Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 290 (5491): 523-527

Copyright © 2000 by the American Association for the Advancement of Science

Two-Amino Acid Molecular Switch in an Epithelial Morphogen That Regulates Binding to Two Distinct Receptors

Minhong Yan,1* Li-Chong Wang,1* Sarah G. Hymowitz,2 Sarah Schilbach,3 James Lee,3 Audrey Goddard,3 Abraham M. de Vos,2 Wei-Qiang Gao,1 Vishva M. Dixit1dagger

Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion of two amino acids. This insertion functions to determine receptor binding specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 binds only the related, but distinct, X-linked ectodysplasin-A2 receptor (XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and EDA-A2 are differentially expressed and play a role in epidermal morphogenesis.

1 Department of Molecular Oncology,
2 Department of Protein Engineering,
3 Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: dixit{at}gene.com


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
High-resolution functional annotation of human transcriptome: predicting isoform functions by a novel multiple instance-based label propagation method.
W. Li, S. Kang, C.-C. Liu, S. Zhang, Y. Shi, Y. Liu, and X. J. Zhou (2014)
Nucleic Acids Res. 42, e39
   Abstract »    Full Text »    PDF »
Generation and Characterization of Function-blocking Anti-ectodysplasin A (EDA) Monoclonal Antibodies That Induce Ectodermal Dysplasia.
C. Kowalczyk-Quintas, L. Willen, A. T. Dang, H. Sarrasin, A. Tardivel, K. Hermes, H. Schneider, O. Gaide, O. Donze, N. Kirby, et al. (2014)
J. Biol. Chem. 289, 4273-4285
   Abstract »    Full Text »    PDF »
A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia.
S. A. Wisniewski and W. H. Trzeciak (2012)
J. Med. Genet. 49, 499-501
   Full Text »    PDF »
Molecular and Therapeutic Characterization of Anti-ectodysplasin A Receptor (EDAR) Agonist Monoclonal Antibodies.
C. Kowalczyk, N. Dunkel, L. Willen, M. L. Casal, E. A. Mauldin, O. Gaide, A. Tardivel, G. Badic, A.-L. Etter, M. Favre, et al. (2011)
J. Biol. Chem. 286, 30769-30779
   Abstract »    Full Text »    PDF »
Crosstalk of EDA-A2/XEDAR in the p53 Signaling Pathway.
C. Tanikawa, C. Ri, V. Kumar, Y. Nakamura, and K. Matsuda (2010)
Mol. Cancer Res. 8, 855-863
   Abstract »    Full Text »    PDF »
X-Linked Ectodermal Dysplasia Receptor Is Downregulated in Breast Cancer via Promoter Methylation.
V. Punj, H. Matta, and P. M. Chaudhary (2010)
Clin. Cancer Res. 16, 1140-1148
   Abstract »    Full Text »    PDF »
Biological Activity of Ectodysplasin A Is Conditioned by Its Collagen and Heparan Sulfate Proteoglycan-binding Domains.
L. K. Swee, K. Ingold-Salamin, A. Tardivel, L. Willen, O. Gaide, M. Favre, S. Demotz, M. Mikkola, and P. Schneider (2009)
J. Biol. Chem. 284, 27567-27576
   Abstract »    Full Text »    PDF »
Molecular Determinants and Evolutionary Dynamics of Wobble Splicing.
J. Lv, Y. Yang, H. Yin, F. Chu, H. Wang, W. Zhang, Y. Zhang, and Y. Jin (2009)
Mol. Biol. Evol. 26, 1081-1092
   Abstract »    Full Text »    PDF »
Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development.
J. Pispa, M. Pummila, P. A. Barker, I. Thesleff, and M. L. Mikkola (2008)
Hum. Mol. Genet. 17, 3380-3391
   Abstract »    Full Text »    PDF »
Conserved Features and Evolutionary Shifts of the EDA Signaling Pathway Involved in Vertebrate Skin Appendage Development.
S. Pantalacci, A. Chaumot, G. Benoit, A. Sadier, F. Delsuc, E. J. P. Douzery, and V. Laudet (2008)
Mol. Biol. Evol. 25, 912-928
   Abstract »    Full Text »    PDF »
Assessing the fraction of short-distance tandem splice sites under purifying selection.
M. Hiller, K. Szafranski, R. Sinha, K. Huse, S. Nikolajewa, P. Rosenstiel, S. Schreiber, R. Backofen, and M. Platzer (2008)
RNA 14, 616-629
   Abstract »    Full Text »    PDF »
Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression.
M. Pummila, I. Fliniaux, R. Jaatinen, M. J. James, J. Laurikkala, P. Schneider, I. Thesleff, and M. L. Mikkola (2007)
Development 134, 117-125
   Abstract »    Full Text »    PDF »
Ectodysplasin regulates the lymphotoxin-beta pathway for hair differentiation.
C.-Y. Cui, T. Hashimoto, S. I. Grivennikov, Y. Piao, S. A. Nedospasov, and D. Schlessinger (2006)
PNAS 103, 9142-9147
   Abstract »    Full Text »    PDF »
Interactions of Tumor Necrosis Factor (TNF) and TNF Receptor Family Members in the Mouse and Human.
C. Bossen, K. Ingold, A. Tardivel, J.-L. Bodmer, O. Gaide, S. Hertig, C. Ambrose, J. Tschopp, and P. Schneider (2006)
J. Biol. Chem. 281, 13964-13971
   Abstract »    Full Text »    PDF »
NF-{kappa}B transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth.
R. Schmidt-Ullrich, D. J. Tobin, D. Lenhard, P. Schneider, R. Paus, and C. Scheidereit (2006)
Development 133, 1045-1057
   Abstract »    Full Text »    PDF »
Widespread Parallel Evolution in Sticklebacks by Repeated Fixation of Ectodysplasin Alleles.
P. F. Colosimo, K. E. Hosemann, S. Balabhadra, G. Villarreal Jr., M. Dickson, J. Grimwood, J. Schmutz, R. M. Myers, D. Schluter, and D. M. Kingsley (2005)
Science 307, 1928-1933
   Abstract »    Full Text »    PDF »
Collagenous Transmembrane Proteins: Recent Insights into Biology and Pathology.
C.-W. Franzke, P. Bruckner, and L. Bruckner-Tuderman (2005)
J. Biol. Chem. 280, 4005-4008
   Full Text »    PDF »
Induction of Apoptosis by X-linked Ectodermal Dysplasia Receptor via a Caspase 8-dependent Mechanism.
S. K. Sinha and P. M. Chaudhary (2004)
J. Biol. Chem. 279, 41873-41881
   Abstract »    Full Text »    PDF »
The Transcription Factors c-rel and RelA Control Epidermal Development and Homeostasis in Embryonic and Adult Skin via Distinct Mechanisms.
R. Gugasyan, A. Voss, G. Varigos, T. Thomas, R. J. Grumont, P. Kaur, G. Grigoriadis, and S. Gerondakis (2004)
Mol. Cell. Biol. 24, 5733-5745
   Abstract »    Full Text »    PDF »
Identification of a human NF-{kappa}B-activating protein, TAB3.
G. Jin, A. Klika, M. Callahan, B. Faga, J. Danzig, Z. Jiang, X. Li, G. R. Stark, J. Harrington, and B. Sherf (2004)
PNAS 101, 2028-2033
   Abstract »    Full Text »    PDF »
Myodegeneration in EDA-A2 Transgenic Mice Is Prevented by XEDAR Deficiency.
K. Newton, D. M. French, M. Yan, G. D. Frantz, and V. M. Dixit (2004)
Mol. Cell. Biol. 24, 1608-1613
   Abstract »    Full Text »    PDF »
Inducible mEDA-A1 transgene mediates sebaceous gland hyperplasia and differential formation of two types of mouse hair follicles.
C.-Y. Cui, M. Durmowicz, C. Ottolenghi, T. Hashimoto, B. Griggs, A. K. Srivastava, and D. Schlessinger (2003)
Hum. Mol. Genet. 12, 2931-2940
   Abstract »    Full Text »    PDF »
Expression, Localization, and Functional Activity of TL1A, a Novel Th1-Polarizing Cytokine in Inflammatory Bowel Disease.
G. Bamias, C. Martin III, M. Marini, S. Hoang, M. Mishina, W. G. Ross, M. A. Sachedina, C. M. Friel, J. Mize, S. J. Bickston, et al. (2003)
J. Immunol. 171, 4868-4874
   Abstract »    Full Text »    PDF »
The Secreted Protein Discovery Initiative (SPDI), a Large-Scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: A Bioinformatics Assessment.
H. F. Clark, A. L. Gurney, E. Abaya, K. Baker, D. Baldwin, J. Brush, J. Chen, B. Chow, C. Chui, C. Crowley, et al. (2003)
Genome Res. 13, 2265-2270
   Abstract »    Full Text »    PDF »
Tissue Expression, Protease Specificity, and Kunitz Domain Functions of Hepatocyte Growth Factor Activator Inhibitor-1B (HAI-1B), a New Splice Variant of HAI-1.
D. Kirchhofer, M. Peek, W. Li, J. Stamos, C. Eigenbrot, S. Kadkhodayan, J. M. Elliott, R. T. Corpuz, R. A. Lazarus, and P. Moran (2003)
J. Biol. Chem. 278, 36341-36349
   Abstract »    Full Text »    PDF »
Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar.
J. Laurikkala, J. Pispa, H.-S. Jung, P. Nieminen, M. Mikkola, X. Wang, U. Saarialho-Kere, J. Galceran, R. Grosschedl, and I. Thesleff (2003)
Development 129, 2541-2553
   Abstract »    Full Text »    PDF »
Role of TRAF3 and -6 in the Activation of the NF-kappa B and JNK Pathways by X-linked Ectodermal Dysplasia Receptor.
S. K. Sinha, S. Zachariah, H. I. Quinones, M. Shindo, and P. M. Chaudhary (2002)
J. Biol. Chem. 277, 44953-44961
   Abstract »    Full Text »    PDF »
The NF-{kappa}B signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes.
A. Smahi, G. Courtois, S. H. Rabia, R. Doffinger, C. Bodemer, A. Munnich, J.-L. Casanova, and A. Israel (2002)
Hum. Mol. Genet. 11, 2371-2375
   Abstract »    Full Text »    PDF »
Wengen, a Member of the Drosophila Tumor Necrosis Factor Receptor Superfamily, Is Required for Eiger Signaling.
H. Kanda, T. Igaki, H. Kanuka, T. Yagi, and M. Miura (2002)
J. Biol. Chem. 277, 28372-28375
   Abstract »    Full Text »    PDF »
EDA targets revealed by skin gene expression profiles of wild-type, Tabby and Tabby EDA-A1 transgenic mice.
C.-Y. Cui, M. Durmowicz, T. S. Tanaka, A. J. Hartung, T. Tezuka, K. Hashimoto, M. S.H. Ko, A. K. Srivastava, and D. Schlessinger (2002)
Hum. Mol. Genet. 11, 1763-1773
   Abstract »    Full Text »    PDF »
TRAF6-deficient mice display hypohidrotic ectodermal dysplasia.
A. Naito, H. Yoshida, E. Nishioka, M. Satoh, S. Azuma, T. Yamamoto, S.-i. Nishikawa, and J.-i. Inoue (2002)
PNAS 99, 8766-8771
   Abstract »    Full Text »    PDF »
Death Receptor Signaling Giving Life to Ectodermal Organs.
I. Thesleff and M. L. Mikkola (2002)
Sci. STKE 2002, pe22
   Abstract »    Full Text »    PDF »
Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in Tabby mice.
A. K. Srivastava, M. C. Durmowicz, A. J. Hartung, J. Hudson, L. V. Ouzts, D. M. Donovan, C.-Y. Cui, and D. Schlessinger (2001)
Hum. Mol. Genet. 10, 2973-2981
   Abstract »    Full Text »    PDF »
Requirement of NF-{kappa}B/Rel for the development of hair follicles and other epidermal appendices.
R. Schmidt-Ullrich, T. Aebischer, J. Hulsken, W. Birchmeier, U. Klemm, and C. Scheidereit (2001)
Development 128, 3843-3853
   Abstract »    Full Text »    PDF »
Ectodermal dysplasias: a new clinical-genetic classification.
M. Priolo and C. Lagana (2001)
J. Med. Genet. 38, 579-585
   Abstract »    Full Text »    PDF »
Mutations within a furin consensus sequence block proteolytic release of ectodysplasin-A and cause X-linked hypohidrotic ectodermal dysplasia.
Y. Chen, S. S. Molloy, L. Thomas, J. Gambee, H. P. Bachinger, B. Ferguson, J. Zonana, G. Thomas, and N. P. Morris (2001)
PNAS 98, 7218-7223
   Abstract »    Full Text »    PDF »
Ectodysplasin is released by proteolytic shedding and binds to the EDAR protein.
O. Elomaa, K. Pulkkinen, U. Hannelius, M. Mikkola, U. Saarialho-Kere, and J. Kere (2001)
Hum. Mol. Genet. 10, 953-962
   Abstract »    Full Text »    PDF »
Mutations Leading to X-linked Hypohidrotic Ectodermal Dysplasia Affect Three Major Functional Domains in the Tumor Necrosis Factor Family Member Ectodysplasin-A.
P. Schneider, S. L. Street, O. Gaide, S. Hertig, A. Tardivel, J. Tschopp, L. Runkel, K. Alevizopoulos, B. M. Ferguson, and J. Zonana (2001)
J. Biol. Chem. 276, 18819-18827
   Abstract »    Full Text »    PDF »
Partial Deletion of the Bovine ED1 Gene Causes Anhidrotic Ectodermal Dysplasia in Cattle.
C. Drogemuller, O. Distl, and T. Leeb (2001)
Genome Res. 11, 1699-1705
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882