Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 290 (5498): 1965-1967

Copyright © 2000 by the American Association for the Advancement of Science

Identification of Synergistic Signals Initiating Inner Ear Development

Raj K. Ladher,1 Kelly U. Anakwe,1 Austin L. Gurney,2 Gary C. Schoenwolf,3 Philippa H. Francis-West1*

Tissue manipulation experiments in amphibians more than 50 years ago showed that induction of the inner ear requires two signals: a mesodermal signal followed by a neural signal. However, the molecules mediating this process have remained elusive. We present evidence for mesodermal initiation of otic development in higher vertebrates and show that the mesoderm can direct terminal differentiation of the inner ear in rostral ectoderm. Furthermore, we demonstrate the synergistic interactions of the extracellular polypeptide ligands FGF-19 and Wnt-8c as mediators of mesodermal and neural signals, respectively, initiating inner ear development.

1 Department of Craniofacial Development, King's College, London, SE1 9RT, UK.
2 Department of Molecular Biology, Genentech, San Francisco, CA 98080, USA.
3 Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA.
*   To whom correspondence should be addressed. E-mail: pfrancis{at}

The vestibuloocular reflex of tadpoles (Xenopus laevis) after knock-down of the isthmus-related transcription factor XTcf-4.
E. R. Horn, N. A. El-Yamany, and D. Gradl (2013)
J. Exp. Biol. 216, 733-741
   Abstract »    Full Text »    PDF »
Lhx1 in the proximal region of the optic vesicle permits neural retina development in the chicken.
T. Kawaue, M. Okamoto, A. Matsuyo, J. Inoue, Y. Ueda, S. Tomonari, S. Noji, and H. Ohuchi (2012)
Biology Open 1, 1083-1093
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Inner Ear Development.
D. K. Wu and M. W. Kelley (2012)
Cold Spring Harb Perspect Biol 4, a008409
   Abstract »    Full Text »    PDF »
Shaping sound in space: the regulation of inner ear patterning.
A. K. Groves and D. M. Fekete (2012)
Development 139, 245-257
   Abstract »    Full Text »    PDF »
From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes.
R. K. Ladher, P. O'Neill, and J. Begbie (2010)
Development 137, 1777-1785
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor-19, a Novel Factor That Inhibits Hepatic Fatty Acid Synthesis.
S. Bhatnagar, H. A. Damron, and F. B. Hillgartner (2009)
J. Biol. Chem. 284, 10023-10033
   Abstract »    Full Text »    PDF »
Competence, specification and commitment to an olfactory placode fate.
S. Bhattacharyya and M. Bronner-Fraser (2008)
Development 135, 4165-4177
   Abstract »    Full Text »    PDF »
Progressive restriction of otic fate: the role of FGF and Wnt in resolving inner ear potential.
S. Freter, Y. Muta, S.-S. Mak, S. Rinkwitz, and R. K. Ladher (2008)
Development 135, 3415-3424
   Abstract »    Full Text »    PDF »
Spalt4 mediates invagination and otic placode gene expression in cranial ectoderm.
M. Barembaum and M. Bronner-Fraser (2007)
Development 134, 3805-3814
   Abstract »    Full Text »    PDF »
Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium.
E. P. Hatch, C. A. Noyes, X. Wang, T. J. Wright, and S. L. Mansour (2007)
Development 134, 3615-3625
   Abstract »    Full Text »    PDF »
Changes in retinoic acid signaling alter otic patterning.
S. Hans and M. Westerfield (2007)
Development 134, 2449-2458
   Abstract »    Full Text »    PDF »
Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear.
N. Daudet, L. Ariza-McNaughton, and J. Lewis (2007)
Development 134, 2369-2378
   Abstract »    Full Text »    PDF »
Competence of cranial ectoderm to respond to Fgf signaling suggests a two-step model of otic placode induction.
K. Martin and A. K. Groves (2006)
Development 133, 877-887
   Abstract »    Full Text »    PDF »
Wnt signals mediate a fate decision between otic placode and epidermis.
T. Ohyama, O. A. Mohamed, M. M. Taketo, D. Dufort, and A. K. Groves (2006)
Development 133, 865-875
   Abstract »    Full Text »    PDF »
A balance of FGF, BMP and WNT signalling positions the future placode territory in the head.
A. Litsiou, S. Hanson, and A. Streit (2005)
Development 132, 4051-4062
   Abstract »    Full Text »    PDF »
Endoderm-derived Fgf3 is necessary and sufficient for inducing neurogenesis in the epibranchial placodes in zebrafish.
A. Nechiporuk, T. Linbo, and D. W. Raible (2005)
Development 132, 3717-3730
   Abstract »    Full Text »    PDF »
Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh.
M. M. Riccomagno, S. Takada, and D. J. Epstein (2005)
Genes & Dev. 19, 1612-1623
   Abstract »    Full Text »    PDF »
Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear.
J. Bok, M. Bronner-Fraser, and D. K. Wu (2005)
Development 132, 2115-2124
   Abstract »    Full Text »    PDF »
FGF8 initiates inner ear induction in chick and mouse.
R. K. Ladher, T. J. Wright, A. M. Moon, S. L. Mansour, and G. C. Schoenwolf (2005)
Genes & Dev. 19, 603-613
   Abstract »    Full Text »    PDF »
From placode to polarization: new tunes in inner ear development.
K. F. Barald and M. W. Kelley (2004)
Development 131, 4119-4130
   Abstract »    Full Text »    PDF »
Specification of the otic placode depends on Sox9 function in Xenopus.
N. Saint-Germain, Y.-H. Lee, Y. Zhang, T. D. Sargent, and J.-P. Saint-Jeannet (2004)
Development 131, 1755-1763
   Abstract »    Full Text »    PDF »
A direct role for Fgf but not Wnt in otic placode induction.
B. T. Phillips, E. M. Storch, A. C. Lekven, and B. B. Riley (2004)
Development 131, 923-931
   Abstract »    Full Text »    PDF »
Requirements for FGF3 and FGF10 during inner ear formation.
Y. Alvarez, M. T. Alonso, V. Vendrell, L. C. Zelarayan, P. Chamero, T. Theil, M. R. Bosl, S. Kato, M. Maconochie, D. Riethmacher, et al. (2003)
Development 130, 6329-6338
   Abstract »    Full Text »    PDF »
Generation of hair cells by stepwise differentiation of embryonic stem cells.
H. Li, G. Roblin, H. Liu, and S. Heller (2003)
PNAS 100, 13495-13500
   Abstract »    Full Text »    PDF »
Fgf3 and Fgf10 are required for mouse otic placode induction.
T. J. Wright and S. L. Mansour (2003)
Development 130, 3379-3390
   Abstract »    Full Text »    PDF »
Wnt signalling regulates myogenic differentiation in the developing avian wing.
K. Anakwe, L. Robson, J. Hadley, P. Buxton, V. Church, S. Allen, C. Hartmann, B. Harfe, T. Nohno, A. M. C. Brown, et al. (2003)
Development 130, 3503-3514
   Abstract »    Full Text »    PDF »
An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mis-patterning of the otic vesicle.
S.-J. Kwak, B. T. Phillips, R. Heck, and B. B. Riley (2003)
Development 129, 5279-5287
   Abstract »    Full Text »    PDF »
Zebrafish foxi1 mediates otic placode formation and jaw development.
K. S. Solomon, T. Kudoh, I. B. Dawid, and A. Fritz (2003)
Development 130, 929-940
   Abstract »    Full Text »    PDF »
Specification of the mammalian cochlea is dependent on Sonic hedgehog.
M. M. Riccomagno, L. Martinu, M. Mulheisen, D. K. Wu, and D. J. Epstein (2002)
Genes & Dev. 16, 2365-2378
   Abstract »    Full Text »    PDF »
Fibroblast growth factor receptor 4 (FGFR4) mediates signaling to the prolactin but not the FGFR4 promoter.
S. Yu, L. Zheng, S. L. Asa, and S. Ezzat (2002)
Am J Physiol Endocrinol Metab 283, E490-E495
   Abstract »    Full Text »    PDF »
Developmental functions of the Distal-less/Dlx homeobox genes.
G. Panganiban and J. L. R. Rubenstein (2002)
Development 129, 4371-4386
   Abstract »    Full Text »    PDF »
DEVELOPMENT: Enhanced: Hear, Hear, for the Inner Ear.
A. Graham (2000)
Science 290, 1904-1905
   Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882