Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 291 (5506): 1043-1047

Copyright © 2001 by the American Association for the Advancement of Science

TRP-PLIK, a Bifunctional Protein with Kinase and Ion Channel Activities

Loren W. Runnels, Lixia Yue, David E. Clapham*

We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part of the long transient receptor potential channel subfamily implicated in control of cell division, it is a protein that is both an ion channel and a protein kinase. TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-picosiemen, steeply outwardly rectifying conductance. The zinc finger containing alpha -kinase domain was functional. Inactivation of the kinase activity by site-directed mutagenesis and the channel's dependence on intracellular adenosine triphosphate (ATP) demonstrated that the channel's kinase activity is essential for channel function.

Howard Hughes Medical Institute, Department of Cardiology, Department of Neurobiology, Harvard Medical School, 1309 Enders Building, 320 Longwood Avenue, Children's Hospital, Boston, MA 02115, USA.
*   To whom correspondence should be addressed. E-mail: clapham{at}rascal.med.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The TRPM6 Kinase Domain Determines the Mg{middle dot}ATP Sensitivity of TRPM7/M6 Heteromeric Ion Channels.
Z. Zhang, H. Yu, J. Huang, M. Faouzi, C. Schmitz, R. Penner, and A. Fleig (2014)
J. Biol. Chem. 289, 5217-5227
   Abstract »    Full Text »    PDF »
TRP channel Ca2+ sparklets: fundamental signals underlying endothelium-dependent hyperpolarization.
M. N. Sullivan and S. Earley (2013)
Am J Physiol Cell Physiol 305, C999-C1008
   Abstract »    Full Text »    PDF »
Integration of Troponin I Phosphorylation With Cardiac Regulatory Networks.
R. J. Solaro, M. Henze, and T. Kobayashi (2013)
Circ. Res. 112, 355-366
   Abstract »    Full Text »    PDF »
Increase in Serum Ca2+/Mg2+ Ratio Promotes Proliferation of Prostate Cancer Cells by Activating TRPM7 Channels.
Y. Sun, S. Selvaraj, A. Varma, S. Derry, A. E. Sahmoun, and B. B. Singh (2013)
J. Biol. Chem. 288, 255-263
   Abstract »    Full Text »    PDF »
Upregulation of TRPM7 Channels by Angiotensin II Triggers Phenotypic Switching of Vascular Smooth Muscle Cells of Ascending Aorta.
Z. Zhang, M. Wang, X.-H. Fan, J.-H. Chen, Y.-Y. Guan, and Y.-B. Tang (2012)
Circ. Res. 111, 1137-1146
   Abstract »    Full Text »    PDF »
Role of Ion Channels and Transporters in Cell Migration.
A. Schwab, A. Fabian, P. J. Hanley, and C. Stock (2012)
Physiol Rev 92, 1865-1913
   Abstract »    Full Text »    PDF »
Optical Recording Reveals Novel Properties of GSK1016790A-Induced Vanilloid Transient Receptor Potential Channel TRPV4 Activity in Primary Human Endothelial Cells.
M. N. Sullivan, M. Francis, N. L. Pitts, M. S. Taylor, and S. Earley (2012)
Mol. Pharmacol. 82, 464-472
   Abstract »    Full Text »    PDF »
Sensitivity of TRPM7 channels to Mg2+ characterized in cell-free patches of Jurkat T lymphocytes.
R. Chokshi, M. Matsushita, and J. A. Kozak (2012)
Am J Physiol Cell Physiol 302, C1642-C1651
   Abstract »    Full Text »    PDF »
Constitutive expression of a Mg2+-inhibited K+ current and a TRPM7-like current in human erythroleukemia cells.
M. J. Mason, C. Schaffner, R. A. Floto, and Q. A. Teo (2012)
Am J Physiol Cell Physiol 302, C853-C867
   Abstract »    Full Text »    PDF »
The channel kinase, TRPM7, is required for early embryonic development.
J. Jin, L.-J. Wu, J. Jun, X. Cheng, H. Xu, N. C. Andrews, and D. E. Clapham (2012)
PNAS 109, E225-E233
   Abstract »    Full Text »    PDF »
TRPM7 Is Required within Zebrafish Sensory Neurons for the Activation of Touch-Evoked Escape Behaviors.
S. E. Low, K. Amburgey, E. Horstick, J. Linsley, S. M. Sprague, W. W. Cui, W. Zhou, H. Hirata, L. Saint-Amant, R. I. Hume, et al. (2011)
J. Neurosci. 31, 11633-11644
   Abstract »    Full Text »    PDF »
Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer.
A. Becchetti (2011)
Am J Physiol Cell Physiol 301, C255-C265
   Abstract »    Full Text »    PDF »
Calcium-activated K+ channels increase cell proliferation independent of K+ conductance.
J. E. Millership, D. C. Devor, K. L. Hamilton, C. M. Balut, J. I. E. Bruce, and I. M. Fearon (2011)
Am J Physiol Cell Physiol 300, C792-C802
   Abstract »    Full Text »    PDF »
Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer.
N. S. Yee, W. Zhou, and I.-C. Liang (2011)
Dis. Model. Mech. 4, 240-254
   Abstract »    Full Text »    PDF »
Novel Channel Enzyme Fusion Proteins Confer Arsenate Resistance.
B. Wu, J. Song, and E. Beitz (2010)
J. Biol. Chem. 285, 40081-40087
   Abstract »    Full Text »    PDF »
The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling.
M. Gees, B. Colsoul, and B. Nilius (2010)
Cold Spring Harb Perspect Biol 2, a003962
   Abstract »    Full Text »    PDF »
International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family.
L.-J. Wu, T.-B. Sweet, and D. E. Clapham (2010)
Pharmacol. Rev. 62, 381-404
   Abstract »    Full Text »    PDF »
Methionine Sulfoxide Reductase B1 (MsrB1) Recovers TRPM6 Channel Activity during Oxidative Stress.
G. Cao, K. p. Lee, J. van der Wijst, M. de Graaf, A. van der Kemp, R. J. M. Bindels, and J. G. J. Hoenderop (2010)
J. Biol. Chem. 285, 26081-26087
   Abstract »    Full Text »    PDF »
Development and Optimization of a High-Throughput Bioassay for TRPM7 Ion Channel Inhibitors.
B. Castillo, P. Porzgen, R. Penner, F. D. Horgen, and A. Fleig (2010)
J Biomol Screen 15, 498-507
   Abstract »    Full Text »    PDF »
Renal TRPathies.
A. Dietrich, V. Chubanov, and T. Gudermann (2010)
J. Am. Soc. Nephrol. 21, 736-744
   Abstract »    Full Text »    PDF »
TRPM7-Mediated Ca2+ Signals Confer Fibrogenesis in Human Atrial Fibrillation.
J. Du, J. Xie, Z. Zhang, H. Tsujikawa, D. Fusco, D. Silverman, B. Liang, and L. Yue (2010)
Circ. Res. 106, 992-1003
   Abstract »    Full Text »    PDF »
Zinc-induced Neurotoxicity Mediated by Transient Receptor Potential Melastatin 7 Channels.
K. Inoue, D. Branigan, and Z.-G. Xiong (2010)
J. Biol. Chem. 285, 7430-7439
   Abstract »    Full Text »    PDF »
Molecular identification of ancient and modern mammalian magnesium transporters.
G. A. Quamme (2010)
Am J Physiol Cell Physiol 298, C407-C429
   Abstract »    Full Text »    PDF »
Zn2+ Activates Large Conductance Ca2+-activated K+ Channel via an Intracellular Domain.
S. Hou, L. E. Vigeland, G. Zhang, R. Xu, M. Li, S. H. Heinemann, and T. Hoshi (2010)
J. Biol. Chem. 285, 6434-6442
   Abstract »    Full Text »    PDF »
Mg2+- and MgATP-inhibited and Ca2+/calmodulin-sensitive TRPM7-like current in hepatoma and hepatocytes.
R. Mishra, V. Rao, R. Ta, N. Shobeiri, and C. E. Hill (2009)
Am J Physiol Gastrointest Liver Physiol 297, G687-G694
   Abstract »    Full Text »    PDF »
Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development.
H. Zhou and D. E. Clapham (2009)
PNAS 106, 15750-15755
   Abstract »    Full Text »    PDF »
Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway.
K. Inoue and Z.-G. Xiong (2009)
Cardiovasc Res 83, 547-557
   Abstract »    Full Text »    PDF »
Regulation of the Epithelial Mg2+ Channel TRPM6 by Estrogen and the Associated Repressor Protein of Estrogen Receptor Activity (REA).
G. Cao, J. van der Wijst, A. van der Kemp, F. van Zeeland, R. J. Bindels, and J. G. Hoenderop (2009)
J. Biol. Chem. 284, 14788-14795
   Abstract »    Full Text »    PDF »
TRPM1 Forms Ion Channels Associated with Melanin Content in Melanocytes.
E. Oancea, J. Vriens, S. Brauchi, J. Jun, I. Splawski, and D. E. Clapham (2009)
Science Signaling 2, ra21
   Abstract »    Full Text »    PDF »
Divide and Conquer: High Resolution Structural Information on TRP Channel Fragments.
R. Gaudet (2009)
J. Gen. Physiol. 133, 231-237
   Full Text »    PDF »
gem-1 Encodes an SLC16 Monocarboxylate Transporter-Related Protein That Functions in Parallel to the gon-2 TRPM Channel During Gonad Development in Caenorhabditis elegans.
B. J. Kemp, D. L. Church, J. Hatzold, B. Conradt, and E. J. Lambie (2009)
Genetics 181, 581-591
   Abstract »    Full Text »    PDF »
Evidence that TRPM7 is required for breast cancer cell proliferation.
A. Guilbert, M. Gautier, I. Dhennin-Duthille, N. Haren, H. Sevestre, and H. Ouadid-Ahidouch (2009)
Am J Physiol Cell Physiol 297, C493-C502
   Abstract »    Full Text »    PDF »
Huntingtin-interacting Proteins, HIP14 and HIP14L, Mediate Dual Functions, Palmitoyl Acyltransferase and Mg2+ Transport.
A. Goytain, R. M. Hines, and G. A. Quamme (2008)
J. Biol. Chem. 283, 33365-33374
   Abstract »    Full Text »    PDF »
Deletion of Trpm7 Disrupts Embryonic Development and Thymopoiesis Without Altering Mg2+ Homeostasis.
J. Jin, B. N. Desai, B. Navarro, A. Donovan, N. C. Andrews, and D. E. Clapham (2008)
Science 322, 756-760
   Abstract »    Full Text »    PDF »
TRP channels entering the structural era.
R. Gaudet (2008)
J. Physiol. 586, 3565-3575
   Abstract »    Full Text »    PDF »
Role of the {alpha}-Kinase Domain in Transient Receptor Potential Melastatin 6 Channel and Regulation by Intracellular ATP.
S. Thebault, G. Cao, H. Venselaar, Q. Xi, R. J. M. Bindels, and J. G. J. Hoenderop (2008)
J. Biol. Chem. 283, 19999-20007
   Abstract »    Full Text »    PDF »
TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane.
S. Brauchi, G. Krapivinsky, L. Krapivinsky, and D. E. Clapham (2008)
PNAS 105, 8304-8308
   Abstract »    Full Text »    PDF »
Proton Conductivity through the Human TRPM7 Channel and Its Molecular Determinants.
T. Numata and Y. Okada (2008)
J. Biol. Chem. 283, 15097-15103
   Abstract »    Full Text »    PDF »
Evolutionary determinants of divergent calcium selectivity of TRPM channels.
M. Mederos y Schnitzler, J. Waring, T. Gudermann, and V. Chubanov (2008)
FASEB J 22, 1540-1551
   Abstract »    Full Text »    PDF »
A Constitutive, Transient Receptor Potential-like Ca2+ Influx Pathway in Presynaptic Nerve Endings Independent of Voltage-gated Ca2+ Channels and Na+/Ca2+ Exchange.
R. A. Nichols, A. F. Dengler, E. M. Nakagawa, M. Bashkin, B. T. Paul, J. Wu, and G. M. Khan (2007)
J. Biol. Chem. 282, 36102-36111
   Abstract »    Full Text »    PDF »
Functional Transient Receptor Potential Melastatin 7 Channels Are Critical for Human Mast Cell Survival.
R. C. E. Wykes, M. Lee, S. M. Duffy, W. Yang, E. P. Seward, and P. Bradding (2007)
J. Immunol. 179, 4045-4052
   Abstract »    Full Text »    PDF »
Molecular Determinants of Mg2+ and Ca2+ Permeability and pH Sensitivity in TRPM6 and TRPM7.
M. Li, J. Du, J. Jiang, W. Ratzan, L.-T. Su, L. W. Runnels, and L. Yue (2007)
J. Biol. Chem. 282, 25817-25830
   Abstract »    Full Text »    PDF »
Neuromodulators, Not Activity, Control Coordinated Expression of Ionic Currents.
O. Khorkova and J. Golowasch (2007)
J. Neurosci. 27, 8709-8718
   Abstract »    Full Text »    PDF »
TRPM7 channel is sensitive to osmotic gradients in human kidney cells.
B. F. Bessac and A. Fleig (2007)
J. Physiol. 582, 1073-1086
   Abstract »    Full Text »    PDF »
Hypomagnesemia with Secondary Hypocalcemia due to a Missense Mutation in the Putative Pore-forming Region of TRPM6.
V. Chubanov, K. P. Schlingmann, J. Waring, J. Heinzinger, S. Kaske, S. Waldegger, M. M. y Schnitzler, and T. Gudermann (2007)
J. Biol. Chem. 282, 7656-7667
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Channels of the Melastatin Family and Ischemic Responses of Central Neurons.
J. F. MacDonald and M. F. Jackson (2007)
Stroke 38, 665-669
   Abstract »    Full Text »    PDF »
Activation of TRPM7 Channels by Phospholipase C-coupled Receptor Agonists.
M. Langeslag, K. Clark, W. H. Moolenaar, F. N. van Leeuwen, and K. Jalink (2007)
J. Biol. Chem. 282, 232-239
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Cation Channels in Disease.
B. Nilius, G. Owsianik, T. Voets, and J. A. Peters (2007)
Physiol Rev 87, 165-217
   Abstract »    Full Text »    PDF »
TRP channels and lipids: from Drosophila to mammalian physiology.
R. C. Hardie (2007)
J. Physiol. 578, 9-24
   Abstract »    Full Text »    PDF »
TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells.
T. Numata, T. Shimizu, and Y. Okada (2007)
Am J Physiol Cell Physiol 292, C460-C467
   Abstract »    Full Text »    PDF »
Calcium-dependent growth regulation of small cell lung cancer cells by neuropeptides.
T. Gudermann and S. Roelle (2006)
Endocr. Relat. Cancer 13, 1069-1084
   Abstract »    Full Text »    PDF »
ATP and PIP2 dependence of the magnesium-inhibited, TRPM7-like cation channel in cardiac myocytes.
A. Gwanyanya, K. R. Sipido, J. Vereecke, and K. Mubagwa (2006)
Am J Physiol Cell Physiol 291, C627-C635
   Abstract »    Full Text »    PDF »
K+-ATP-channel-related protein complexes: potential transducers in the regulation of epithelial tight junction permeability.
T. Jons, D. Wittschieber, A. Beyer, C. Meier, A. Brune, A. Thomzig, G. Ahnert-Hilger, and R. W. Veh (2006)
J. Cell Sci. 119, 3087-3097
   Abstract »    Full Text »    PDF »
Manganese and iron transport across pulmonary epithelium.
E. A. Heilig, K. J. Thompson, R. M. Molina, A. R. Ivanov, J. D. Brain, and M. Wessling-Resnick (2006)
Am J Physiol Lung Cell Mol Physiol 290, L1247-L1259
   Abstract »    Full Text »    PDF »
Functional Characterization of Homo- and Heteromeric Channel Kinases TRPM6 and TRPM7.
M. Li, J. Jiang, and L. Yue (2006)
J. Gen. Physiol. 127, 525-537
   Abstract »    Full Text »    PDF »
TRPM7 Regulates Cell Adhesion by Controlling the Calcium-dependent Protease Calpain.
L.-T. Su, M. A. Agapito, M. Li, W. T. N. Simonson, A. Huttenlocher, R. Habas, L. Yue, and L. W. Runnels (2006)
J. Biol. Chem. 281, 11260-11270
   Abstract »    Full Text »    PDF »
TRPM7 Channel Is Regulated by Magnesium Nucleotides via its Kinase Domain.
P. Demeuse, R. Penner, and A. Fleig (2006)
J. Gen. Physiol. 127, 421-434
   Abstract »    Full Text »    PDF »
A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels.
A. P. Hegle, D. D. Marble, and G. F. Wilson (2006)
PNAS 103, 2886-2891
   Abstract »    Full Text »    PDF »
Functional TRPM7 Channels Accumulate at the Plasma Membrane in Response to Fluid Flow.
E. Oancea, J. T. Wolfe, and D. E. Clapham (2006)
Circ. Res. 98, 245-253
   Abstract »    Full Text »    PDF »
TRPM7, a novel regulator of actomyosin contractility and cell adhesion.
K. Clark, M. Langeslag, B. van Leeuwen, L. Ran, A. G. Ryazanov, C. G. Figdor, W. H. Moolenaar, K. Jalink, and F. N. van Leeuwen (2006)
EMBO J. 25, 290-301
   Abstract »    Full Text »    PDF »
Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats.
R. M. Touyz, Y. He, A. C. I. Montezano, G. Yao, V. Chubanov, T. Gudermann, and G. E. Callera (2006)
Am J Physiol Regulatory Integrative Comp Physiol 290, R73-R78
   Abstract »    Full Text »    PDF »
International Union of Pharmacology. XLIX. Nomenclature and Structure-Function Relationships of Transient Receptor Potential Channels.
D. E. Clapham, D. Julius, C. Montell, and G. Schultz (2005)
Pharmacol. Rev. 57, 427-450
   Full Text »    PDF »
Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel.
T. Wang, Y. Jiao, and C. Montell (2005)
J. Cell Biol. 171, 685-694
   Abstract »    Full Text »    PDF »
The Channel Kinases TRPM6 and TRPM7 Are Functionally Nonredundant.
C. Schmitz, M. V. Dorovkov, X. Zhao, B. J. Davenport, A. G. Ryazanov, and A.-L. Perraud (2005)
J. Biol. Chem. 280, 37763-37771
   Abstract »    Full Text »    PDF »
PIP2 Activates TRPV5 and Releases Its Inhibition by Intracellular Mg2+.
J. Lee, S.-K. Cha, T.-J. Sun, and C.-L. Huang (2005)
J. Gen. Physiol. 126, 439-451
   Abstract »    Full Text »    PDF »
Novel TRPM6 Mutations in 21 Families with Primary Hypomagnesemia and Secondary Hypocalcemia.
K. P. Schlingmann, M. C. Sassen, S. Weber, U. Pechmann, K. Kusch, L. Pelken, D. Lotan, M. Syrrou, J. J. Prebble, D. E.C. Cole, et al. (2005)
J. Am. Soc. Nephrol. 16, 3061-3069
   Abstract »    Full Text »    PDF »
A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients.
S. Feske, M. Prakriya, A. Rao, and R. S. Lewis (2005)
J. Exp. Med. 202, 651-662
   Abstract »    Full Text »    PDF »
A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders.
M. C. Hermosura, H. Nayakanti, M. V. Dorovkov, F. R. Calderon, A. G. Ryazanov, D. S. Haymer, and R. M. Garruto (2005)
PNAS 102, 11510-11515
   Abstract »    Full Text »    PDF »
TRP Channels in Disease.
B. Nilius, T. Voets, and J. Peters (2005)
Sci. STKE 2005, re8
   Abstract »    Full Text »    PDF »
Potentiation of TRPM7 Inward Currents by Protons.
J. Jiang, M. Li, and L. Yue (2005)
J. Gen. Physiol. 126, 137-150
   Abstract »    Full Text »    PDF »
A critical role of TRPM channel-kinase for human magnesium transport.
K. P Schlingmann and T. Gudermann (2005)
J. Physiol. 566, 301-308
   Abstract »    Full Text »    PDF »
Alternative Splicing Switches the Divalent Cation Selectivity of TRPM3 Channels.
J. Oberwinkler, A. Lis, K. M. Giehl, V. Flockerzi, and S. E. Philipp (2005)
J. Biol. Chem. 280, 22540-22548
   Abstract »    Full Text »    PDF »
Channel Function Is Dissociated from the Intrinsic Kinase Activity and Autophosphorylation of TRPM7/ChaK1.
M. Matsushita, J. A. Kozak, Y. Shimizu, D. T. McLachlin, H. Yamaguchi, F.-Y. Wei, K. Tomizawa, H. Matsui, B. T. Chait, M. D. Cahalan, et al. (2005)
J. Biol. Chem. 280, 20793-20803
   Abstract »    Full Text »    PDF »
Store-Operated Calcium Channels.
A. B. Parekh and J. W. Putney Jr. (2005)
Physiol Rev 85, 757-810
   Abstract »    Full Text »    PDF »
The TRP Superfamily of Cation Channels.
C. Montell (2005)
Sci. STKE 2005, re3
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Melastatin 7 Ion Channels Regulate Magnesium Homeostasis in Vascular Smooth Muscle Cells: Role of Angiotensin II.
Y. He, G. Yao, C. Savoia, and R. M. Touyz (2005)
Circ. Res. 96, 207-215
   Abstract »    Full Text »    PDF »
Epithelial Ca2+ and Mg2+ Channels in Health and Disease.
J. G.J. Hoenderop and R. J.M. Bindels (2005)
J. Am. Soc. Nephrol. 16, 15-26
   Abstract »    Full Text »    PDF »
Phosphorylation of Annexin I by TRPM7 Channel-Kinase.
M. V. Dorovkov and A. G. Ryazanov (2004)
J. Biol. Chem. 279, 50643-50646
   Abstract »    Full Text »    PDF »
The VGL-Chanome: A Protein Superfamily Specialized for Electrical Signaling and Ionic Homeostasis.
F. H. Yu and W. A. Catterall (2004)
Sci. STKE 2004, re15
   Abstract »    Full Text »    PDF »
Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation.
A. Gwanyanya, B. Amuzescu, S. I. Zakharov, R. Macianskiene, K. R. Sipido, V. M. Bolotina, J. Vereecke, and K. Mubagwa (2004)
J. Physiol. 559, 761-776
   Abstract »    Full Text »    PDF »
TRPM7: Channeling the Future of Cellular Magnesium Homeostasis?.
F. I. Wolf (2004)
Sci. STKE 2004, pe23
   Abstract »    Full Text »    PDF »
Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain.
R. Takezawa, C. Schmitz, P. Demeuse, A. M. Scharenberg, R. Penner, and A. Fleig (2004)
PNAS 101, 6009-6014
   Abstract »    Full Text »    PDF »
Insights into the molecular nature of magnesium homeostasis.
M. Konrad, K. P. Schlingmann, and T. Gudermann (2004)
Am J Physiol Renal Physiol 286, F599-F605
   Abstract »    Full Text »    PDF »
Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia.
V. Chubanov, S. Waldegger, M. M. y Schnitzler, H. Vitzthum, M. C. Sassen, H. W. Seyberth, M. Konrad, and T. Gudermann (2004)
PNAS 101, 2894-2899
   Abstract »    Full Text »    PDF »
Downregulation of Ca2+ and Mg2+ Transport Proteins in the Kidney Explains Tacrolimus (FK506)-Induced Hypercalciuria and Hypomagnesemia.
T. Nijenhuis, J. G.J. Hoenderop, and R. J.M. Bindels (2004)
J. Am. Soc. Nephrol. 15, 549-557
   Abstract »    Full Text »    PDF »
Epidermal Growth Factor Activates Store-operated Ca2+ Channels through an Inositol 1,4,5-Trisphosphate-independent Pathway in Human Glomerular Mesangial Cells.
W.-P. Li, L. Tsiokas, S. C. Sansom, and R. Ma (2004)
J. Biol. Chem. 279, 4570-4577
   Abstract »    Full Text »    PDF »
Characterization of the Protein Kinase Activity of TRPM7/ChaK1, a Protein Kinase Fused to the Transient Receptor Potential Ion Channel.
L. V. Ryazanova, M. V. Dorovkov, A. Ansari, and A. G. Ryazanov (2004)
J. Biol. Chem. 279, 3708-3716
   Abstract »    Full Text »    PDF »
TRPM6 Forms the Mg2+ Influx Channel Involved in Intestinal and Renal Mg2+ Absorption.
T. Voets, B. Nilius, S. Hoefs, A. W. C. M. van der Kemp, G. Droogmans, R. J. M. Bindels, and J. G. J. Hoenderop (2004)
J. Biol. Chem. 279, 19-25
   Abstract »    Full Text »    PDF »
Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5.
D. Liu and E. R. Liman (2003)
PNAS 100, 15160-15165
   Abstract »    Full Text »    PDF »
International Union of Pharmacology. XLIII. Compendium of Voltage-Gated Ion Channels: Transient Receptor Potential Channels.
D. E. Clapham, C. Montell, G. Schultz, and D. Julius (2003)
Pharmacol. Rev. 55, 591-596
   Abstract »    Full Text »    PDF »
Regulation of a TRPM7-like Current in Rat Brain Microglia.
X. Jiang, E. W. Newell, and L. C. Schlichter (2003)
J. Biol. Chem. 278, 42867-42876
   Abstract »    Full Text »    PDF »
The Promotion of Gonadal Cell Divisions by the Caenorhabditis elegans TRPM Cation Channel GON-2 Is Antagonized by GEM-4 Copine.
D. L. Church and E. J. Lambie (2003)
Genetics 165, 563-574
   Abstract »    Full Text »    PDF »
Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond.
J.-B. Peng, E. M Brown, and M. A Hediger (2003)
J. Physiol. 551, 729-740
   Abstract »    Full Text »    PDF »
Voltage Dependence of the Ca2+-activated Cation Channel TRPM4.
B. Nilius, J. Prenen, G. Droogmans, T. Voets, R. Vennekens, M. Freichel, U. Wissenbach, and V. Flockerzi (2003)
J. Biol. Chem. 278, 30813-30820
   Abstract »    Full Text »    PDF »
Identification of Store-independent and Store-operated Ca2+ Conductances in Caenorhabditis elegans Intestinal Epithelial Cells.
A. Y. Estevez, R. K. Roberts, and K. Strange (2003)
J. Gen. Physiol. 122, 207-223
   Abstract »    Full Text »    PDF »
The Store-operated Calcium Entry Pathways in Human Carcinoma A431 Cells: Functional Properties and Activation Mechanisms.
K. Gusev, L. Glouchankova, A. Zubov, E. Kaznacheyeva, Z. Wang, I. Bezprozvanny, and G. N. Mozhayeva (2003)
J. Gen. Physiol. 122, 81-94
   Abstract »    Full Text »    PDF »
Molecular and Functional Characterization of the Melastatin-related Cation Channel TRPM3.
C. Grimm, R. Kraft, S. Sauerbruch, G. Schultz, and C. Harteneck (2003)
J. Biol. Chem. 278, 21493-21501
   Abstract »    Full Text »    PDF »
2-Aminoethoxydiphenyl Borane Activates a Novel Calcium-Permeable Cation Channel.
F.-J. Braun, O. Aziz, and J. W. Putney Jr. (2003)
Mol. Pharmacol. 63, 1304-1311
   Abstract »    Full Text »    PDF »
Expression and Characterization of Human Transient Receptor Potential Melastatin 3 (hTRPM3).
N. Lee, J. Chen, L. Sun, S. Wu, K. R. Gray, A. Rich, M. Huang, J.-H. Lin, J. N. Feder, E. B. Janovitz, et al. (2003)
J. Biol. Chem. 278, 20890-20897
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882