Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 290 (5494): 1170-1174

Copyright © 2000 by the American Association for the Advancement of Science

NMDA Receptor-Dependent Synaptic Reinforcement as a Crucial Process for Memory Consolidation

Eiji Shimizu,* Ya-Ping Tang,* Claire Rampon, Joe Z. Tsiendagger

The hippocampal CA1 region is crucial for converting new memories into long-term memories, a process believed to continue for week(s) after initial learning. By developing an inducible, reversible, and CA1-specific knockout technique, we could switch N-methyl-D-aspartate (NMDA) receptor function off or on in CA1 during the consolidation period. Our data indicate that memory consolidation depends on the reactivation of the NMDA receptor, possibly to reinforce site-specific synaptic modifications to consolidate memory traces. Such a synaptic reinforcement process may also serve as a cellular means by which the new memory is transferred from the hippocampus to the cortex for permanent storage.

Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: jtsien{at}princeton.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Learning-Induced Plasticity Regulates Hippocampal Sharp Wave-Ripple Drive.
G. Girardeau, A. Cei, and M. Zugaro (2014)
J. Neurosci. 34, 5176-5183
   Abstract »    Full Text »    PDF »
A bout of voluntary running enhances context conditioned fear, its extinction, and its reconsolidation.
J. Siette, A. C. Reichelt, and R. F. Westbrook (2014)
Learn. Mem. 21, 73-81
   Abstract »    Full Text »    PDF »
Deletion of CPEB3 Enhances Hippocampus-Dependent Memory via Increasing Expressions of PSD95 and NMDA Receptors.
H.-W. Chao, L.-Y. Tsai, Y.-L. Lu, P.-Y. Lin, W.-H. Huang, H.-J. Chou, W.-H. Lu, H.-C. Lin, P.-T. Lee, and Y.-S. Huang (2013)
J. Neurosci. 33, 17008-17022
   Abstract »    Full Text »    PDF »
Hippocampus and medial prefrontal cortex contributions to trace and contextual fear memory expression over time.
C. L. Beeman, P. S. Bauer, J. L. Pierson, and J. J. Quinn (2013)
Learn. Mem. 20, 336-343
   Abstract »    Full Text »    PDF »
FoxO6 regulates memory consolidation and synaptic function.
D. A. M. Salih, A. J. Rashid, D. Colas, L. de la Torre-Ubieta, R. P. Zhu, A. A. Morgan, E. E. Santo, D. Ucar, K. Devarajan, C. J. Cole, et al. (2012)
Genes & Dev. 26, 2780-2801
   Abstract »    Full Text »    PDF »
Optimization and Validation of a Visual Integration Test for Schizophrenia Research.
S. M. Silverstein, B. P. Keane, D. M. Barch, C. S. Carter, J. M. Gold, I. Kovacs, A. MacDonald III, J. D. Ragland, and M. E. Strauss (2012)
Schizophr Bull 38, 125-134
   Abstract »    Full Text »    PDF »
Postinduction Requirement of NMDA Receptor Activation for Late-Phase Long-Term Potentiation of Developing Retinotectal Synapses In Vivo.
L.-q. Gong, L.-j. He, Z.-y. Dong, X.-h. Lu, M.-m. Poo, and X.-h. Zhang (2011)
J. Neurosci. 31, 3328-3335
   Abstract »    Full Text »    PDF »
ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation.
Y.-J. Chen, M. Zhang, D.-M. Yin, L. Wen, A. Ting, P. Wang, Y.-S. Lu, X.-H. Zhu, S.-J. Li, C.-Y. Wu, et al. (2010)
PNAS 107, 21818-21823
   Abstract »    Full Text »    PDF »
Acute Disruption of the NMDA Receptor Subunit NR1 in the Honeybee Brain Selectively Impairs Memory Formation.
L. Mussig, A. Richlitzki, R. Rossler, D. Eisenhardt, R. Menzel, and G. Leboulle (2010)
J. Neurosci. 30, 7817-7825
   Abstract »    Full Text »    PDF »
Perifornical Urocortin-3 mediates the link between stress-induced anxiety and energy homeostasis.
Y. Kuperman, O. Issler, L. Regev, I. Musseri, I. Navon, A. Neufeld-Cohen, S. Gil, and A. Chen (2010)
PNAS 107, 8393-8398
   Abstract »    Full Text »    PDF »
Delayed Intrinsic Activation of an NMDA-Independent CaM-kinase II in a Critical Time Window Is Necessary for Late Consolidation of an Associative Memory.
H. Wan, B. Mackay, H. Iqbal, S. Naskar, and G. Kemenes (2010)
J. Neurosci. 30, 56-63
   Abstract »    Full Text »    PDF »
Remote spatial memory and the hippocampus: Effect of early and extensive training in the radial maze.
J. M.J. Ramos (2009)
Learn. Mem. 16, 554-563
   Abstract »    Full Text »    PDF »
Hyperdopaminergia and NMDA Receptor Hypofunction Disrupt Neural Phase Signaling.
K. Dzirasa, A. J. Ramsey, D. Y. Takahashi, J. Stapleton, J. M. Potes, J. K. Williams, R. R. Gainetdinov, K. Sameshima, M. G. Caron, and M. A. L. Nicolelis (2009)
J. Neurosci. 29, 8215-8224
   Abstract »    Full Text »    PDF »
Circadian rhythms and memory: not so simple as cogs and gears.
K. L. Eckel-Mahan and D. R. Storm (2009)
EMBO Rep. 10, 584-591
   Abstract »    Full Text »    PDF »
Dissociable Roles for the Ventromedial Prefrontal Cortex and Amygdala in Fear Extinction: NR2B Contribution.
F. Sotres-Bayon, L. Diaz-Mataix, D. E.A. Bush, and J. E. LeDoux (2009)
Cereb Cortex 19, 474-482
   Abstract »    Full Text »    PDF »
Efficient reproduction of cynomolgus monkey using pronuclear embryo transfer technique.
Q. Sun, J. Dong, W. Yang, Y. Jin, M. Yang, Y. Wang, P. L. Wang, Y. Hu, and J. Z. Tsien (2008)
PNAS 105, 12956-12960
   Abstract »    Full Text »    PDF »
Visual-Procedural Memory Consolidation during Sleep Blocked by Glutamatergic Receptor Antagonists.
S. Gais, B. Rasch, U. Wagner, and J. Born (2008)
J. Neurosci. 28, 5513-5518
   Abstract »    Full Text »    PDF »
Molecular Mechanisms for Nanomolar Concentrations of Neurosteroids at NR1/NR2B Receptors.
T. Johansson, P.-A. Frandberg, F. Nyberg, and P. Le Greves (2008)
J. Pharmacol. Exp. Ther. 324, 759-768
   Abstract »    Full Text »    PDF »
Dentate gyrus-specific manipulation of beta-Ca2+/calmodulin-dependent kinase II disrupts memory consolidation.
M. H. Cho, X. Cao, D. Wang, and J. Z. Tsien (2007)
PNAS 104, 16317-16322
   Abstract »    Full Text »    PDF »
Methodological considerations on the use of template matching to study long-lasting memory trace replay..
M. Tatsuno, P. Lipa, and B. L. McNaughton (2006)
J. Neurosci. 26, 10727-10742
   Abstract »    Full Text »    PDF »
Amnesia or retrieval deficit? Implications of a molecular approach to the question of reconsolidation..
C. A. Miller and J. D. Sweatt (2006)
Learn. Mem. 13, 498-505
   Abstract »    Full Text »    PDF »
Growth hormone and IGF-I modulate local cerebral glucose utilization and ATP levels in a model of adult-onset growth hormone deficiency.
W. E. Sonntag, C. Bennett, R. Ingram, A. Donahue, J. Ingraham, H. Chen, T. Moore, J. K. Brunso-Bechtold, and D. Riddle (2006)
Am J Physiol Endocrinol Metab 291, E604-E610
   Abstract »    Full Text »    PDF »
Stability of recent and remote contextual fear memory.
P. W. Frankland, H.-K. Ding, E. Takahashi, A. Suzuki, S. Kida, and A. J. Silva (2006)
Learn. Mem. 13, 451-457
   Abstract »    Full Text »    PDF »
Molecular Characterization of NMDA-Like Receptors in Aplysia and Lymnaea: Relevance to Memory Mechanisms.
T. J. Ha, A. B. Kohn, Y. V. Bobkova, and L. L. Moroz (2006)
Biol. Bull. 210, 255-270
   Abstract »    Full Text »    PDF »
Systems Consolidation Requires Postlearning Activation of NMDA Receptors in the Medial Prefrontal Cortex in Trace Eyeblink Conditioning..
K. Takehara-Nishiuchi, K. Nakao, S. Kawahara, N. Matsuki, and Y. Kirino (2006)
J. Neurosci. 26, 5049-5058
   Abstract »    Full Text »    PDF »
Memory Maintenance: The Changing Nature of Neural Mechanisms.
W. C. Abraham (2006)
Current Directions in Psychological Science 15, 5-8
   Abstract »    Full Text »    PDF »
Deficits in Trace Fear Memory and Long-Term Potentiation in a Mouse Model for Fragile X Syndrome.
M.-G. Zhao, H. Toyoda, S. W. Ko, H.-K. Ding, L.-J. Wu, and M. Zhuo (2005)
J. Neurosci. 25, 7385-7392
   Abstract »    Full Text »    PDF »
Encoding, consolidation, and retrieval of contextual memory: Differential involvement of dorsal CA3 and CA1 hippocampal subregions.
S. Daumas, H. Halley, B. Frances, and J.-M. Lassalle (2005)
Learn. Mem. 12, 375-382
   Abstract »    Full Text »    PDF »
From The Cover: A requirement for memory retrieval during and after long-term extinction learning.
M. Ouyang and S. A. Thomas (2005)
PNAS 102, 9347-9352
   Abstract »    Full Text »    PDF »
Neuronal Leucine-Rich Repeat Protein 4 Functions in Hippocampus-Dependent Long-Lasting Memory.
T. Bando, K. Sekine, S. Kobayashi, A. M. Watabe, A. Rump, M. Tanaka, Y. Suda, S. Kato, Y. Morikawa, T. Manabe, et al. (2005)
Mol. Cell. Biol. 25, 4166-4175
   Abstract »    Full Text »    PDF »
Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus.
L. Lin, R. Osan, S. Shoham, W. Jin, W. Zuo, and J. Z. Tsien (2005)
PNAS 102, 6125-6130
   Abstract »    Full Text »    PDF »
A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval.
A. V. Samsonovich and G. A. Ascoli (2005)
Learn. Mem. 12, 193-208
   Abstract »    Full Text »    PDF »
Social Context in Gene-Environment Interactions: Retrospect and Prospect.
M. J. Shanahan and S. M. Hofer (2005)
J Gerontol B Psychol Sci Soc Sci 60, 65-76
   Abstract »    Full Text »    PDF »
Reconsolidation after remembering an odor-reward association requires NMDA receptors.
M. Torras-Garcia, J. Lelong, S. Tronel, and S. J. Sara (2005)
Learn. Mem. 12, 18-22
   Abstract »    Full Text »    PDF »
Guiding neuronal development with in situ microfabrication.
B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear (2004)
PNAS 101, 16104-16108
   Abstract »    Full Text »    PDF »
Extrasynaptic NR2B and NR2D subunits of NMDA receptors shape 'superslow' afterburst EPSC in rat hippocampus.
N. A. Lozovaya, S. E. Grebenyuk, T. Sh. Tsintsadze, B. Feng, D. T. Monaghan, and O. A. Krishtal (2004)
J. Physiol. 558, 451-463
   Abstract »    Full Text »    PDF »
A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity.
M.-K. Jang, D. F. Mierke, S. J. Russek, and D. H. Farb (2004)
PNAS 101, 8198-8203
   Abstract »    Full Text »    PDF »
Independent Cellular Processes for Hippocampal Memory Consolidation and Reconsolidation.
J. L. C. Lee, B. J. Everitt, and K. L. Thomas (2004)
Science 304, 839-843
   Abstract »    Full Text »    PDF »
A Bioinformatics Analysis of Memory Consolidation Reveals Involvement of the Transcription Factor c-Rel.
J. M. Levenson, S. Choi, S.-Y. Lee, Y. A. Cao, H. J. Ahn, K. C. Worley, M. Pizzi, H.-C. Liou, and J. D. Sweatt (2004)
J. Neurosci. 24, 3933-3943
   Abstract »    Full Text »    PDF »
Temporal Properties of Cerebellar-Dependent Memory Consolidation.
S. F. Cooke, P. J. E. Attwell, and C. H. Yeo (2004)
J. Neurosci. 24, 2934-2941
   Abstract »    Full Text »    PDF »
NMDA Currents and Receptor Protein Are Downregulated in the Amygdala during Maintenance of Fear Memory.
F. Zinebi, J. Xie, J. Liu, R. T. Russell, J. P. Gallagher, M. G. McKernan, and P. Shinnick-Gallagher (2003)
J. Neurosci. 23, 10283-10291
   Abstract »    Full Text »    PDF »
Blockade of NMDA Receptors in Prelimbic Cortex Induces an Enduring Amnesia for Odor-Reward Associative Learning.
S. Tronel and S. J. Sara (2003)
J. Neurosci. 23, 5472-5476
   Abstract »    Full Text »    PDF »
Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain.
H. Wang, E. Shimizu, Y.-P. Tang, M. Cho, M. Kyin, W. Zuo, D. A. Robinson, P. J. Alaimo, C. Zhang, H. Morimoto, et al. (2003)
PNAS 100, 4287-4292
   Abstract »    Full Text »    PDF »
Induction and Experience-Dependent Consolidation of Stable Long-Term Potentiation Lasting Months in the Hippocampus.
W. C. Abraham, B. Logan, J. M. Greenwood, and M. Dragunow (2002)
J. Neurosci. 22, 9626-9634
   Abstract »    Full Text »    PDF »
Reactivation and Reconsolidation of Long-Term Memory in the Crab Chasmagnathus: Protein Synthesis Requirement and Mediation by NMDA-Type Glutamatergic Receptors.
M. E. Pedreira, L. M. Perez-Cuesta, and H. Maldonado (2002)
J. Neurosci. 22, 8305-8311
   Abstract »    Full Text »    PDF »
Impairment of L-type Ca2+ Channel-Dependent Forms of Hippocampal Synaptic Plasticity in Mice Deficient in the Extracellular Matrix Glycoprotein Tenascin-C.
M. R. Evers, B. Salmen, O. Bukalo, A. Rollenhagen, M. R. Bosl, F. Morellini, U. Bartsch, A. Dityatev, and M. Schachner (2002)
J. Neurosci. 22, 7177-7194
   Abstract »    Full Text »    PDF »
Differential Involvement of NMDA, AMPA/Kainate, and Dopamine Receptors in the Nucleus Accumbens Core in the Acquisition and Performance of Pavlovian Approach Behavior.
P. Di Ciano, R. N. Cardinal, R. A. Cowell, S. J. Little, and B. J. Everitt (2001)
J. Neurosci. 21, 9471-9477
   Abstract »    Full Text »    PDF »
Consolidation of Extinction Learning Involves Transfer from NMDA-Independent to NMDA-Dependent Memory.
E. Santini, R. U. Muller, and G. J. Quirk (2001)
J. Neurosci. 21, 9009-9017
   Abstract »    Full Text »    PDF »
Memory Consolidation and NMDA Receptors: Discrepancy Between Genetic and Pharmacological Approaches.
M. Day, R. G. M. Morris, E. Shimizu, Y.-P. Tang, C. Rampon, R. Feng, D. Shrom, and J. Z. Tsien (2001)
Science 293, 755a-755
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882