Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 291 (5504): 664-667

Copyright © 2001 by the American Association for the Advancement of Science

Glycolipid Antigen Processing for Presentation by CD1d Molecules

Theodore I. Prigozy,1 Olga Naidenko,1 Pankaj Qasba,2 Dirk Elewaut,1 Laurent Brossay,1* Archana Khurana,1 Takenori Natori,3 Yasuhiko Koezuka,3 Ashok Kulkarni,4 Mitchell Kronenberg1dagger

The requirement for processing glycolipid antigens in T cell recognition was examined with mouse CD1d-mediated responses to glycosphingolipids (GSLs). Although some disaccharide GSL antigens can be recognized without processing, the responses to three other antigens, including the disaccharide GSL Gal(alpha 1rightarrow 2)GalCer (Gal, galactose; GalCer, galactosylceramide), required removal of the terminal sugars to permit interaction with the T cell receptor. A lysosomal enzyme, alpha -galactosidase A, was responsible for the processing of Gal(alpha 1rightarrow 2)GalCer to generate the antigenic monosaccharide epitope. These data demonstrate a carbohydrate antigen processing system analogous to that used for peptides and an ability of T cells to recognize processed fragments of complex glycolipids.

1 Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.
2 Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
3 Pharmaceutical Research Laboratory, Kirin Brewery, Gunma 370-12, Japan.
4 Functional Genomics Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.
*   Present address: Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.

dagger    To whom correspondence should be addressed. E-mail: mitch{at}

Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation.
M. Salio, H. Ghadbane, O. Dushek, D. Shepherd, J. Cypen, U. Gileadi, M. C. Aichinger, G. Napolitani, X. Qi, P. A. van der Merwe, et al. (2013)
PNAS 110, E4753-E4761
   Abstract »    Full Text »    PDF »
Endoplasmic Reticulum Glycoprotein Quality Control Regulates CD1d Assembly and CD1d-mediated Antigen Presentation.
A. Kunte, W. Zhang, C. Paduraru, N. Veerapen, L. R. Cox, G. S. Besra, and P. Cresswell (2013)
J. Biol. Chem. 288, 16391-16402
   Abstract »    Full Text »    PDF »
CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens.
D. Ly, A. G. Kasmar, T.-Y. Cheng, A. de Jong, S. Huang, S. Roy, A. Bhatt, R. P. van Summeren, J. D. Altman, W. R. Jacobs Jr., et al. (2013)
J. Exp. Med. 210, 729-741
   Abstract »    Full Text »    PDF »
Role for lysosomal phospholipase A2 in iNKT cell-mediated CD1d recognition.
C. Paduraru, J. S. Bezbradica, A. Kunte, R. Kelly, J. A. Shayman, N. Veerapen, L. R. Cox, G. S. Besra, and P. Cresswell (2013)
PNAS 110, 5097-5102
   Abstract »    Full Text »    PDF »
Human CD1d knock-in mouse model demonstrates potent antitumor potential of human CD1d-restricted invariant natural killer T cells.
X. Wen, P. Rao, L. J. Carreno, S. Kim, A. Lawrenczyk, S. A. Porcelli, P. Cresswell, and W. Yuan (2013)
PNAS 110, 2963-2968
   Abstract »    Full Text »    PDF »
Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs.
R. V. V. Tatituri, G. F. M. Watts, V. Bhowruth, N. Barton, A. Rothchild, F.-F. Hsu, C. F. Almeida, L. R. Cox, L. Eggeling, S. Cardell, et al. (2013)
PNAS 110, 1827-1832
   Abstract »    Full Text »    PDF »
Deciphering the Role of CD1e Protein in Mycobacterial Phosphatidyl-myo-inositol Mannosides (PIM) Processing for Presentation by CD1b to T Lymphocytes.
D. Cala-De Paepe, E. Layre, G. Giacometti, L. F. Garcia-Alles, L. Mori, D. Hanau, G. de Libero, H. de la Salle, G. Puzo, and M. Gilleron (2012)
J. Biol. Chem. 287, 31494-31502
   Abstract »    Full Text »    PDF »
Regulation of the Actin Cytoskeleton by Rho Kinase Controls Antigen Presentation by CD1d.
R. M. Gallo, M. A. Khan, J. Shi, R. Kapur, L. Wei, J. C. Bailey, J. Liu, and R. R. Brutkiewicz (2012)
J. Immunol. 189, 1689-1698
   Abstract »    Full Text »    PDF »
Gaucher disease gene GBA functions in immune regulation.
J. Liu, S. Halene, M. Yang, J. Iqbal, R. Yang, W. Z. Mehal, W.-L. Chuang, D. Jain, T. Yuen, L. Sun, et al. (2012)
PNAS 109, 10018-10023
   Abstract »    Full Text »    PDF »
Mutation of a Positively Charged Cytoplasmic Motif within CD1d Results in Multiple Defects in Antigen Presentation to NKT Cells.
J. H. Shin, J.-Y. Park, Y. H. Shin, H. Lee, Y.-K. Park, S. Jung, and S.-H. Park (2012)
J. Immunol. 188, 2235-2243
   Abstract »    Full Text »    PDF »
Requirement for Invariant Chain in Macrophages for Mycobacterium tuberculosis Replication and CD1d Antigen Presentation.
F. C. M. Sille, C. Martin, P. Jayaraman, A. Rothchild, S. Fortune, G. S. Besra, S. M. Behar, and M. Boes (2011)
Infect. Immun. 79, 3053-3063
   Abstract »    Full Text »    PDF »
Peroxisome Proliferator-Activated Receptor {gamma}-Regulated Cathepsin D Is Required for Lipid Antigen Presentation by Dendritic Cells.
B. Nakken, T. Varga, I. Szatmari, L. Szeles, A. Gyongyosi, P. A. Illarionov, B. Dezso, P. Gogolak, E. Rajnavolgyi, and L. Nagy (2011)
J. Immunol. 187, 240-247
   Abstract »    Full Text »    PDF »
Transcription factor Bcl11b controls selection of invariant natural killer T-cells by regulating glycolipid presentation in double-positive thymocytes.
D. I. Albu, J. VanValkenburgh, N. Morin, D. Califano, N. A. Jenkins, N. G. Copeland, P. Liu, and D. Avram (2011)
PNAS 108, 6211-6216
   Abstract »    Full Text »    PDF »
Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species.
J. Duan and D. L. Kasper (2011)
Glycobiology 21, 401-409
   Abstract »    Full Text »    PDF »
Diverse Endogenous Antigens for Mouse NKT Cells: Self-Antigens That Are Not Glycosphingolipids.
B. Pei, A. O. Speak, D. Shepherd, T. Butters, V. Cerundolo, F. M. Platt, and M. Kronenberg (2011)
J. Immunol. 186, 1348-1360
   Abstract »    Full Text »    PDF »
Calreticulin Controls the Rate of Assembly of CD1d Molecules in the Endoplasmic Reticulum.
Y. Zhu, W. Zhang, N. Veerapen, G. Besra, and P. Cresswell (2010)
J. Biol. Chem. 285, 38283-38292
   Abstract »    Full Text »    PDF »
Slam Haplotypes Modulate the Response to Lipopolysaccharide In Vivo through Control of NKT Cell Number and Function.
I. Aktan, A. Chant, Z. D. Borg, D. E. Damby, P. C. Leenstra, G. W. G. Lilley, J. Petty, B. T. Suratt, C. Teuscher, E. K. Wakeland, et al. (2010)
J. Immunol. 185, 144-156
   Abstract »    Full Text »    PDF »
Mechanisms for Glycolipid Antigen-Driven Cytokine Polarization by V{alpha}14i NKT Cells.
B. A. Sullivan, N. A. Nagarajan, G. Wingender, J. Wang, I. Scott, M. Tsuji, R. W. Franck, S. A. Porcelli, D. M. Zajonc, and M. Kronenberg (2010)
J. Immunol. 184, 141-153
   Abstract »    Full Text »    PDF »
Apolipoprotein-mediated lipid antigen presentation in B cells provides a pathway for innate help by NKT cells.
L. L. Allan, K. Hoefl, D.-J. Zheng, B. K. Chung, F. K. Kozak, R. Tan, and P. van den Elzen (2009)
Blood 114, 2411-2416
   Abstract »    Full Text »    PDF »
Distinct Requirements for CD1d Intracellular Transport for Development of V{alpha}14 iNKT Cells.
F. C. M. Sille, M. Boxem, D. Sprengers, N. Veerapen, G. Besra, and M. Boes (2009)
J. Immunol. 183, 1780-1788
   Abstract »    Full Text »    PDF »
CD1c bypasses lysosomes to present a lipopeptide antigen with 12 amino acids.
I. Van Rhijn, D. C. Young, A. De Jong, J. Vazquez, T.-Y. Cheng, R. Talekar, D. C. Barral, L. Leon, M. B. Brenner, J. T. Katz, et al. (2009)
J. Exp. Med. 206, 1409-1422
   Abstract »    Full Text »    PDF »
Generation of Antibody Responses to Pneumococcal Capsular Polysaccharides Is Independent of CD1 Expression in Mice.
L. Moens, A. Jeurissen, S. Nierkens, L. Boon, L. Van Kaer, A. Kasran, G. Wuyts, J. L. Ceuppens, and X. Bossuyt (2009)
Infect. Immun. 77, 1976-1980
   Abstract »    Full Text »    PDF »
Congenic Analysis of the NKT Cell Control Gene Nkt2 Implicates the Peroxisomal Protein Pxmp4.
J. M. Fletcher, M. A. Jordan, S. L. Snelgrove, R. M. Slattery, F. D. Dufour, K. Kyparissoudis, G. S. Besra, D. I. Godfrey, and A. G. Baxter (2008)
J. Immunol. 181, 3400-3412
   Abstract »    Full Text »    PDF »
B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo.
P. Barral, J. Eckl-Dorna, N. E. Harwood, C. De Santo, M. Salio, P. Illarionov, G. S. Besra, V. Cerundolo, and F. D. Batista (2008)
PNAS 105, 8345-8350
   Abstract »    Full Text »    PDF »
MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells.
S. Huang, S. Gilfillan, S. Kim, B. Thompson, X. Wang, A. J. Sant, D. H. Fremont, O. Lantz, and T. H. Hansen (2008)
J. Exp. Med. 205, 1201-1211
   Abstract »    Full Text »    PDF »
Microbial carbohydrate depolymerization by antigen-presenting cells: Deamination prior to presentation by the MHCII pathway.
J. Duan, F. Y. Avci, and D. L. Kasper (2008)
PNAS 105, 5183-5188
   Abstract »    Full Text »    PDF »
Distinct Endosomal Trafficking Requirements for Presentation of Autoantigens and Exogenous Lipids by Human CD1d Molecules.
X. Chen, X. Wang, J. M. Keaton, F. Reddington, P. A. Illarionov, G. S. Besra, and J. E. Gumperz (2007)
J. Immunol. 178, 6181-6190
   Abstract »    Full Text »    PDF »
The Niemann-Pick type C2 protein loads isoglobotrihexosylceramide onto CD1d molecules and contributes to the thymic selection of NKT cells.
N. Schrantz, Y. Sagiv, Y. Liu, P. B. Savage, A. Bendelac, and L. Teyton (2007)
J. Exp. Med. 204, 841-852
   Abstract »    Full Text »    PDF »
Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals.
A. O. Speak, M. Salio, D. C. A. Neville, J. Fontaine, D. A. Priestman, N. Platt, T. Heare, T. D. Butters, R. A. Dwek, F. Trottein, et al. (2007)
PNAS 104, 5971-5976
   Abstract »    Full Text »    PDF »
Noninfectious entry of HIV-1 into peripheral and brain macrophages mediated by the mannose receptor.
J. R. Trujillo, R. Rogers, R. M. Molina, F. Dangond, M. F. McLane, M. Essex, and J. D. Brain (2007)
PNAS 104, 5097-5102
   Abstract »    Full Text »    PDF »
Efficient Activation of V{alpha}14 Invariant NKT Cells by Foreign Lipid Antigen Is Associated with Concurrent Dendritic Cell-Specific Self Recognition.
L. Cheng, A. Ueno, S. Cho, J. S. Im, S. Golby, S. Hou, S. A. Porcelli, and Y. Yang (2007)
J. Immunol. 178, 2755-2762
   Abstract »    Full Text »    PDF »
An N-Linked Glycan Modulates the Interaction between the CD1d Heavy Chain and beta2-Microglobulin.
C. Paduraru, L. Spiridon, W. Yuan, G. Bricard, X. Valencia, S. A. Porcelli, P. A. Illarionov, G. S. Besra, S. M. Petrescu, A.-J. Petrescu, et al. (2006)
J. Biol. Chem. 281, 40369-40378
   Abstract »    Full Text »    PDF »
Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases.
S. D. Gadola, J. D. Silk, A. Jeans, P. A. Illarionov, M. Salio, G. S. Besra, R. Dwek, T. D. Butters, F. M. Platt, and V. Cerundolo (2006)
J. Exp. Med. 203, 2293-2303
   Abstract »    Full Text »    PDF »
Chewing the fat on natural killer T cell development.
D. I. Godfrey, M. J. McConville, and D. G. Pellicci (2006)
J. Exp. Med. 203, 2229-2232
   Abstract »    Full Text »    PDF »
Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid-binding groove of CD1b.
L. F. Garcia-Alles, K. Versluis, L. Maveyraud, A. T. Vallina, S. Sansano, N. F. Bello, H.-J. Gober, V. Guillet, H. de la Salle, G. Puzo, et al. (2006)
EMBO J. 25, 3684-3692
   Abstract »    Full Text »    PDF »
Role of lipid trimming and CD1 groove size in cellular antigen presentation.
T.-Y. Cheng, M. Relloso, I. Van Rhijn, D. C. Young, G. S. Besra, V. Briken, D. M. Zajonc, I. A. Wilson, S. Porcelli, and D. B. Moody (2006)
EMBO J. 25, 2989-2999
   Abstract »    Full Text »    PDF »
T-cell recognition of glycolipids presented by CD1 proteins.
D. C. Young and D. B. Moody (2006)
Glycobiology 16, 103R-112R
   Abstract »    Full Text »    PDF »
Assistance of Microbial Glycolipid Antigen Processing by CD1e.
H. de la Salle, S. Mariotti, C. Angenieux, M. Gilleron, L.-F. Garcia-Alles, D. Malm, T. Berg, S. Paoletti, B. Maitre, L. Mourey, et al. (2005)
Science 310, 1321-1324
   Abstract »    Full Text »    PDF »
Interplay of Cytokines and Microbial Signals in Regulation of CD1d Expression and NKT Cell Activation.
M. Skold, X. Xiong, P. A. Illarionov, G. S. Besra, and S. M. Behar (2005)
J. Immunol. 175, 3584-3593
   Abstract »    Full Text »    PDF »
Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells.
S. K. Dougan, A. Salas, P. Rava, A. Agyemang, A. Kaser, J. Morrison, A. Khurana, M. Kronenberg, C. Johnson, M. Exley, et al. (2005)
J. Exp. Med. 202, 529-539
   Abstract »    Full Text »    PDF »
BCR targeting of biotin-{alpha}-galactosylceramide leads to enhanced presentation on CD1d and requires transport of BCR to CD1d-containing endocytic compartments.
G. A. Lang, P. A. Illarionov, A. Glatman-Freedman, G. S. Besra, and M. L. Lang (2005)
Int. Immunol. 17, 899-908
   Abstract »    Full Text »    PDF »
Lack of Chemokine Receptor CCR5 Promotes Murine Fulminant Liver Failure by Preventing the Apoptosis of Activated CD1d-Restricted NKT Cells.
M. N. Ajuebor, A. I. Aspinall, F. Zhou, T. Le, Y. Yang, S. J. Urbanski, S. Sidobre, M. Kronenberg, C. M. Hogaboam, and M. G. Swain (2005)
J. Immunol. 174, 8027-8037
   Abstract »    Full Text »    PDF »
The Mouse CD1d Cytoplasmic Tail Mediates CD1d Trafficking and Antigen Presentation by Adaptor Protein 3-Dependent and -Independent Mechanisms.
A. P. Lawton, T. I. Prigozy, L. Brossay, B. Pei, A. Khurana, D. Martin, T. Zhu, K. Spate, M. Ozga, S. Honing, et al. (2005)
J. Immunol. 174, 3179-3186
   Abstract »    Full Text »    PDF »
Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of {alpha}-galactosylceramides.
K. O. A. Yu, J. S. Im, A. Molano, Y. Dutronc, P. A. Illarionov, C. Forestier, N. Fujiwara, I. Arias, S. Miyake, T. Yamamura, et al. (2005)
PNAS 102, 3383-3388
   Abstract »    Full Text »    PDF »
Cutting Edge: Antibody Production to Pneumococcal Polysaccharides Requires CD1 Molecules and CD8+ T Cells.
L. J. Kobrynski, A. O. Sousa, A. J. Nahmias, and F. K. Lee (2005)
J. Immunol. 174, 1787-1790
   Abstract »    Full Text »    PDF »
Lysosomal Glycosphingolipid Recognition by NKT Cells.
D. Zhou, J. Mattner, C. Cantu III, N. Schrantz, N. Yin, Y. Gao, Y. Sagiv, K. Hudspeth, Y.-P. Wu, T. Yamashita, et al. (2004)
Science 306, 1786-1789
   Abstract »    Full Text »    PDF »
Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells.
K. Fischer, E. Scotet, M. Niemeyer, H. Koebernick, J. Zerrahn, S. Maillet, R. Hurwitz, M. Kursar, M. Bonneville, S. H. E. Kaufmann, et al. (2004)
PNAS 101, 10685-10690
   Abstract »    Full Text »    PDF »
IMMUNOLOGY: The Robin Hood of Antigen Presentation.
G. De Libero (2004)
Science 303, 485-487
   Abstract »    Full Text »    PDF »
Editing of CD1d-Bound Lipid Antigens by Endosomal Lipid Transfer Proteins.
D. Zhou, C. Cantu III, Y. Sagiv, N. Schrantz, A. B. Kulkarni, X. Qi, D. J. Mahuran, C. R. Morales, G. A. Grabowski, K. Benlagha, et al. (2004)
Science 303, 523-527
   Abstract »    Full Text »    PDF »
The Adaptor Protein AP-3 Is Required for CD1d-Mediated Antigen Presentation of Glycosphingolipids and Development of V{alpha}14i NKT Cells.
D. Elewaut, A. P. Lawton, N. A. Nagarajan, E. Maverakis, A. Khurana, S. Honing, C. A. Benedict, E. Sercarz, O. Bakke, M. Kronenberg, et al. (2003)
J. Exp. Med. 198, 1133-1146
   Abstract »    Full Text »    PDF »
Complex Carbohydrates Are Not Removed During Processing of Glycoproteins by Dendritic Cells: Processing of Tumor Antigen MUC1 Glycopeptides for Presentation to Major Histocompatibility Complex Class II-restricted T Cells.
A. M. Vlad, S. Muller, M. Cudic, H. Paulsen, L. Otvos Jr., F.-G. Hanisch, and O. J. Finn (2002)
J. Exp. Med. 196, 1435-1446
   Abstract »    Full Text »    PDF »
Recycling CD1d1 Molecules Present Endogenous Antigens Processed in an Endocytic Compartment to NKT Cells.
T. J. Roberts, V. Sriram, P. M. Spence, M. Gui, K. Hayakawa, I. Bacik, J. R. Bennink, J. W. Yewdell, and R. R. Brutkiewicz (2002)
J. Immunol. 168, 5409-5414
   Abstract »    Full Text »    PDF »
Fine Specificity of TCR Complementarity-Determining Region Residues and Lipid Antigen Hydrophilic Moieties in the Recognition of a CD1-Lipid Complex.
E. P. Grant, E. M. Beckman, S. M. Behar, M. Degano, D. Frederique, G. S. Besra, I. A. Wilson, S. A. Porcelli, S. T. Furlong, and M. B. Brenner (2002)
J. Immunol. 168, 3933-3940
   Abstract »    Full Text »    PDF »
TCR{beta} Chain Influences But Does Not Solely Control Autoreactivity of V{alpha}14J281T Cells.
M. Gui, J. Li, L.-J. Wen, R. R. Hardy, and K. Hayakawa (2001)
J. Immunol. 167, 6239-6246
   Abstract »    Full Text »    PDF »
Mycobacterial Lysocardiolipin Is Exported from Phagosomes upon Cleavage of Cardiolipin by a Macrophage-Derived Lysosomal Phospholipase A2.
K. Fischer, D. Chatterjee, J. Torrelles, P. J. Brennan, S. H. E. Kaufmann, and U. E. Schaible (2001)
J. Immunol. 167, 2187-2192
   Abstract »    Full Text »    PDF »
Acylation State of the Phosphatidylinositol Mannosides from Mycobacterium bovis Bacillus Calmette Guerin and Ability to Induce Granuloma and Recruit Natural Killer T Cells.
M. Gilleron, C. Ronet, M. Mempel, B. Monsarrat, G. Gachelin, and G. Puzo (2001)
J. Biol. Chem. 276, 34896-34904
   Abstract »    Full Text »    PDF »
Presentation of the Same Glycolipid by Different CD1 Molecules.
A. Shamshiev, H.-J. Gober, A. Donda, Z. Mazorra, L. Mori, and G. De Libero (2002)
J. Exp. Med. 195, 1013-1021
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882