Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 290 (5489): 147-150

Copyright © 2000 by the American Association for the Advancement of Science

Regulation of C. elegans Life-Span by Insulinlike Signaling in the Nervous System

Catherine A. Wolkow,1* Koutarou D. Kimura,2* Ming-Sum Lee,1 † Gary Ruvkun1ddagger

An insulinlike signaling pathway controls Caenorhabditis elegans aging, metabolism, and development. Mutations in the daf-2 insulin receptor-like gene or the downstream age-1 phosphoinositide 3-kinase gene extend adult life-span by two- to threefold. To identify tissues where this pathway regulates aging and metabolism, we restored daf-2 pathway signaling to only neurons, muscle, or intestine. Insulinlike signaling in neurons alone was sufficient to specify wild-type life-span, but muscle or intestinal signaling was not. However, restoring daf-2 pathway signaling to muscle rescued metabolic defects, thus decoupling regulation of life-span and metabolism. These findings point to the nervous system as a central regulator of animal longevity.

1 Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
2 Division of Biological Science, Nagoya University, Nagoya 464-8602, Japan
*   These authors contributed equally to this work.

ddagger    To whom correspondence should be addressed: E-mail: ruvkun{at}frodo.mgh.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication.
W. L. Hung, Y. Wang, J. Chitturi, and M. Zhen (2014)
Development 141, 1767-1779
   Abstract »    Full Text »    PDF »
Promoting longevity by maintaining metabolic and proliferative homeostasis.
L. Wang, J. Karpac, and H. Jasper (2014)
J. Exp. Biol. 217, 109-118
   Abstract »    Full Text »    PDF »
Counterbalance between BAG and URX neurons via guanylate cyclases controls lifespan homeostasis in C. elegans.
T. Liu and D. Cai (2013)
EMBO J. 32, 1529-1542
   Abstract »    Full Text »    PDF »
Somatotropic Signaling: Trade-Offs Between Growth, Reproductive Development, and Longevity.
A. Bartke, L. Y. Sun, and V. Longo (2013)
Physiol Rev 93, 571-598
   Abstract »    Full Text »    PDF »
Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in C. elegans.
N. J. Lehrbach, C. Castro, K. J. Murfitt, C. Abreu-Goodger, J. L. Griffin, and E. A. Miska (2012)
RNA 18, 2220-2235
   Abstract »    Full Text »    PDF »
Neurite Sprouting and Synapse Deterioration in the Aging Caenorhabditis elegans Nervous System.
M. L. Toth, I. Melentijevic, L. Shah, A. Bhatia, K. Lu, A. Talwar, H. Naji, C. Ibanez-Ventoso, P. Ghose, A. Jevince, et al. (2012)
J. Neurosci. 32, 8778-8790
   Abstract »    Full Text »    PDF »
Diverse Roles of Growth Hormone and Insulin-Like Growth Factor-1 in Mammalian Aging: Progress and Controversies.
W. E. Sonntag, A. Csiszar, R. de Cabo, L. Ferrucci, and Z. Ungvari (2012)
J Gerontol A Biol Sci Med Sci 67A, 587-598
   Abstract »    Full Text »    PDF »
O-Linked-N-Acetylglucosamine Cycling and Insulin Signaling Are Required for the Glucose Stress Response in Caenorhabditis elegans.
M. A. Mondoux, D. C. Love, S. K. Ghosh, T. Fukushige, M. Bond, G. R. Weerasinghe, J. A. Hanover, and M. W. Krause (2011)
Genetics 188, 369-382
   Abstract »    Full Text »    PDF »
Specific insulin-like peptides encode sensory information to regulate distinct developmental processes.
A. Cornils, M. Gloeck, Z. Chen, Y. Zhang, and J. Alcedo (2011)
Development 138, 1183-1193
   Abstract »    Full Text »    PDF »
The C. elegans DAF-2 Insulin-Like Receptor is Abundantly Expressed in the Nervous System and Regulated by Nutritional Status.
K. D. Kimura, D. L. Riddle, and G. Ruvkun (2011)
Cold Spring Harb Symp Quant Biol 76, 113-120
   Abstract »    Full Text »    PDF »
Insulin/Insulin-Like Growth Factor Signaling Controls Non-Dauer Developmental Speed in the Nematode Caenorhabditis elegans.
A.-F. Ruaud, I. Katic, and J.-L. Bessereau (2011)
Genetics 187, 337-343
   Abstract »    Full Text »    PDF »
The role of insulin/IGF-like signaling in C. elegans longevity and aging.
R. Kaletsky and C. T. Murphy (2010)
Dis. Model. Mech. 3, 415-419
   Abstract »    Full Text »    PDF »
Arrestin and the Multi-PDZ Domain-containing Protein MPZ-1 Interact with Phosphatase and Tensin Homolog (PTEN) and Regulate Caenorhabditis elegans Longevity.
A. Palmitessa and J. L. Benovic (2010)
J. Biol. Chem. 285, 15187-15200
   Abstract »    Full Text »    PDF »
SLR-2 and JMJC-1 regulate an evolutionarily conserved stress-response network.
N. V. Kirienko and D. S. Fay (2010)
EMBO J. 29, 727-739
   Abstract »    Full Text »    PDF »
Insulin signaling promotes germline proliferation in C. elegans.
D. Michaelson, D. Z. Korta, Y. Capua, and E. J. A. Hubbard (2010)
Development 137, 671-680
   Abstract »    Full Text »    PDF »
Neuronal IGF-1 resistance reduces A{beta} accumulation and protects against premature death in a model of Alzheimer's disease.
S. Freude, M. M. Hettich, C. Schumann, O. Stohr, L. Koch, C. Kohler, M. Udelhoven, U. Leeser, M. Muller, N. Kubota, et al. (2009)
FASEB J 23, 3315-3324
   Abstract »    Full Text »    PDF »
Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.
A. Ben-Zvi, E. A. Miller, and R. I. Morimoto (2009)
PNAS 106, 14914-14919
   Abstract »    Full Text »    PDF »
Stimulation of Movement in a Quiescent, Hibernation-Like Form of Caenorhabditis elegans by Dopamine Signaling.
M. M. Gaglia and C. Kenyon (2009)
J. Neurosci. 29, 7302-7314
   Abstract »    Full Text »    PDF »
Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans.
A. A. Soukas, E. A. Kane, C. E. Carr, J. A. Melo, and G. Ruvkun (2009)
Genes & Dev. 23, 496-511
   Abstract »    Full Text »    PDF »
Reduction in ovulation or male sex phenotype increases long-term anoxia survival in a daf-16-independent manner in Caenorhabditis elegans.
A. R. Mendenhall, M. G. LeBlanc, D. P. Mohan, and P. A. Padilla (2009)
Physiol Genomics 36, 167-178
   Abstract »    Full Text »    PDF »
Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan.
M. Briese, B. Esmaeili, S. Fraboulet, E. C. Burt, S. Christodoulou, P. R. Towers, K. E. Davies, and D. B. Sattelle (2009)
Hum. Mol. Genet. 18, 97-104
   Abstract »    Full Text »    PDF »
A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance.
M. Olahova, S. R. Taylor, S. Khazaipoul, J. Wang, B. A. Morgan, K. Matsumoto, T. K. Blackwell, and E. A. Veal (2008)
PNAS 105, 19839-19844
   Abstract »    Full Text »    PDF »
Fat Metabolism Links Germline Stem Cells and Longevity in C. elegans.
M. C. Wang, E. J. O'Rourke, and G. Ruvkun (2008)
Science 322, 957-960
   Abstract »    Full Text »    PDF »
C. elegans dauer formation and the molecular basis of plasticity.
N. Fielenbach and A. Antebi (2008)
Genes & Dev. 22, 2149-2165
   Abstract »    Full Text »    PDF »
Notch signalling is required for both dauer maintenance and recovery in C. elegans.
J. Ouellet, S. Li, and R. Roy (2008)
Development 135, 2583-2592
   Abstract »    Full Text »    PDF »
Loss of Neuroprotective Survival Signal in Mice Lacking Insulin Receptor Gene in Rod Photoreceptor Cells.
A. Rajala, M. Tanito, Y. Z. Le, C. R. Kahn, and R. V. S. Rajala (2008)
J. Biol. Chem. 283, 19781-19792
   Abstract »    Full Text »    PDF »
Clustering of Genetically Defined Allele Classes in the Caenorhabditis elegans DAF-2 Insulin/IGF-1 Receptor.
D. S. Patel, A. Garza-Garcia, M. Nanji, J. J. McElwee, D. Ackerman, P. C. Driscoll, and D. Gems (2008)
Genetics 178, 931-946
   Abstract »    Full Text »    PDF »
DAF-16-Dependent Suppression of Immunity During Reproduction in Caenorhabditis elegans.
S. Miyata, J. Begun, E. R. Troemel, and F. M. Ausubel (2008)
Genetics 178, 903-918
   Abstract »    Full Text »    PDF »
A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity.
J. L. Tenor and A. Aballay (2008)
EMBO Rep. 9, 103-109
   Abstract »    Full Text »    PDF »
Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans.
C. T. Murphy, S.-J. Lee, and C. Kenyon (2007)
PNAS 104, 19046-19050
   Abstract »    Full Text »    PDF »
Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants.
A. V. Samuelson, C. E. Carr, and G. Ruvkun (2007)
Genes & Dev. 21, 2976-2994
   Abstract »    Full Text »    PDF »
Gravity Force Transduced by the MEC-4/MEC-10 DEG/ENaC Channel Modulates DAF-16/FoxO Activity in Caenorhabditis elegans.
N. Kim, C. M. Dempsey, C.-J. Kuan, J. V. Zoval, E. O'Rourke, G. Ruvkun, M. J. Madou, and J. Y. Sze (2007)
Genetics 177, 835-845
   Abstract »    Full Text »    PDF »
Brain IRS2 Signaling Coordinates Life Span and Nutrient Homeostasis.
A. Taguchi, L. M. Wartschow, and M. F. White (2007)
Science 317, 369-372
   Abstract »    Full Text »    PDF »
G-protein-coupled Receptor Rhodopsin Regulates the Phosphorylation of Retinal Insulin Receptor.
A. Rajala, R. E. Anderson, J.-X. Ma, J. Lem, M. R. Al-Ubaidi, and R. V. S. Rajala (2007)
J. Biol. Chem. 282, 9865-9873
   Abstract »    Full Text »    PDF »
A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling.
B. Gerisch, V. Rottiers, D. Li, D. L. Motola, C. L. Cummins, H. Lehrach, D. J. Mangelsdorf, and A. Antebi (2007)
PNAS 104, 5014-5019
   Abstract »    Full Text »    PDF »
Opposed growth factor signals control protein degradation in muscles of Caenorhabditis elegans.
N. J. Szewczyk, B. K. Peterson, S. J. Barmada, L. P. Parkinson, and L. A. Jacobson (2007)
EMBO J. 26, 935-943
   Abstract »    Full Text »    PDF »
Identification of Caenorhabditis elegans Genes Regulating Longevity Using Enhanced RNAi-sensitive Strains.
A. V. Samuelson, R. R. Klimczak, D. B. Thompson, C. E. Carr, and G. Ruvkun (2007)
Cold Spring Harb Symp Quant Biol 72, 489-497
   Abstract »    PDF »
Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase.
K. D. Williams, M. Busto, M. L. Suster, A. K.-C. So, Y. Ben-Shahar, S. J. Leevers, and M. B. Sokolowski (2006)
PNAS 103, 15911-15915
   Abstract »    Full Text »    PDF »
Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction.
N. J. Szewczyk, I. A. Udranszky, E. Kozak, J. Sunga, S. K. Kim, L. A. Jacobson, and C. A. Conley (2006)
J. Exp. Biol. 209, 4129-4139
   Abstract »    Full Text »    PDF »
Effect of Leptin on Hypothalamic Gene Expression in Calorie-Restricted Rats.
T. Komatsu, T. Chiba, H. Yamaza, K. To, H. Toyama, Y. Higami, and I. Shimokawa (2006)
J Gerontol A Biol Sci Med Sci 61, 890-898
   Abstract »    Full Text »    PDF »
Effects of Sex and Insulin/Insulin-Like Growth Factor-1 Signaling on Performance in an Associative Learning Paradigm in Caenorhabditis elegans.
T. Vellai, D. McCulloch, D. Gems, and A. L. Kovacs (2006)
Genetics 174, 309-316
   Abstract »    Full Text »    PDF »
Endocrine signaling in Caenorhabditis elegans controls stress response and longevity.
R. Baumeister, E. Schaffitzel, and M. Hertweck (2006)
J. Endocrinol. 190, 191-202
   Abstract »    Full Text »    PDF »
Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling.
P. Narbonne and R. Roy (2006)
Development 133, 611-619
   Abstract »    Full Text »    PDF »
Aging-Dependent and -Independent Modulation of Associative Learning Behavior by Insulin/Insulin-Like Growth Factor-1 Signal in Caenorhabditis elegans.
H. Murakami, K. Bessinger, J. Hellmann, and S. Murakami (2005)
J. Neurosci. 25, 10894-10904
   Abstract »    Full Text »    PDF »
Insulin Signaling in the Central Nervous System: A Critical Role in Metabolic Homeostasis and Disease From C. elegans to Humans.
D. Porte Jr., D. G. Baskin, and M. W. Schwartz (2005)
Diabetes 54, 1264-1276
   Abstract »    Full Text »    PDF »
Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands.
S. J. Broughton, M. D. W. Piper, T. Ikeya, T. M. Bass, J. Jacobson, Y. Driege, P. Martinez, E. Hafen, D. J. Withers, S. J. Leevers, et al. (2005)
PNAS 102, 3105-3110
   Abstract »    Full Text »    PDF »
Decreased Lifespan in the Absence of Expression of the Mitochondrial Small Heat Shock Protein Hsp22 in Drosophila.
G. Morrow, S. Battistini, P. Zhang, and R. M. Tanguay (2004)
J. Biol. Chem. 279, 43382-43385
   Abstract »    Full Text »    PDF »
Not Wisely but Too Well: Aging as a Cost of Neuroendocrine Activity.
C. V. Mobbs (2004)
Sci. Aging Knowl. Environ. 2004, pe33
   Abstract »    Full Text »
Deletion of the Intestinal Peptide Transporter Affects Insulin and TOR Signaling in Caenorhabditis elegans.
B. Meissner, M. Boll, H. Daniel, and R. Baumeister (2004)
J. Biol. Chem. 279, 36739-36745
   Abstract »    Full Text »    PDF »
Murine Models of Life Span Extension.
J. K. Quarrie and K. T. Riabowol (2004)
Sci. Aging Knowl. Environ. 2004, re5
   Abstract »    Full Text »    PDF »
Inside Insulin Signaling, Communication Is Key to Long Life.
A. Antebi (2004)
Sci. Aging Knowl. Environ. 2004, pe25
   Abstract »    Full Text »
Lack of Peroxisomal Catalase Causes a Progeric Phenotype in Caenorhabditis elegans.
O. I. Petriv and R. A. Rachubinski (2004)
J. Biol. Chem. 279, 19996-20001
   Abstract »    Full Text »    PDF »
Mutations in Chemosensory Cilia Cause Resistance to Paraquat in Nematode Caenorhabditis elegans.
M. Fujii, Y. Matsumoto, N. Tanaka, K. Miki, T. Suzuki, N. Ishii, and D. Ayusawa (2004)
J. Biol. Chem. 279, 20277-20282
   Abstract »    Full Text »    PDF »
Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues.
B. Gerisch and A. Antebi (2004)
Development 131, 1765-1776
   Abstract »    Full Text »    PDF »
Intercellular signaling of reproductive development by the C. elegans DAF-9 cytochrome P450.
H. Y. Mak and G. Ruvkun (2004)
Development 131, 1777-1786
   Abstract »    Full Text »    PDF »
Regulation of Longevity in Caenorhabditis elegans by Heat Shock Factor and Molecular Chaperones.
J. F. Morley and R. I. Morimoto (2004)
Mol. Biol. Cell 15, 657-664
   Abstract »    Full Text »    PDF »
Regulation of Caenorhabditis elegans RNA Interference by the daf-2 Insulin Stress and Longevity Signaling Pathway.
D. WANG and G. RUVKUN (2004)
Cold Spring Harb Symp Quant Biol 69, 429-432
   Abstract »    PDF »
Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergetics: reversal by insulin.
A. J. Lambert and B. J. Merry (2004)
Am J Physiol Regulatory Integrative Comp Physiol 286, R71-R79
   Abstract »    Full Text »
Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans.
M. Barbieri, M. Bonafe, C. Franceschi, and G. Paolisso (2003)
Am J Physiol Endocrinol Metab 285, E1064-E1071
   Abstract »    Full Text »    PDF »
Activated EGL-15 FGF receptor promotes protein degradation in muscles of Caenorhabditis elegans.
N. J. Szewczyk and L. A. Jacobson (2003)
EMBO J. 22, 5058-5067
   Abstract »    Full Text »    PDF »
A Forum for Commentaries on Recent Publications. FIRKO Mouse Report: Important New Model--But Questionable Interpretation.
E. J. Masoro (2003)
J Gerontol A Biol Sci Med Sci 58, B871-B872
   Full Text »    PDF »
Isolation and Characterization of High-Temperature-Induced Dauer Formation Mutants in Caenorhabditis elegans.
M. Ailion and J. H. Thomas (2003)
Genetics 165, 127-144
   Abstract »    Full Text »    PDF »
Long-Lived C. elegans daf-2 Mutants Are Resistant to Bacterial Pathogens.
D. A. Garsin, J. M. Villanueva, J. Begun, D. H. Kim, C. D. Sifri, S. B. Calderwood, G. Ruvkun, and F. M. Ausubel (2003)
Science 300, 1921
   Full Text »    PDF »
DAF-16 Target Genes That Control C. elegans Life-Span and Metabolism.
S. S. Lee, S. Kennedy, A. C. Tolonen, and G. Ruvkun (2003)
Science 300, 644-647
   Abstract »    Full Text »    PDF »
A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor.
Q.-x. Hua, S. H. Nakagawa, J. Wilken, R. R. Ramos, W. Jia, J. Bass, and M. A. Weiss (2003)
Genes & Dev. 17, 826-831
   Abstract »    Full Text »    PDF »
Immunocytochemical Detection of Phosphatidylinositol 3-kinase Activation by Insulin and Leptin.
K. D. Niswender, B. Gallis, J. E. Blevins, M. A. Corson, M. W. Schwartz, and D. G. Baskin (2003)
Journal of Histochemistry & Cytochemistry 51, 275-283
   Abstract »    Full Text »    PDF »
The Endocrine Regulation of Aging by Insulin-like Signals.
M. Tatar, A. Bartke, and A. Antebi (2003)
Science 299, 1346-1351
   Abstract »    Full Text »    PDF »
Structural and Functional Characteristics of Two Sodium-coupled Dicarboxylate Transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and Their Relevance to Life Span.
Y.-J. Fei, K. Inoue, and V. Ganapathy (2003)
J. Biol. Chem. 278, 6136-6144
   Abstract »    Full Text »    PDF »
Genetic Loci Modulating Fitness and Life Span in Caenorhabditis elegans: Categorical Trait Interval Mapping in CL2a x Bergerac-BO Recombinant-Inbred Worms.
S. Ayyadevara, R. Ayyadevara, A. Vertino, A. Galecki, J. J. Thaden, and R. J. S. Reis (2003)
Genetics 163, 557-570
   Abstract »    Full Text »    PDF »
Insulin Activation of Phosphatidylinositol 3-Kinase in the Hypothalamic Arcuate Nucleus: A Key Mediator of Insulin-Induced Anorexia.
K. D. Niswender, C. D. Morrison, D. J. Clegg, R. Olson, D. G. Baskin, M. G. Myers Jr., R. J. Seeley, and M. W. Schwartz (2003)
Diabetes 52, 227-231
   Abstract »    Full Text »    PDF »
Extended Longevity in Mice Lacking the Insulin Receptor in Adipose Tissue.
M. Bluher, B. B. Kahn, and C. R. Kahn (2003)
Science 299, 572-574
   Abstract »    Full Text »    PDF »
Insulin Receptor Substrate and p55 Orthologous Adaptor Proteins Function in the Caenorhabditis elegans daf-2/Insulin-like Signaling Pathway.
C. A. Wolkow, M. J. Munoz, D. L. Riddle, and G. Ruvkun (2002)
J. Biol. Chem. 277, 49591-49597
   Abstract »    Full Text »    PDF »
IRS proteins and the common path to diabetes.
M. F. White (2002)
Am J Physiol Endocrinol Metab 283, E413-E422
   Abstract »    Full Text »    PDF »
A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity.
D. H. Kim, R. Feinbaum, G. Alloing, F. E. Emerson, D. A. Garsin, H. Inoue, M. Tanaka-Hino, N. Hisamoto, K. Matsumoto, M.-W. Tan, et al. (2002)
Science 297, 623-626
   Abstract »    Full Text »    PDF »
Modification of Brain Aging and Neurodegenerative Disorders by Genes, Diet, and Behavior.
M. P. Mattson, S. L. Chan, and W. Duan (2002)
Physiol Rev 82, 637-672
   Abstract »    Full Text »    PDF »
Genetic Analysis of Tissue Aging in Caenorhabditis elegans: A Role for Heat-Shock Factor and Bacterial Proliferation.
D. Garigan, A.-L. Hsu, A. G. Fraser, R. S. Kamath, J. Ahringer, and C. Kenyon (2002)
Genetics 161, 1101-1112
   Abstract »    Full Text »    PDF »
Regulation of Hypoxic Death in C. elegans by the Insulin/IGF Receptor Homolog DAF-2.
B. A. Scott, M. S. Avidan, and C. M. Crowder (2002)
Science 296, 2388-2391
   Abstract »    Full Text »    PDF »
The Phosphoinositide 3-Kinase Pathway.
L. C. Cantley (2002)
Science 296, 1655-1657
   Abstract »    Full Text »    PDF »
Regulation of Aging by Germline Stem Cells.
M. Tatar (2002)
Sci. Aging Knowl. Environ. 2002, pe2-2
   Abstract »    Full Text »
DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity.
K. Jia, P. S. Albert, and D. L. Riddle (2002)
Development 129, 221-231
   Abstract »    Full Text »    PDF »
Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans.
E. L. Peckol, E. R. Troemel, and C. I. Bargmann (2001)
PNAS 98, 11032-11038
   Abstract »    Full Text »    PDF »
Morphostats: A Missing Concept in Cancer Biology.
J. D. Potter (2001)
Cancer Epidemiol. Biomarkers Prev. 10, 161-170
   Abstract »    Full Text »
Neuroendocrine and Pharmacological Manipulations to Assess How Caloric Restriction Increases Life Span.
C. V. Mobbs, G. A. Bray, R. L. Atkinson, A. Bartke, C. E. Finch, E. Maratos-Flier, J. N. Crawley, and J. F. Nelson (2001)
J Gerontol A Biol Sci Med Sci 56, 34-44
   Abstract »    Full Text »    PDF »
The effects of aging on gene expression in the hypothalamus and cortex of mice.
C. H. Jiang, J. Z. Tsien, P. G. Schultz, and Y. Hu (2001)
PNAS 98, 1930-1934
   Abstract »    Full Text »    PDF »
Enhanced Gluconeogenesis and Increased Energy Storage as Hallmarks of Aging in Saccharomyces cerevisiae.
S. S. Lin, J. K. Manchester, and J. I. Gordon (2001)
J. Biol. Chem. 276, 36000-36007
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882