Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 289 (5488): 2344-2347

Copyright © 2000 by the American Association for the Advancement of Science

Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling

Aurélio Balsalobre,1 Steven A. Brown,1 Lysiane Marcacci,1 François Tronche,2 Christoph Kellendonk,2* Holger M. Reichardt,2 Günther Schütz,2 Ueli Schibler1dagger

In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene expression in liver, kidney, and heart. However, dexamethasone does not affect cyclic gene expression in neurons of the suprachiasmatic nucleus. This enabled us to establish an apparent phase-shift response curve specifically for peripheral clocks in intact animals. In contrast to the central clock, circadian oscillators in peripheral tissues appear to remain responsive to phase resetting throughout the day.

1 Département de Biologie Moléculaire, Sciences II, Université de Genève, 30 Quai Ernest Ansermet, CH-1211 Genève, Switzerland.
2 Molecular Biology of the Cell, Deutsches Krebsforschungzentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Federal Republic of Germany.
*   Present address: Center for Neurobiology and Behavior, 722 West 168th Street, Research Annex, New York, NY 10032, USA

dagger    To whom correspondence should be addressed. E-mail: ueli.schibler{at}molbio.unige.ch


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Nuclear receptors rock around the clock.
X. Zhao, H. Cho, R. T. Yu, A. R. Atkins, M. Downes, and R. M. Evans (2014)
EMBO Rep.
   Abstract »    Full Text »    PDF »
Dynamical signatures of cellular fluctuations and oscillator stability in peripheral circadian clocks.
J. Rougemont and F. Naef (2014)
Mol Syst Biol 3, 93
   Abstract »    Full Text »    PDF »
Phase-dependent resetting of the adrenal clock by ACTH in vitro.
J. M. Yoder, M. Brandeland, and W. C. Engeland (2014)
Am J Physiol Regulatory Integrative Comp Physiol 306, R387-R393
   Abstract »    Full Text »    PDF »
Tick-tock: Is your cardiometabolic risk on the clock?.
R. Stohr, N. Marx, and M. Federici (2014)
Diabetes and Vascular Disease Research 11, 66-74
   Abstract »    Full Text »    PDF »
Organ-specific development characterizes circadian clock gene Per2 expression in rats.
S.-y. Nishide, K. Hashimoto, T. Nishio, K.-i. Honma, and S. Honma (2014)
Am J Physiol Regulatory Integrative Comp Physiol 306, R67-R74
   Abstract »    Full Text »    PDF »
Food for Thought: Hormonal, Experiential, and Neural Influences on Feeding and Obesity.
I. N. Karatsoreos, J. P. Thaler, S. L. Borgland, F. A. Champagne, Y. L. Hurd, and M. N. Hill (2013)
J. Neurosci. 33, 17610-17616
   Abstract »    Full Text »    PDF »
Molecular bases of circadian rhythmicity in renal physiology and pathology.
O. Bonny, M. Vinciguerra, M. L. Gumz, and G. Mazzoccoli (2013)
Nephrol. Dial. Transplant. 28, 2421-2431
   Abstract »    Full Text »    PDF »
Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm.
S. Cheon, N. Park, S. Cho, and K. Kim (2013)
Nucleic Acids Res. 41, 6161-6174
   Abstract »    Full Text »    PDF »
Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks.
C. Saini, A. Liani, T. Curie, P. Gos, F. Kreppel, Y. Emmenegger, L. Bonacina, J.-P. Wolf, Y.-A. Poget, P. Franken, et al. (2013)
Genes & Dev. 27, 1526-1536
   Abstract »    Full Text »    PDF »
Mechanism of the circadian clock in physiology.
J. Richards and M. L. Gumz (2013)
Am J Physiol Regulatory Integrative Comp Physiol 304, R1053-R1064
   Abstract »    Full Text »    PDF »
Fibroblast PER2 Circadian Rhythmicity Depends on Cell Density.
T. Noguchi, L. L. Wang, and D. K. Welsh (2013)
J Biol Rhythms 28, 183-192
   Abstract »    Full Text »    PDF »
Molecular Mechanism Regulating 24-Hour Rhythm of Dopamine D3 Receptor Expression in Mouse Ventral Striatum.
E. Ikeda, N. Matsunaga, K. Kakimoto, K. Hamamura, A. Hayashi, S. Koyanagi, and S. Ohdo (2013)
Mol. Pharmacol. 83, 959-967
   Abstract »    Full Text »    PDF »
Rhythmic Control of the ARF-MDM2 Pathway by ATF4 Underlies Circadian Accumulation of p53 in Malignant Cells.
M. Horiguchi, S. Koyanagi, A. M. Hamdan, K. Kakimoto, N. Matsunaga, C. Yamashita, and S. Ohdo (2013)
Cancer Res. 73, 2639-2649
   Abstract »    Full Text »    PDF »
FSH induces the development of circadian clockwork in rat granulosa cells via a gap junction protein Cx43-dependent pathway.
H. Chen, L. Zhao, G. Chu, G. Kito, N. Yamauchi, Y. Shigeyoshi, S. Hashimoto, and M.-a. Hattori (2013)
Am J Physiol Endocrinol Metab 304, E566-E575
   Abstract »    Full Text »    PDF »
Chronic mild stress alters circadian expressions of molecular clock genes in the liver.
K. Takahashi, T. Yamada, S. Tsukita, K. Kaneko, Y. Shirai, Y. Munakata, Y. Ishigaki, J. Imai, K. Uno, Y. Hasegawa, et al. (2013)
Am J Physiol Endocrinol Metab 304, E301-E309
   Abstract »    Full Text »    PDF »
NONO couples the circadian clock to the cell cycle.
E. Kowalska, J. A. Ripperger, D. C. Hoegger, P. Bruegger, T. Buch, T. Birchler, A. Mueller, U. Albrecht, C. Contaldo, and S. A. Brown (2013)
PNAS 110, 1592-1599
   Abstract »    Full Text »    PDF »
Time matters: pathological effects of repeated psychosocial stress during the active, but not inactive, phase of male mice.
M. S. Bartlang, I. D. Neumann, D. A. Slattery, N. Uschold-Schmidt, D. Kraus, C. Helfrich-Forster, and S. O. Reber (2012)
J. Endocrinol. 215, 425-437
   Abstract »    Full Text »    PDF »
Distinct Roles of DBHS Family Members in the Circadian Transcriptional Feedback Loop.
E. Kowalska, J. A. Ripperger, C. Muheim, B. Maier, Y. Kurihara, A. H. Fox, A. Kramer, and S. A. Brown (2012)
Mol. Cell. Biol. 32, 4585-4594
   Abstract »    Full Text »    PDF »
Circadian Rhythms of Glucocorticoid Hormone Actions in Target Tissues: Potential Clinical Implications.
T. Kino (2012)
Science Signaling 5, pt4
   Abstract »    Full Text »    PDF »
The Hypersensitive Glucocorticoid Response Specifically Regulates Period 1 and Expression of Circadian Genes.
T. E. Reddy, J. Gertz, G. E. Crawford, M. J. Garabedian, and R. M. Myers (2012)
Mol. Cell. Biol. 32, 3756-3767
   Abstract »    Full Text »    PDF »
Disruption of gene expression rhythms in mice lacking secretory vesicle proteins IA-2 and IA-2{beta}.
S. Punia, K. K. Rumery, E. A. Yu, C. M. Lambert, A. L. Notkins, and D. R. Weaver (2012)
Am J Physiol Endocrinol Metab 303, E762-E776
   Abstract »    Full Text »    PDF »
Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression.
R. Massart, R. Mongeau, and L. Lanfumey (2012)
Phil Trans R Soc B 367, 2485-2494
   Abstract »    Full Text »    PDF »
Advances in understanding the peripheral circadian clocks.
J. Richards and M. L. Gumz (2012)
FASEB J 26, 3602-3613
   Abstract »    Full Text »    PDF »
Kruppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes.
F. Sporl, S. Korge, K. Jurchott, M. Wunderskirchner, K. Schellenberg, S. Heins, A. Specht, C. Stoll, R. Klemz, B. Maier, et al. (2012)
PNAS 109, 10903-10908
   Abstract »    Full Text »    PDF »
Light Acts on the Zebrafish Circadian Clock to Suppress Rhythmic Mitosis and Cell Proliferation.
T. K. Tamai, L. C. Young, C. A. Cox, and D. Whitmore (2012)
J Biol Rhythms 27, 226-236
   Abstract »    Full Text »    PDF »
Assessment of circadian rhythms in humans: comparison of real-time fibroblast reporter imaging with plasma melatonin.
S. Hasan, N. Santhi, A. S. Lazar, A. Slak, J. Lo, M. von Schantz, S. N. Archer, J. D. Johnston, and D.-J. Dijk (2012)
FASEB J 26, 2414-2423
   Abstract »    Full Text »    PDF »
Entrainment of peripheral clock genes by cortisol.
P. D. Mavroudis, J. D. Scheff, S. E. Calvano, S. F. Lowry, and I. P. Androulakis (2012)
Physiol Genomics 44, 607-621
   Abstract »    Full Text »    PDF »
A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure.
M. L. Watson, L. M. Baehr, H. M. Reichardt, J. P. Tuckermann, S. C. Bodine, and J. D. Furlow (2012)
Am J Physiol Endocrinol Metab 302, E1210-E1220
   Abstract »    Full Text »    PDF »
Time-Dependent Interaction between Differentiated Embryo Chondrocyte-2 and CCAAT/Enhancer-Binding Protein {alpha} Underlies the Circadian Expression of CYP2D6 in Serum-Shocked HepG2 Cells.
N. Matsunaga, M. Inoue, N. Kusunose, K. Kakimoto, K. Hamamura, Y. Hanada, A. Toi, Y. Yoshiyama, F. Sato, K. Fujimoto, et al. (2012)
Mol. Pharmacol. 81, 739-747
   Abstract »    Full Text »    PDF »
Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators.
C. Saini, J. Morf, M. Stratmann, P. Gos, and U. Schibler (2012)
Genes & Dev. 26, 567-580
   Abstract »    Full Text »    PDF »
Contribution of FSH and triiodothyronine to the development of circadian clocks during granulosa cell maturation.
G. Chu, I. Misawa, H. Chen, N. Yamauchi, Y. Shigeyoshi, S. Hashimoto, and M.-a. Hattori (2012)
Am J Physiol Endocrinol Metab 302, E645-E653
   Abstract »    Full Text »    PDF »
Rhythmic Interaction between Period1 mRNA and hnRNP Q Leads to Circadian Time-Dependent Translation.
K.-H. Lee, K.-C. Woo, D.-Y. Kim, T.-D. Kim, J. Shin, S. M. Park, S. K. Jang, and K.-T. Kim (2012)
Mol. Cell. Biol. 32, 717-728
   Abstract »    Full Text »    PDF »
Developmental programming of adult obesity and cardiovascular disease in rodents by maternal nutrition imbalance.
C. Remacle, F. Bieswal, V. Bol, and B. Reusens (2011)
Am J Clin Nutr 94, 1846S-1852S
   Abstract »    Full Text »    PDF »
Circadian Rhythms, Aging, and Life Span in Mammals.
O. Froy (2011)
Physiology 26, 225-235
   Abstract »    Full Text »    PDF »
Effects of Vasoactive Intestinal Peptide Genotype on Circadian Gene Expression in the Suprachiasmatic Nucleus and Peripheral Organs.
D. H. Loh, J. M. Dragich, T. Kudo, A. M. Schroeder, T. J. Nakamura, J. A. Waschek, G. D. Block, and C. S. Colwell (2011)
J Biol Rhythms 26, 200-209
   Abstract »    PDF »
Refeeding after Fasting Elicits Insulin-Dependent Regulation of Per2 and Rev-erb{alpha} with Shifts in the Liver Clock.
Y. Tahara, M. Otsuka, Y. Fuse, A. Hirao, and S. Shibata (2011)
J Biol Rhythms 26, 230-240
   Abstract »    PDF »
Serum factors in older individuals change cellular clock properties.
L. Pagani, K. Schmitt, F. Meier, J. Izakovic, K. Roemer, A. Viola, C. Cajochen, A. Wirz-Justice, S. A. Brown, and A. Eckert (2011)
PNAS 108, 7218-7223
   Abstract »    Full Text »    PDF »
Casein Kinase 1-dependent Phosphorylation of Familial Advanced Sleep Phase Syndrome-associated Residues Controls PERIOD 2 Stability.
N. P. Shanware, J. A. Hutchinson, S. H. Kim, L. Zhan, M. J. Bowler, and R. S. Tibbetts (2011)
J. Biol. Chem. 286, 12766-12774
   Abstract »    Full Text »    PDF »
Circadian Rhythm Gene Period 3 Is an Inhibitor of the Adipocyte Cell Fate.
M. J. Costa, A. Y.- L. So, K. Kaasik, K. C. Krueger, M. L. Pillsbury, Y.-H. Fu, L. J. Ptacek, K. R. Yamamoto, and B. J. Feldman (2011)
J. Biol. Chem. 286, 9063-9070
   Abstract »    Full Text »    PDF »
Disruption of circadian clocks has ramifications for metabolism, brain, and behavior.
I. N. Karatsoreos, S. Bhagat, E. B. Bloss, J. H. Morrison, and B. S. McEwen (2011)
PNAS 108, 1657-1662
   Abstract »    Full Text »    PDF »
The Transcriptional Repressor ID2 Can Interact with the Canonical Clock Components CLOCK and BMAL1 and Mediate Inhibitory Effects on mPer1 Expression.
S. M. Ward, S. J. Fernando, T. Y. Hou, and G. E. Duffield (2010)
J. Biol. Chem. 285, 38987-39000
   Abstract »    Full Text »    PDF »
Circadian Integration of Metabolism and Energetics.
J. Bass and J. S. Takahashi (2010)
Science 330, 1349-1354
   Abstract »    Full Text »    PDF »
Circadian Organization Is Governed by Extra-SCN Pacemakers.
P. Pezuk, J. A. Mohawk, T. Yoshikawa, M. T. Sellix, and M. Menaker (2010)
J Biol Rhythms 25, 432-441
   Abstract »    PDF »
Impact of the human circadian system, exercise, and their interaction on cardiovascular function.
F. A. J. L. Scheer, K. Hu, H. Evoniuk, E. E. Kelly, A. Malhotra, M. F. Hilton, and S. A. Shea (2010)
PNAS 107, 20541-20546
   Abstract »    Full Text »    PDF »
Influence of a Time-Restricted Feeding Schedule on the Daily Rhythm of abcb1a Gene Expression and Its Function in Rat Intestine.
Y. Hayashi, K. Ushijima, H. Ando, H. Yanagihara, E. Ishikawa, S.-i. Tsuruoka, K.-i. Sugimoto, and A. Fujimura (2010)
J. Pharmacol. Exp. Ther. 335, 418-423
   Abstract »    Full Text »    PDF »
hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb {alpha} via IRES-mediated translation.
D.-Y. Kim, K.-C. Woo, K.-H. Lee, T.-D. Kim, and K.-T. Kim (2010)
Nucleic Acids Res. 38, 7068-7078
   Abstract »    Full Text »    PDF »
Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators.
E. D. Buhr, S.-H. Yoo, and J. S. Takahashi (2010)
Science 330, 379-385
   Abstract »    Full Text »    PDF »
Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock.
Y. Lee, J. Lee, I. Kwon, Y. Nakajima, Y. Ohmiya, G. H. Son, K. H. Lee, and K. Kim (2010)
J. Cell Sci. 123, 3547-3557
   Abstract »    Full Text »    PDF »
The C. elegans developmental timing protein LIN-42 regulates diapause in response to environmental cues.
J. M. Tennessen, K. J. Opperman, and A. E. Rougvie (2010)
Development 137, 3501-3511
   Abstract »    Full Text »    PDF »
Lateralization of the central circadian pacemaker output: a test of neural control of peripheral oscillator phase.
C. E. Mahoney, D. Brewer, M. K. Costello, J. M. Brewer, and E. L. Bittman (2010)
Am J Physiol Regulatory Integrative Comp Physiol 299, R751-R761
   Abstract »    Full Text »    PDF »
Review: Replication of cortisol circadian rhythm: new advances in hydrocortisone replacement therapy.
S. Chan and M. Debono (2010)
Therapeutic Advances in Endocrinology and Metabolism 1, 129-138
   Abstract »    PDF »
Nuclear Receptors Linking Circadian Rhythms and Cardiometabolic Control.
H. Duez and B. Staels (2010)
Arterioscler Thromb Vasc Biol 30, 1529-1534
   Abstract »    Full Text »    PDF »
A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-{gamma} nuclear translocation.
M. Kawai, C. B. Green, B. Lecka-Czernik, N. Douris, M. R. Gilbert, S. Kojima, C. Ackert-Bicknell, N. Garg, M. C. Horowitz, M. L. Adamo, et al. (2010)
PNAS 107, 10508-10513
   Abstract »    Full Text »    PDF »
Restricted Feeding Phase Shifts Clock Gene and Sodium Glucose Cotransporter 1 (SGLT1) Expression in Rats.
A. Balakrishnan, A. T. Stearns, S. W. Ashley, A. Tavakkolizadeh, and D. B. Rhoads (2010)
J. Nutr. 140, 908-914
   Abstract »    Full Text »    PDF »
Regulation of circadian gene expression in the kidney by light and food cues in rats.
T. Wu, Y. Ni, Y. Dong, J. Xu, X. Song, H. Kato, and Z. Fu (2010)
Am J Physiol Regulatory Integrative Comp Physiol 298, R635-R641
   Abstract »    Full Text »    PDF »
Circadian Rhythms and Metabolic Syndrome: From Experimental Genetics to Human Disease.
E. Maury, K. M. Ramsey, and J. Bass (2010)
Circ. Res. 106, 447-462
   Abstract »    Full Text »    PDF »
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors.
I. Schmutz, J. A. Ripperger, S. Baeriswyl-Aebischer, and U. Albrecht (2010)
Genes & Dev. 24, 345-357
   Abstract »    Full Text »    PDF »
Effects of Medial Hypothalamic Lesions on Feeding-Induced Entrainment of Locomotor Activity and Liver Per2 Expression in Per2::luc Mice.
Y. Tahara, A. Hirao, T. Moriya, T. Kudo, and S. Shibata (2010)
J Biol Rhythms 25, 9-18
   Abstract »    PDF »
Circadian Amplitude of Cryptochrome 1 Is Modulated by mRNA Stability Regulation via Cytoplasmic hnRNP D Oscillation.
K.-C. Woo, D.-C. Ha, K.-H. Lee, D.-Y. Kim, T.-D. Kim, and K.-T. Kim (2010)
Mol. Cell. Biol. 30, 197-205
   Abstract »    Full Text »    PDF »
Influence of Age on Clock Gene Expression in Peripheral Blood Cells of Healthy Women.
H. Ando, K. Ushijima, M. Kumazaki, T. Takamura, N. Yokota, T. Saito, S. Irie, S. Kaneko, and A. Fujimura (2010)
J Gerontol A Biol Sci Med Sci 65A, 9-13
   Abstract »    Full Text »    PDF »
A circadian clock in macrophages controls inflammatory immune responses.
M. Keller, J. Mazuch, U. Abraham, G. D. Eom, E. D. Herzog, H.-D. Volk, A. Kramer, and B. Maier (2009)
PNAS 106, 21407-21412
   Abstract »    Full Text »    PDF »
How nuclear receptors tell time.
M. Teboul, A. Grechez-Cassiau, F. Guillaumond, and F. Delaunay (2009)
J Appl Physiol 107, 1965-1971
   Abstract »    Full Text »    PDF »
Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation.
T. E. Reddy, F. Pauli, R. O. Sprouse, N. F. Neff, K. M. Newberry, M. J. Garabedian, and R. M. Myers (2009)
Genome Res. 19, 2163-2171
   Abstract »    Full Text »    PDF »
Molecular Time: An Often Overlooked Dimension to Cardiovascular Disease.
T. A. Martino and M. J. Sole (2009)
Circ. Res. 105, 1047-1061
   Abstract »    Full Text »    PDF »
Fat circadian biology.
J. M. Gimble and Z. E. Floyd (2009)
J Appl Physiol 107, 1629-1637
   Abstract »    Full Text »    PDF »
Time Is of the Essence: Vascular Implications of the Circadian Clock.
R. D. Rudic (2009)
Circulation 120, 1714-1721
   Full Text »    PDF »
Glucocorticoid regulation of the circadian clock modulates glucose homeostasis.
A. Y.-L. So, T. U. Bernal, M. L. Pillsbury, K. R. Yamamoto, and B. J. Feldman (2009)
PNAS 106, 17582-17587
   Abstract »    Full Text »    PDF »
Diurnal physiology: core principles with application to the pathogenesis, diagnosis, prevention, and treatment of myocardial hypertrophy and failure.
M. J. Sole and T. A. Martino (2009)
J Appl Physiol 107, 1318-1327
   Abstract »    Full Text »    PDF »
Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function.
M. E. Young (2009)
J Appl Physiol 107, 1339-1347
   Abstract »    Full Text »    PDF »
Roles of CLOCK Phosphorylation in Suppression of E-Box-Dependent Transcription.
H. Yoshitane, T. Takao, Y. Satomi, N.-H. Du, T. Okano, and Y. Fukada (2009)
Mol. Cell. Biol. 29, 3675-3686
   Abstract »    Full Text »    PDF »
Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications.
N. Nader, G. P. Chrousos, and T. Kino (2009)
FASEB J 23, 1572-1583
   Abstract »    Full Text »    PDF »
Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule.
M. Girotti, M. S. Weinberg, and R. L. Spencer (2009)
Am J Physiol Endocrinol Metab 296, E888-E897
   Abstract »    Full Text »    PDF »
The 2008 Pittendrigh/Aschoff Lecture: Peripheral Phase Coordination in the Mammalian Circadian Timing System.
U. Schibler (2009)
J Biol Rhythms 24, 3-15
   Abstract »    PDF »
Circadian gene expression is resilient to large fluctuations in overall transcription rates.
C. Dibner, D. Sage, M. Unser, C. Bauer, T. d'Eysmond, F. Naef, and U. Schibler (2009)
EMBO J. 28, 123-134
   Abstract »    Full Text »    PDF »
Mouse period 2 mRNA circadian oscillation is modulated by PTB-mediated rhythmic mRNA degradation.
K.-C. Woo, T.-D. Kim, K.-H. Lee, D.-Y. Kim, W. Kim, K.-Y. Lee, and K.-T. Kim (2009)
Nucleic Acids Res. 37, 26-37
   Abstract »    Full Text »    PDF »
Glucocorticoids and the circadian clock.
T. Dickmeis (2009)
J. Endocrinol. 200, 3-22
   Abstract »    Full Text »    PDF »
Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production.
G. H. Son, S. Chung, H. K. Choe, H.-D. Kim, S.-M. Baik, H. Lee, H.-W. Lee, S. Choi, W. Sun, H. Kim, et al. (2008)
PNAS 105, 20970-20975
   Abstract »    Full Text »    PDF »
Strong Resetting of the Mammalian Clock by Constant Light Followed by Constant Darkness.
R. Chen, D.-o. Seo, E. Bell, C. von Gall, and C. Lee (2008)
J. Neurosci. 28, 11839-11847
   Abstract »    Full Text »    PDF »
Ligand modulation of REV-ERB{alpha} function resets the peripheral circadian clock in a phasic manner.
Q. J. Meng, A. McMaster, S. Beesley, W. Q. Lu, J. Gibbs, D. Parks, J. Collins, S. Farrow, R. Donn, D. Ray, et al. (2008)
J. Cell Sci. 121, 3629-3635
   Abstract »    Full Text »    PDF »
Vascular circadian rhythms in a mouse vascular smooth muscle cell line (Movas-1).
J. A. Chalmers, T. A. Martino, N. Tata, M. R. Ralph, M. J. Sole, and D. D. Belsham (2008)
Am J Physiol Regulatory Integrative Comp Physiol 295, R1529-R1538
   Abstract »    Full Text »    PDF »
Agomelatine, an innovative pharmacological response to unmet needs..
Y Le Strat and P Gorwood (2008)
J Psychopharmacol 22, 4-8
   Abstract »    PDF »
Regulatory mechanism governing the diurnal rhythm of intestinal H+/peptide cotransporter 1 (PEPT1).
H. Saito, T. Terada, J. Shimakura, T. Katsura, and K.-i. Inui (2008)
Am J Physiol Gastrointest Liver Physiol 295, G395-G402
   Abstract »    Full Text »    PDF »
Clock gene dysfunction in patients with obstructive sleep apnoea syndrome.
N. Burioka, S. Koyanagi, M. Endo, M. Takata, Y. Fukuoka, M. Miyata, K. Takeda, H. Chikumi, S. Ohdo, and E. Shimizu (2008)
Eur. Respir. J. 32, 105-112
   Abstract »    Full Text »    PDF »
DEC1 Modulates the Circadian Phase of Clock Gene Expression.
A. Nakashima, T. Kawamoto, K. K. Honda, T. Ueshima, M. Noshiro, T. Iwata, K. Fujimoto, H. Kubo, S. Honma, N. Yorioka, et al. (2008)
Mol. Cell. Biol. 28, 4080-4092
   Abstract »    Full Text »    PDF »
Genetic Components of the Circadian Clock Regulate Thrombogenesis In Vivo.
E. J. Westgate, Y. Cheng, D. F. Reilly, T. S. Price, J. A. Walisser, C. A. Bradfield, and G. A. FitzGerald (2008)
Circulation 117, 2087-2095
   Abstract »    Full Text »    PDF »
Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor.
H. Reinke, C. Saini, F. Fleury-Olela, C. Dibner, I. J. Benjamin, and U. Schibler (2008)
Genes & Dev. 22, 331-345
   Abstract »    Full Text »    PDF »
Peripheral Circadian Clock Rhythmicity Is Retained in the Absence of Adrenergic Signaling.
D. F. Reilly, A. M. Curtis, Y. Cheng, E. J. Westgate, R. D. Rudic, G. Paschos, J. Morris, M. Ouyang, S. A. Thomas, and G. A. FitzGerald (2008)
Arterioscler Thromb Vasc Biol 28, 121-126
   Abstract »    Full Text »    PDF »
Circadian clocks: regulators of endocrine and metabolic rhythms.
M. Hastings, J. S O'Neill, and E. S Maywood (2007)
J. Endocrinol. 195, 187-198
   Abstract »    Full Text »    PDF »
Up-regulation of Per1 expression by estradiol and progesterone in the rat uterus.
P.-J. He, M. Hirata, N. Yamauchi, and M.-a. Hattori (2007)
J. Endocrinol. 194, 511-519
   Abstract »    Full Text »    PDF »
Multifactorial Regulation of Daily Rhythms in Expression of the Metabolically Responsive Gene Spot14 in the Mouse Liver.
A. Ishihara, E. Matsumoto, K. Horikawa, T. Kudo, E. Sakao, A. Nemoto, K. Iwase, H. Sugiyama, Y. Tamura, S. Shibata, et al. (2007)
J Biol Rhythms 22, 324-334
   Abstract »    PDF »
Peripheral Circadian Clocks in the Vasculature.
D. F. Reilly, E. J. Westgate, and G. A. FitzGerald (2007)
Arterioscler Thromb Vasc Biol 27, 1694-1705
   Abstract »    Full Text »    PDF »
Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.
K. Sjogren, K.-C. Leung, W. Kaplan, M. Gardiner-Garden, J. Gibney, and K. K. Y. Ho (2007)
Am J Physiol Endocrinol Metab 293, E364-E371
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882