Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 290 (5497): 1761-1765

Copyright © 2000 by the American Association for the Advancement of Science

Posttranslational N-Myristoylation of BID as a Molecular Switch for Targeting Mitochondria and Apoptosis

Jiping Zha,* Solly Weiler,* Kyoung Joon Oh, Michael C. Wei, Stanley J. Korsmeyerdagger

Many apoptotic molecules relocate subcellularly in cells undergoing apoptosis. The pro-apoptotic protein BID underwent posttranslational (rather than classic cotranslational) N-myristoylation when cleavage by caspase 8 caused exposure of a glycine residue. N-myristoylation enabled the targeting of a complex of p7 and myristoylated p15 fragments of BID to artificial membranes bearing the lipid composition of mitochondria, as well as to intact mitochondria. This post-proteolytic N-myristoylation serves as an activating switch, enhancing BID-induced release of cytochrome c and cell death.

Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Departments of Pathology and Medicine, Harvard Medical School, Boston, MA 02115, USA.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: stanley_korsmeyer{at}

Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of Huntingtin.
D. D. O. Martin, R. J. Heit, M. C. Yap, M. W. Davidson, M. R. Hayden, and L. G. Berthiaume (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
Structural Insights of tBid, the Caspase-8-activated Bid, and Its BH3 Domain.
Y. Wang and N. Tjandra (2013)
J. Biol. Chem. 288, 35840-35851
   Abstract »    Full Text »    PDF »
tBid Undergoes Multiple Conformational Changes at the Membrane Required for Bax Activation.
A. Shamas-Din, S. Bindner, W. Zhu, Y. Zaltsman, C. Campbell, A. Gross, B. Leber, D. W. Andrews, and C. Fradin (2013)
J. Biol. Chem. 288, 22111-22127
   Abstract »    Full Text »    PDF »
Roles of N-Terminal Fatty Acid Acylations in Membrane Compartment Partitioning: Arabidopsis h-Type Thioredoxins as a Case Study.
J. A. Traverso, C. Micalella, A. Martinez, S. C. Brown, B. Satiat-Jeunemaitre, T. Meinnel, and C. Giglione (2013)
PLANT CELL 25, 1056-1077
   Abstract »    Full Text »    PDF »
Regulation of co- and post-translational myristoylation of proteins during apoptosis: interplay of N-myristoyltransferases and caspases.
M. A. Perinpanayagam, E. Beauchamp, D. D. O. Martin, J. Y. W. Sim, M. C. Yap, and L. G. Berthiaume (2013)
FASEB J 27, 811-821
   Abstract »    Full Text »    PDF »
Targeting and Import Mechanism of Coiled-coil Helix Coiled-coil Helix Domain-containing Protein 3 (ChChd3) into the Mitochondrial Intermembrane Space.
M. Darshi, K. N. Trinh, A. N. Murphy, and S. S. Taylor (2012)
J. Biol. Chem. 287, 39480-39491
   Abstract »    Full Text »    PDF »
A new, robust, and nonradioactive approach for exploring N-myristoylation.
F. Rampoldi, R. Sandhoff, R. W. Owen, H.-J. Grone, and S. Porubsky (2012)
J. Lipid Res. 53, 2459-2468
   Abstract »    Full Text »    PDF »
Quantitative Proteomics Profiling of Murine Mammary Gland Cells Unravels Impact of Annexin-1 on DNA Damage Response, Cell Adhesion, and Migration.
H. L. F. Swa, W. P. Blackstock, L. H. K. Lim, and J. Gunaratne (2012)
Mol. Cell. Proteomics 11, 381-393
   Abstract »    Full Text »    PDF »
A Pharmacologic Inhibitor of the Protease Taspase1 Effectively Inhibits Breast and Brain Tumor Growth.
D. Y. Chen, Y. Lee, B. A. Van Tine, A. C. Searleman, T. D. Westergard, H. Liu, H.-C. Tu, S. Takeda, Y. Dong, D. R. Piwnica-Worms, et al. (2012)
Cancer Res. 72, 736-746
   Abstract »    Full Text »    PDF »
ApoptoProteomics, an Integrated Database for Analysis of Proteomics Data Obtained from Apoptotic Cells.
M. O. Arntzen and B. Thiede (2012)
Mol. Cell. Proteomics 11, M111.010447
   Abstract »    Full Text »    PDF »
Tandem reporter assay for myristoylated proteins post-translationally (TRAMPP) identifies novel substrates for post-translational myristoylation: PKC{varepsilon}, a case study.
D. D. O. Martin, C. Y. Ahpin, R. J. Heit, M. A. Perinpanayagam, M. C. Yap, R. A. Veldhoen, I. S. Goping, and L. G. Berthiaume (2012)
FASEB J 26, 13-28
   Abstract »    Full Text »    PDF »
The Role of BH3-Only Proteins in Tumor Cell Development, Signaling, and Treatment.
R. Elkholi, K. V. Floros, and J. E. Chipuk (2011)
Genes & Cancer 2, 523-537
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Fatty-acylated Proteins in Mammalian Cells with Chemical Reporters Reveals S-Acylation of Histone H3 Variants.
J. P. Wilson, A. S. Raghavan, Y.-Y. Yang, G. Charron, and H. C. Hang (2011)
Mol. Cell. Proteomics 10, M110.001198
   Abstract »    Full Text »    PDF »
A Membrane-bound Hemoglobin from Gills of the Green Shore Crab Carcinus maenas.
B. Ertas, L. Kiger, M. Blank, M. C. Marden, and T. Burmester (2011)
J. Biol. Chem. 286, 3185-3193
   Abstract »    Full Text »    PDF »
The intracellular dynamic of protein palmitoylation.
C. Salaun, J. Greaves, and L. H. Chamberlain (2010)
J. Cell Biol. 191, 1229-1238
   Abstract »    Full Text »    PDF »
Conformational Changes in BAK, a Pore-forming Proapoptotic Bcl-2 Family Member, upon Membrane Insertion and Direct Evidence for the Existence of BH3-BH3 Contact Interface in BAK Homo-oligomers.
K. J. Oh, P. Singh, K. Lee, K. Foss, S. Lee, M. Park, S. Lee, S. Aluvila, M. Park, P. Singh, et al. (2010)
J. Biol. Chem. 285, 28924-28937
   Abstract »    Full Text »    PDF »
Hepatocyte Death: A Clear and Present Danger.
H. Malhi, M. E. Guicciardi, and G. J. Gores (2010)
Physiol Rev 90, 1165-1194
   Abstract »    Full Text »    PDF »
Dual Sites of Protein Initiation Control the Localization and Myristoylation of Methionine Sulfoxide Reductase A.
G. Kim, N. B. Cole, J. C. Lim, H. Zhao, and R. L. Levine (2010)
J. Biol. Chem. 285, 18085-18094
   Abstract »    Full Text »    PDF »
Rapid and selective detection of fatty acylated proteins using {omega}-alkynyl-fatty acids and click chemistry.
M. C. Yap, M. A. Kostiuk, D. D. O. Martin, M. A. Perinpanayagam, P. G. Hak, A. Siddam, J. R. Majjigapu, G. Rajaiah, B. O. Keller, J. A. Prescher, et al. (2010)
J. Lipid Res. 51, 1566-1580
   Abstract »    Full Text »    PDF »
Posttranslational Modifications of the Bovine Lens Beaded Filament Proteins Filensin and CP49.
Z. Wang, J. E. Obidike, and K. L. Schey (2010)
Invest. Ophthalmol. Vis. Sci. 51, 1565-1574
   Abstract »    Full Text »    PDF »
Caspase-9 Activation by the Apoptosome Is Not Required for Fas-mediated Apoptosis in Type II Jurkat Cells.
M. E. Shawgo, S. N. Shelton, and J. D. Robertson (2009)
J. Biol. Chem. 284, 33447-33455
   Abstract »    Full Text »    PDF »
A Family of Bacterial Cysteine Protease Type III Effectors Utilizes Acylation-dependent and -independent Strategies to Localize to Plasma Membranes.
R. H. Dowen, J. L. Engel, F. Shao, J. R. Ecker, and J. E. Dixon (2009)
J. Biol. Chem. 284, 15867-15879
   Abstract »    Full Text »    PDF »
Cleavage of Bid by Executioner Caspases Mediates Feed Forward Amplification of Mitochondrial Outer Membrane Permeabilization during Genotoxic Stress-induced Apoptosis in Jurkat Cells.
S. N. Shelton, M. E. Shawgo, and J. D. Robertson (2009)
J. Biol. Chem. 284, 11247-11255
   Abstract »    Full Text »    PDF »
Caspase Cleavage of HER-2 Releases a Bad-like Cell Death Effector.
A. M. Strohecker, F. Yehiely, F. Chen, and V. L. Cryns (2008)
J. Biol. Chem. 283, 18269-18282
   Abstract »    Full Text »    PDF »
BIM and tBID Are Not Mechanistically Equivalent When Assisting BAX to Permeabilize Bilayer Membranes.
O. Terrones, A. Etxebarria, A. Landajuela, O. Landeta, B. Antonsson, and G. Basanez (2008)
J. Biol. Chem. 283, 7790-7803
   Abstract »    Full Text »    PDF »
Rapid detection, discovery, and identification of post-translationally myristoylated proteins during apoptosis using a bio-orthogonal azidomyristate analog.
D. D. O. Martin, G. L. Vilas, J. A. Prescher, G. Rajaiah, J. R. Falck, C. R. Bertozzi, and L. G. Berthiaume (2008)
FASEB J 22, 797-806
   Abstract »    Full Text »    PDF »
Identification of palmitoylated mitochondrial proteins using a bio-orthogonal azido-palmitate analogue.
M. A. Kostiuk, M. M. Corvi, B. O. Keller, G. Plummer, J. A. Prescher, M. J. Hangauer, C. R. Bertozzi, G. Rajaiah, J. R. Falck, and L. G. Berthiaume (2008)
FASEB J 22, 721-732
   Abstract »    Full Text »    PDF »
Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment.
S. W.G. Tait, E. de Vries, C. Maas, A. M. Keller, C. S. D'Santos, and J. Borst (2007)
J. Cell Biol. 179, 1453-1466
   Abstract »    Full Text »    PDF »
Human and murine granzyme B exhibit divergent substrate preferences.
S. P. Cullen, C. Adrain, A. U. Luthi, P. J. Duriez, and S. J. Martin (2007)
J. Cell Biol. 176, 435-444
   Abstract »    Full Text »    PDF »
A Membrane-targeted BID BCL-2 Homology 3 Peptide Is Sufficient for High Potency Activation of BAX in Vitro.
K. J. Oh, S. Barbuto, K. Pitter, J. Morash, L. D. Walensky, and S. J. Korsmeyer (2006)
J. Biol. Chem. 281, 36999-37008
   Abstract »    Full Text »    PDF »
HIV-1 Nef upregulates CCL2/MCP-1 expression in astrocytes in a myristoylation- and calmodulin-dependent manner.
M. H. Lehmann, S. Masanetz, S. Kramer, and V. Erfle (2006)
J. Cell Sci. 119, 4520-4530
   Abstract »    Full Text »    PDF »
Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid.
B. Becattini, C. Culmsee, M. Leone, D. Zhai, X. Zhang, K. J. Crowell, M. F. Rega, S. Landshamer, J. C. Reed, N. Plesnila, et al. (2006)
PNAS 103, 12602-12606
   Abstract »    Full Text »    PDF »
Bcl-2 changes conformation to inhibit Bax oligomerization.
P. J. Dlugosz, L. P. Billen, M. G. Annis, W. Zhu, Z. Zhang, J. Lin, B. Leber, and D. W. Andrews (2006)
EMBO J. 25, 2287-2296
   Abstract »    Full Text »    PDF »
Posttranslational N-Myristoylation Is Required for the Anti-apoptotic Activity of Human tGelsolin, the C-terminal Caspase Cleavage Product of Human Gelsolin.
N. Sakurai and T. Utsumi (2006)
J. Biol. Chem. 281, 14288-14295
   Abstract »    Full Text »    PDF »
Caspase-2-induced Apoptosis Requires Bid Cleavage: A Physiological Role for Bid in Heat Shock-induced Death.
C. Bonzon, L. Bouchier-Hayes, L. J. Pagliari, D. R. Green, and D. D. Newmeyer (2006)
Mol. Biol. Cell 17, 2150-2157
   Abstract »    Full Text »    PDF »
Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events.
G. L. Vilas, M. M. Corvi, G. J. Plummer, A. M. Seime, G. R. Lambkin, and L. G. Berthiaume (2006)
PNAS 103, 6542-6547
   Abstract »    Full Text »    PDF »
Real Time Single Cell Analysis of Bid Cleavage and Bid Translocation during Caspase-dependent and Neuronal Caspase-independent Apoptosis.
M. W. Ward, M. Rehm, H. Duessmann, S. Kacmar, C. G. Concannon, and J. H. M. Prehn (2006)
J. Biol. Chem. 281, 5837-5844
   Abstract »    Full Text »    PDF »
Therapeutic Modulation of Akt Activity and Antitumor Efficacy of Interleukin-12 Against Orthotopic Murine Neuroblastoma.
T. Khan, J. A. Hixon, J. K. Stauffer, E. Lincoln, T. C. Back, J. Brenner, S. Lockett, K. Nagashima, D. Powell, and J. M. Wigginton (2006)
J Natl Cancer Inst 98, 190-202
   Abstract »    Full Text »    PDF »
Death by association: BH3 domain-only proteins and liver injury.
E. S. Baskin-Bey and G. J. Gores (2005)
Am J Physiol Gastrointest Liver Physiol 289, G987-G990
   Abstract »    Full Text »    PDF »
Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis.
M. G. Annis, E. L. Soucie, P. J. Dlugosz, J. A. Cruz-Aguado, L. Z. Penn, B. Leber, and D. W. Andrews (2005)
EMBO J. 24, 2096-2103
   Abstract »    Full Text »    PDF »
Humanin Binds and Nullifies Bid Activity by Blocking Its Activation of Bax and Bak.
D. Zhai, F. Luciano, X. Zhu, B. Guo, A. C. Satterthwait, and J. C. Reed (2005)
J. Biol. Chem. 280, 15815-15824
   Abstract »    Full Text »    PDF »
PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis.
T. Simmen, J. E. Aslan, A. D. Blagoveshchenskaya, L. Thomas, L. Wan, Y. Xiang, S. F. Feliciangeli, C.-H. Hung, C. M. Crump, and G. Thomas (2005)
EMBO J. 24, 717-729
   Abstract »    Full Text »    PDF »
Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes.
H. P. Price, C. Panethymitaki, D. Goulding, and D. F. Smith (2005)
J. Cell Sci. 118, 831-841
   Abstract »    Full Text »    PDF »
Conformational Changes in BID, a Pro-apoptotic BCL-2 Family Member, upon Membrane Binding: A SITE-DIRECTED SPIN LABELING STUDY.
K. J. Oh, S. Barbuto, N. Meyer, R.-S. Kim, R. J. Collier, and S. J. Korsmeyer (2005)
J. Biol. Chem. 280, 753-767
   Abstract »    Full Text »    PDF »
Insulin Regulates Cleavage of Procaspase-9 via Binding of X Chromosome-Linked Inhibitor of Apoptosis Protein in HT-29 Cells.
J.-E. Kim and S. R. Tannenbaum (2004)
Cancer Res. 64, 9070-9075
   Abstract »    Full Text »    PDF »
Translocation of Full-length Bid to Mitochondria during Anoikis.
A. J. Valentijn and A. P. Gilmore (2004)
J. Biol. Chem. 279, 32848-32857
   Abstract »    Full Text »    PDF »
Lipidic Pore Formation by the Concerted Action of Proapoptotic BAX and tBID.
O. Terrones, B. Antonsson, H. Yamaguchi, H.-G. Wang, J. Liu, R. M. Lee, A. Herrmann, and G. Basanez (2004)
J. Biol. Chem. 279, 30081-30091
   Abstract »    Full Text »    PDF »
Conformation of Membrane-associated Proapoptotic tBid.
X.-M. Gong, J. Choi, C. M. Franzin, D. Zhai, J. C. Reed, and F. M. Marassi (2004)
J. Biol. Chem. 279, 28954-28960
   Abstract »    Full Text »    PDF »
Bid-Cardiolipin Interaction at Mitochondrial Contact Site Contributes to Mitochondrial Cristae Reorganization and Cytochrome c Release.
T.-H. Kim, Y. Zhao, W.-X. Ding, J. N. Shin, X. He, Y.-W. Seo, J. Chen, H. Rabinowich, A. A. Amoscato, and X.-M. Yin (2004)
Mol. Biol. Cell 15, 3061-3072
   Abstract »    Full Text »    PDF »
The Domains of Apoptosis: A Genomics Perspective.
J. C. Reed, K. S. Doctor, and A. Godzik (2004)
Sci. STKE 2004, re9
   Abstract »    Full Text »    PDF »
Microarray Analysis Reveals Differences in Gene Expression of Circulating CD8+ T Cells in Melanoma Patients and Healthy Donors.
T. Xu, C.-T. Shu, E. Purdom, D. Dang, D. Ilsley, Y. Guo, J. Weber, S. P. Holmes, and P. P. Lee (2004)
Cancer Res. 64, 3661-3667
   Abstract »    Full Text »    PDF »
Cyclohexyl-octahydro-pyrrolo[1,2-a]pyrazine-Based Inhibitors of Human N-Myristoyltransferase-1.
K. J. French, Y. Zhuang, R. S. Schrecengost, J. E. Copper, Z. Xia, and C. D. Smith (2004)
J. Pharmacol. Exp. Ther. 309, 340-347
   Abstract »    Full Text »    PDF »
Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis.
M. C. Bassik, L. Scorrano, S. A. Oakes, T. Pozzan, and S. J. Korsmeyer (2004)
EMBO J. 23, 1207-1216
   Abstract »    Full Text »    PDF »
Three Novel Bid Proteins Generated by Alternative Splicing of the Human Bid Gene.
S. A. Renshaw, C. E. Dempsey, F. A. Barnes, S. M. Bagstaff, S. K. Dower, C. D. Bingle, and M. K. B. Whyte (2004)
J. Biol. Chem. 279, 2846-2855
   Abstract »    Full Text »    PDF »
Interaction with a Membrane Surface Triggers a Reversible Conformational Change in Bax Normally Associated with Induction of Apoptosis.
J. A. Yethon, R. F. Epand, B. Leber, R. M. Epand, and D. W. Andrews (2003)
J. Biol. Chem. 278, 48935-48941
   Abstract »    Full Text »    PDF »
Unexpected Protein Families Including Cell Defense Components Feature in the N-Myristoylome of a Higher Eukaryote.
B. Boisson, C. Giglione, and T. Meinnel (2003)
J. Biol. Chem. 278, 43418-43429
   Abstract »    Full Text »    PDF »
Ways of dying: multiple pathways to apoptosis.
J. M. Adams (2003)
Genes & Dev. 17, 2481-2495
   Full Text »    PDF »
Phospholipid Scramblase 3 Controls Mitochondrial Structure, Function, and Apoptotic Response.
J. Liu, Q. Dai, J. Chen, D. Durrant, A. Freeman, T. Liu, D. Grossman, and R. M. Lee (2003)
Mol. Cancer Res. 1, 892-902
   Abstract »    Full Text »    PDF »
Post-translational Modification of Bid Has Differential Effects on Its Susceptibility to Cleavage by Caspase 8 or Caspase 3.
M. D. Esposti, G. Ferry, P. Masdehors, J. A. Boutin, J. A. Hickman, and C. Dive (2003)
J. Biol. Chem. 278, 15749-15757
   Abstract »    Full Text »    PDF »
BID-D59A Is a Potent Inducer of Apoptosis in Primary Embryonic Fibroblasts.
R. Sarig, Y. Zaltsman, R. C. Marcellus, R. Flavell, T. W. Mak, and A. Gross (2003)
J. Biol. Chem. 278, 10707-10715
   Abstract »    Full Text »    PDF »
Myristoyl-CoA:Protein N-Myristoyltransferase, an Essential Enzyme and Potential Drug Target in Kinetoplastid Parasites.
H. P. Price, M. R. Menon, C. Panethymitaki, D. Goulding, P. G. McKean, and D. F. Smith (2003)
J. Biol. Chem. 278, 7206-7214
   Abstract »    Full Text »    PDF »
Proapoptotic BID is required for myeloid homeostasis and tumor suppression.
S. S. Zinkel, C. C. Ong, D. O. Ferguson, H. Iwasaki, K. Akashi, R. T. Bronson, J. L. Kutok, F. W. Alt, and S. J. Korsmeyer (2003)
Genes & Dev. 17, 229-239
   Abstract »    Full Text »    PDF »
The Absence of NF-{kappa}B-Mediated Inhibition of c-Jun N-Terminal Kinase Activation Contributes to Tumor Necrosis Factor Alpha-Induced Apoptosis.
F. Tang, G. Tang, J. Xiang, Q. Dai, M. R. Rosner, and A. Lin (2002)
Mol. Cell. Biol. 22, 8571-8579
   Abstract »    Full Text »    PDF »
Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells.
J.-J. Liu, A. Nilsson, S. Oredsson, V. Badmaev, W.-Z. Zhao, and R.-D. Duan (2002)
Carcinogenesis 23, 2087-2093
   Abstract »    Full Text »    PDF »
Confirmation by FRET in individual living cells of the absence of significant amyloid {beta}-mediated caspase 8 activation.
R. Onuki, A. Nagasaki, H. Kawasaki, T. Baba, T. Q. P. Uyeda, and K. Taira (2002)
PNAS 99, 14716-14721
   Abstract »    Full Text »    PDF »
TRAIL Receptor and CD95 Signal to Mitochondria via FADD, Caspase-8/10, Bid, and Bax but Differentially Regulate Events Downstream from Truncated Bid.
A. B. Werner, E. de Vries, S. W. G. Tait, I. Bontjer, and J. Borst (2002)
J. Biol. Chem. 277, 40760-40767
   Abstract »    Full Text »    PDF »
Caspase-8-mediated BID Cleavage and Release of Mitochondrial Cytochrome c duringN {omega}-Hydroxy-L-arginine-induced Apoptosis in MDA-MB-468 Cells: ANTAGONISTIC EFFECTS OF L-ORNITHINE.
R. Singh, S. Pervin, and G. Chaudhuri (2002)
J. Biol. Chem. 277, 37630-37636
   Abstract »    Full Text »    PDF »
The Apoptotic Protein tBid Promotes Leakage by Altering Membrane Curvature.
R. F. Epand, J.-C. Martinou, M. Fornallaz-Mulhauser, D. W. Hughes, and R. M. Epand (2002)
J. Biol. Chem. 277, 32632-32639
   Abstract »    Full Text »    PDF »
A 15-Residue Bifunctional Element in D-AKAP1 Is Required for Both Endoplasmic Reticulum and Mitochondrial Targeting.
Y. Ma and S. Taylor (2002)
J. Biol. Chem. 277, 27328-27336
   Abstract »    Full Text »    PDF »
The Bax Subfamily of Bcl2-Related Proteins Is Essential for Apoptotic Signal Transduction by c-Jun NH2-Terminal Kinase.
K. Lei, A. Nimnual, W.-X. Zong, N. J. Kennedy, R. A. Flavell, C. B. Thompson, D. Bar-Sagi, and R. J. Davis (2002)
Mol. Cell. Biol. 22, 4929-4942
   Abstract »    Full Text »    PDF »
Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis.
F. Guo, R. Nimmanapalli, S. Paranawithana, S. Wittman, D. Griffin, P. Bali, E. O'Bryan, C. Fumero, H. G. Wang, and K. Bhalla (2002)
Blood 99, 3419-3426
   Abstract »    Full Text »    PDF »
Caspase-2 Can Trigger Cytochrome c Release and Apoptosis from the Nucleus.
G. Paroni, C. Henderson, C. Schneider, and C. Brancolini (2002)
J. Biol. Chem. 277, 15147-15161
   Abstract »    Full Text »    PDF »
BH3-only proteins -- evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death.
P. Bouillet and A. Strasser (2002)
J. Cell Sci. 115, 1567-1574
   Abstract »    Full Text »    PDF »
Caspase-2 Induces Apoptosis by Releasing Proapoptotic Proteins from Mitochondria.
Y. Guo, S. M. Srinivasula, A. Druilhe, T. Fernandes-Alnemri, and E. S. Alnemri (2002)
J. Biol. Chem. 277, 13430-13437
   Abstract »    Full Text »    PDF »
Epstein-Barr Virus BALF1 Is a BCL-2-Like Antagonist of the Herpesvirus Antiapoptotic BCL-2 Proteins.
D. S. Bellows, M. Howell, C. Pearson, S. A. Hazlewood, and J. M. Hardwick (2002)
J. Virol. 76, 2469-2479
   Abstract »    Full Text »    PDF »
Rapid Kinetics of tBid-induced Cytochrome c and Smac/DIABLO Release and Mitochondrial Depolarization.
M. Madesh, B. Antonsson, S. M. Srinivasula, E. S. Alnemri, and G. Hajnoczky (2002)
J. Biol. Chem. 277, 5651-5659
   Abstract »    Full Text »    PDF »
Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX, and BAK.
D. A. Thomas, L. Scorrano, G. V. Putcha, S. J. Korsmeyer, and T. J. Ley (2001)
PNAS 98, 14985-14990
   Abstract »    Full Text »    PDF »
BID mediates neuronal cell death after oxygen/ glucose deprivation and focal cerebral ischemia.
N. Plesnila, S. Zinkel, D. A. Le, S. Amin-Hanjani, Y. Wu, J. Qiu, A. Chiarugi, S. S. Thomas, D. S. Kohane, S. J. Korsmeyer, et al. (2001)
PNAS 98, 15318-15323
   Abstract »    Full Text »    PDF »
The expanding role of mitochondria in apoptosis.
X. Wang (2001)
Genes & Dev. 15, 2922-2933
   Full Text »    PDF »
Bid, a Widely Expressed Proapoptotic Protein of the Bcl-2 Family, Displays Lipid Transfer Activity.
M. D. Esposti, J. T. Erler, J. A. Hickman, and C. Dive (2001)
Mol. Cell. Biol. 21, 7268-7276
   Abstract »    Full Text »    PDF »
The Biology and Enzymology of Protein N-Myristoylation.
T. A. Farazi, G. Waksman, and J. I. Gordon (2001)
J. Biol. Chem. 276, 39501-39504
   Full Text »    PDF »
Synergistic Induction of Apoptosis in Primary CD4+ T Cells by Macrophage-Tropic HIV-1 and TGF-{beta}1.
J. Wang, E. Guan, G. Roderiquez, and M. A. Norcross (2001)
J. Immunol. 167, 3360-3366
   Abstract »    Full Text »    PDF »
Protein N-myristoylation: Critical Role in Apoptosis and Salt Tolerance.
H. R. de Jonge, B. Hogema, and B. C. Tilly (2000)
Sci. STKE 2000, pe1
   Abstract »    Full Text »    PDF »
Caspase-2-induced Apoptosis Is Dependent on Caspase-9, but Its Processing during UV- or Tumor Necrosis Factor-dependent Cell Death Requires Caspase-3.
G. Paroni, C. Henderson, C. Schneider, and C. Brancolini (2001)
J. Biol. Chem. 276, 21907-21915
   Abstract »    Full Text »    PDF »
BID mediates neuronal cell death after oxygen/ glucose deprivation and focal cerebral ischemia.
N. Plesnila, S. Zinkel, D. A. Le, S. Amin-Hanjani, Y. Wu, J. Qiu, A. Chiarugi, S. S. Thomas, D. S. Kohane, S. J. Korsmeyer, et al. (2001)
PNAS 98, 15318-15323
   Abstract »    Full Text »    PDF »
A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast.
E. V. Pavlov, M. Priault, D. Pietkiewicz, E. H.-Y. Cheng, B. Antonsson, S. Manon, S. J. Korsmeyer, C. A. Mannella, and K. W. Kinnally (2001)
J. Cell Biol. 155, 725-732
   Abstract »    Full Text »    PDF »
ARL2 and BART Enter Mitochondria and Bind the Adenine Nucleotide Transporter.
J. D. Sharer, J. F. Shern, H. Van Valkenburgh, D. C. Wallace, and R. A. Kahn (2002)
Mol. Biol. Cell 13, 71-83
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882