ascorbic Acid Content Affect Flowering Time in Arabidopsis.
S. O. Kotchoni, K. E. Larrimore, M. Mukherjee, C. F. Kempinski, and C. Barth (2009)
Plant Physiology 149, 803-815
   Abstract »    Full Text »    PDF »
Genetic and Molecular Characterization of the VRN2 Loci in Tetraploid Wheat.
A. Distelfeld, G. Tranquilli, C. Li, L. Yan, and J. Dubcovsky (2009)
Plant Physiology 149, 245-257
   Abstract »    Full Text »    PDF »
Testing Time: Can Ethanol-Induced Pulses of Proposed Oscillator Components Phase Shift Rhythms in Arabidopsis?.
S. M. Knowles, S. X. Lu, and E. M. Tobin (2008)
J Biol Rhythms 23, 463-S 471
   Abstract »    PDF »
Involvement of Arabidopsis Clock-Associated Pseudo-Response Regulators in Diurnal Oscillations of Gene Expression in the Presence of Environmental Time Cues.
T. Yamashino, S. Ito, Y. Niwa, A. Kunihiro, N. Nakamichi, and T. Mizuno (2008)
Plant Cell Physiol. 49, 1839-1850
   Abstract »    Full Text »    PDF »
Two New Clock Proteins, LWD1 and LWD2, Regulate Arabidopsis Photoperiodic Flowering.
J.-F. Wu, Y. Wang, and S.-H. Wu (2008)
Plant Physiology 148, 948-959
   Abstract »    Full Text »    PDF »
SENSITIVE TO FREEZING6 Integrates Cellular and Environmental Inputs to the Plant Circadian Clock.
H. Knight, A. J.W. Thomson, and H. G. McWatters (2008)
Plant Physiology 148, 293-303
   Abstract »    Full Text »    PDF »
Post-translational Regulation of the Arabidopsis Circadian Clock through Selective Proteolysis and Phosphorylation of Pseudo-response Regulator Proteins.
S. Fujiwara, L. Wang, L. Han, S.-S. Suh, P. A. Salome, C. R. McClung, and D. E. Somers (2008)
J. Biol. Chem. 283, 23073-23083
   Abstract »    Full Text »    PDF »
Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus.
T. Y. P. Chia, A. Muller, C. Jung, and E. S. Mutasa-Gottgens (2008)
J. Exp. Bot. 59, 2735-2748
   Abstract »    Full Text »    PDF »
Circadian Timekeeping during Early Arabidopsis Development.
P. A. Salome, Q. Xie, and C. R. McClung (2008)
Plant Physiology 147, 1110-1125
   Abstract »    Full Text »    PDF »
XAP5 CIRCADIAN TIMEKEEPER Coordinates Light Signals for Proper Timing of Photomorphogenesis and the Circadian Clock in Arabidopsis.
E. L. Martin-Tryon and S. L. Harmer (2008)
PLANT CELL 20, 1244-1259
   Abstract »    Full Text »    PDF »
The green yeast uses its plant-like clock to regulate its animal-like tail.
M. Brunner and M. Merrow (2008)
Genes & Dev. 22, 825-831
   Full Text »    PDF »
Functional Conservation of Clock-Related Genes in Flowering Plants: Overexpression and RNA Interference Analyses of the Circadian Rhythm in the Monocotyledon Lemna gibba.
M. Serikawa, K. Miwa, T. Kondo, and T. Oyama (2008)
Plant Physiology 146, 1952-1963
   Abstract »    Full Text »    PDF »
Identification of Dynamin as an Interactor of Rice GIGANTEA by Tandem Affinity Purification (TAP).
M. Abe, M. Fujiwara, K.-i. Kurotani, S. Yokoi, and K. Shimamoto (2008)
Plant Cell Physiol. 49, 420-432
   Abstract »    Full Text »    PDF »
COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis.
L.-J. Liu, Y.-C. Zhang, Q.-H. Li, Y. Sang, J. Mao, H.-L. Lian, L. Wang, and H.-Q. Yang (2008)
PLANT CELL 20, 292-306
   Abstract »    Full Text »    PDF »
Insight into Missing Genetic Links Between Two Evening-Expressed Pseudo-Response Regulator Genes TOC1 and PRR5 in the Circadian Clock-Controlled Circuitry in Arabidopsis thaliana.
S. Ito, Y. Niwa, N. Nakamichi, H. Kawamura, T. Yamashino, and T. Mizuno (2008)
Plant Cell Physiol. 49, 201-213
   Abstract »    Full Text »    PDF »
FIONA1 Is Essential for Regulating Period Length in the Arabidopsis Circadian Clock.
J. Kim, Y. Kim, M. Yeom, J.-H. Kim, and H. G. Nam (2008)
PLANT CELL 20, 307-319
   Abstract »    Full Text »    PDF »
The 14-3-3 Proteins {micro} and {upsilon} Influence Transition to Flowering and Early Phytochrome Response.
J. D. Mayfield, K. M. Folta, A.-L. Paul, and R. J. Ferl (2007)
Plant Physiology 145, 1692-1702
   Abstract »    Full Text »    PDF »
Rhythmic and Light-Inducible Appearance of Clock-Associated Pseudo-Response Regulator Protein PRR9 Through Programmed Degradation in the Dark in Arabidopsis thaliana.
S. Ito, N. Nakamichi, T. Kiba, T. Yamashino, and T. Mizuno (2007)
Plant Cell Physiol. 48, 1644-1651
   Abstract »    Full Text »    PDF »
PRR3 Is a Vascular Regulator of TOC1 Stability in the Arabidopsis Circadian Clock.
A. Para, E. M. Farre, T. Imaizumi, J. L. Pruneda-Paz, F. G. Harmon, and S. A. Kay (2007)
PLANT CELL 19, 3462-3473
   Abstract »    Full Text »    PDF »
Distinct Light and Clock Modulation of Cytosolic Free Ca2+ Oscillations and Rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 Promoter Activity in Arabidopsis.
X. Xu, C. T. Hotta, A. N. Dodd, J. Love, R. Sharrock, Y. W. Lee, Q. Xie, C. H. Johnson, and A. A.R. Webb (2007)
PLANT CELL 19, 3474-3490
   Abstract »    Full Text »    PDF »
Move on up, it's time for change mobile signals controlling photoperiod-dependent flowering.
Y. Kobayashi and D. Weigel (2007)
Genes & Dev. 21, 2371-2384
   Abstract »    Full Text »    PDF »
Differential Expression of Genes Important for Adaptation in Capsella bursa-pastoris (Brassicaceae).
T. Slotte, K. Holm, L. M. McIntyre, U. Lagercrantz, and M. Lascoux (2007)
Plant Physiology 145, 160-173
   Abstract »    Full Text »    PDF »
Targeted Degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL Complex Regulates Clock Function and Photomorphogenesis in Arabidopsis thaliana.
T. Kiba, R. Henriques, H. Sakakibara, and N.-H. Chua (2007)
PLANT CELL 19, 2516-2530
   Abstract »    Full Text »    PDF »
Genetic Linkages of the Circadian Clock-Associated Genes, TOC1, CCA1 and LHY, in the Photoperiodic Control of Flowering Time in Arabidopsis thaliana.
Y. Niwa, S. Ito, N. Nakamichi, T. Mizoguchi, K. Niinuma, T. Yamashino, and T. Mizuno (2007)
Plant Cell Physiol. 48, 925-937
   Abstract »    Full Text »    PDF »
Genetic Linkages Between Circadian Clock-Associated Components and Phytochrome-Dependent Red Light Signal Transduction in Arabidopsis thaliana.
S. Ito, N. Nakamichi, Y. Nakamura, Y. Niwa, T. Kato, M. Murakami, M. Kita, T. Mizoguchi, K. Niinuma, T. Yamashino, et al. (2007)
Plant Cell Physiol. 48, 971-983
   Abstract »    Full Text »    PDF »
A Complex Genetic Interaction Between Arabidopsis thaliana TOC1 and CCA1/LHY in Driving the Circadian Clock and in Output Regulation.
Z. Ding, M. R. Doyle, R. M. Amasino, and S. J. Davis (2007)
Genetics 176, 1501-1510
   Abstract »    Full Text »    PDF »
A Functional Link between Rhythmic Changes in Chromatin Structure and the Arabidopsis Biological Clock.
M. Perales and P. Mas (2007)
PLANT CELL 19, 2111-2123
   Abstract »    Full Text »    PDF »
Arabidopsis Clock-Associated Pseudo-Response Regulators PRR9, PRR7 and PRR5 Coordinately and Positively Regulate Flowering Time Through the Canonical CONSTANS-Dependent Photoperiodic Pathway.
N. Nakamichi, M. Kita, K. Niinuma, S. Ito, T. Yamashino, T. Mizoguchi, and T. Mizuno (2007)
Plant Cell Physiol. 48, 822-832
   Abstract »    Full Text »    PDF »
Pea LATE BLOOMER1 Is a GIGANTEA Ortholog with Roles in Photoperiodic Flowering, Deetiolation, and Transcriptional Regulation of Circadian Clock Gene Homologs.
V. Hecht, C. L. Knowles, J. K. Vander Schoor, L. C. Liew, S. E. Jones, M. J.M. Lambert, and J. L. Weller (2007)
Plant Physiology 144, 648-661
   Abstract »    Full Text »    PDF »
TIME FOR COFFEE Encodes a Nuclear Regulator in the Arabidopsis thaliana Circadian Clock.
Z. Ding, A. J. Millar, A. M. Davis, and S. J. Davis (2007)
PLANT CELL 19, 1522-1536
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882