Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 291 (5510): 1962-1965

Copyright © 2001 by the American Association for the Advancement of Science

A Proteolytic Transmembrane Signaling Pathway and Resistance to beta -Lactams in Staphylococci

H. Z. Zhang, C. J. Hackbarth, K. M. Chansky, H. F. Chambers*

beta -Lactamase and penicillin-binding protein 2a mediate staphylococcal resistance to beta -lactam antibiotics, which are otherwise highly clinically effective. Production of these inducible proteins is regulated by a signal-transducing integral membrane protein and a transcriptional repressor. The signal transducer is a fusion protein with penicillin-binding and zinc metalloprotease domains. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which autoactivates, and the repressor, which is inactivated, unblocking gene transcription. Compounds that disrupt this regulatory pathway could restore the activity of beta -lactam antibiotics against drug-resistant strains of staphylococci.

Division of Infectious Diseases, San Francisco General Hospital, Department of Medicine, University of California at San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
*   To whom correspondence should be addressed. E-mail: chipc{at}itsa.ucsf.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Rationale for Eliminating Staphylococcus Breakpoints for {beta}-Lactam Agents Other Than Penicillin, Oxacillin or Cefoxitin, and Ceftaroline.
J. Dien Bard, J. A. Hindler, H. S. Gold, and B. Limbago (2014)
Clinical Infectious Diseases 58, 1287-1296
   Abstract »    Full Text »    PDF »
Role of the mecA Gene in Oxacillin Resistance in a Staphylococcus aureus Clinical Strain with a pvl-Positive ST59 Genetic Background.
F.-J. Chen, C.-H. Wang, C.-Y. Chen, Y.-C. Hsu, and K.-T. Wang (2014)
Antimicrob. Agents Chemother. 58, 1047-1054
   Abstract »    Full Text »    PDF »
Structure-Function Studies of the Staphylococcal Methicillin Resistance Antirepressor MecR2.
P. Arede, T. Botelho, T. Guevara, I. Uson, D. C. Oliveira, and F. X. Gomis-Ruth (2013)
J. Biol. Chem. 288, 21267-21278
   Abstract »    Full Text »    PDF »
Proteolysis of mecA Repressor Is Essential for Expression of Methicillin Resistance by Staphylococcus aureus.
P. Arede and D. C. Oliveira (2013)
Antimicrob. Agents Chemother. 57, 2001-2002
   Abstract »    Full Text »    PDF »
{beta}-Lactams Increase the Antibacterial Activity of Daptomycin against Clinical Methicillin-Resistant Staphylococcus aureus Strains and Prevent Selection of Daptomycin-Resistant Derivatives.
S. Mehta, C. Singh, K. B. Plata, P. K. Chanda, A. Paul, S. Riosa, R. R. Rosato, and A. E. Rosato (2012)
Antimicrob. Agents Chemother. 56, 6192-6200
   Abstract »    Full Text »    PDF »
Activation of BlaR1 Protein of Methicillin-resistant Staphylococcus aureus, Its Proteolytic Processing, and Recovery from Induction of Resistance.
L. I. Llarrull, M. Toth, M. M. Champion, and S. Mobashery (2011)
J. Biol. Chem. 286, 38148-38158
   Abstract »    Full Text »    PDF »
Lysine N{zeta}-Decarboxylation Switch and Activation of the {beta}-Lactam Sensor Domain of BlaR1 Protein of Methicillin-resistant Staphylococcus aureus.
O. Borbulevych, M. Kumarasiri, B. Wilson, L. I. Llarrull, M. Lee, D. Hesek, Q. Shi, J. Peng, B. M. Baker, and S. Mobashery (2011)
J. Biol. Chem. 286, 31466-31472
   Abstract »    Full Text »    PDF »
Structural basis for the binding of IRES RNAs to the head of the ribosomal 40S subunit.
M. Muhs, H. Yamamoto, J. Ismer, H. Takaku, M. Nashimoto, T. Uchiumi, N. Nakashima, T. Mielke, P. W. Hildebrand, K. H. Nierhaus, et al. (2011)
Nucleic Acids Res. 39, 5264-5275
   Abstract »    Full Text »    PDF »
Induction of {beta}-lactamase production in Aeromonas hydrophila is responsive to {beta}-lactam-mediated changes in peptidoglycan composition.
A. E. Tayler, J. A. Ayala, P. Niumsup, K. Westphal, J. A. Baker, L. Zhang, T. R. Walsh, B. Wiedemann, P. M. Bennett, and M. B. Avison (2010)
Microbiology 156, 2327-2335
   Abstract »    Full Text »    PDF »
Molecular Basis and Phenotype of Methicillin Resistance in Staphylococcus aureus and Insights into New {beta}-Lactams That Meet the Challenge.
L. I. Llarrull, J. F. Fisher, and S. Mobashery (2009)
Antimicrob. Agents Chemother. 53, 4051-4063
   Full Text »    PDF »
Novel Anion Liposome-Encapsulated Antisense Oligonucleotide Restores Susceptibility of Methicillin-Resistant Staphylococcus aureus and Rescues Mice from Lethal Sepsis by Targeting mecA.
J. Meng, H. Wang, Z. Hou, T. Chen, J. Fu, X. Ma, G. He, X. Xue, M. Jia, and X. Luo (2009)
Antimicrob. Agents Chemother. 53, 2871-2878
   Abstract »    Full Text »    PDF »
Reversal of methicillin resistance in Staphylococcus aureus by thioridazine.
J. K. Klitgaard, M. N. Skov, B. H. Kallipolitis, and H. J. Kolmos (2008)
J. Antimicrob. Chemother. 62, 1215-1221
   Abstract »    Full Text »    PDF »
The Membrane-Bound Transcriptional Regulator CadC Is Activated by Proteolytic Cleavage in Response to Acid Stress.
Y. H. Lee, J. H. Kim, I. S. Bang, and Y. K. Park (2008)
J. Bacteriol. 190, 5120-5126
   Abstract »    Full Text »    PDF »
Diversity of Penicillin-binding Proteins: RESISTANCE FACTOR FmtA OF STAPHYLOCOCCUS AUREUS.
X. Fan, Y. Liu, D. Smith, L. Konermann, K. W. M. Siu, and D. Golemi-Kotra (2007)
J. Biol. Chem. 282, 35143-35152
   Abstract »    Full Text »    PDF »
Molecular and Biochemical Characterization of the Chromosome-Encoded Class A {beta}-Lactamase BCL-1 from Bacillus clausii.
D. Girlich, R. Leclercq, T. Naas, and P. Nordmann (2007)
Antimicrob. Agents Chemother. 51, 4009-4014
   Abstract »    Full Text »    PDF »
Conformational and thermodynamic changes of the repressor/DNA operator complex upon monomerization shed new light on regulation mechanisms of bacterial resistance against {beta}-lactam antibiotics.
J. Boudet, V. Duval, H. Van Melckebeke, M. Blackledge, A. Amoroso, B. Joris, and J.-P. Simorre (2007)
Nucleic Acids Res. 35, 4384-4395
   Abstract »    Full Text »    PDF »
Identification and Phenotypic Characterization of a {beta}-Lactam-Dependent, Methicillin-Resistant Staphylococcus aureus Strain.
F. Goldstein, J. Perutka, A. Cuirolo, K. Plata, D. Faccone, J. Morris, A. Sournia, M. D. Kitzis, A. Ly, G. Archer, et al. (2007)
Antimicrob. Agents Chemother. 51, 2514-2522
   Abstract »    Full Text »    PDF »
Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing.
M. M. Mwangi, S. W. Wu, Y. Zhou, K. Sieradzki, H. de Lencastre, P. Richardson, D. Bruce, E. Rubin, E. Myers, E. D. Siggia, et al. (2007)
PNAS 104, 9451-9456
   Abstract »    Full Text »    PDF »
Discrete steps in sensing of beta-lactam antibiotics by the BlaR1 protein of the methicillin-resistant Staphylococcus aureus bacterium.
K. Thumanu, J. Cha, J. F. Fisher, R. Perrins, S. Mobashery, and C. Wharton (2006)
PNAS 103, 10630-10635
   Abstract »    Full Text »    PDF »
Genetic Background Affects Stability of mecA in Staphylococcus aureus.
Y. Katayama, D. A. Robinson, M. C. Enright, and H. F. Chambers (2005)
J. Clin. Microbiol. 43, 2380-2383
   Abstract »    Full Text »    PDF »
Crystal Structures of the BlaI Repressor from Staphylococcus aureus and Its Complex with DNA: Insights into Transcriptional Regulation of the bla and mec Operons.
M. K. Safo, Q. Zhao, T.-P. Ko, F. N. Musayev, H. Robinson, N. Scarsdale, A. H.-J. Wang, and G. L. Archer (2005)
J. Bacteriol. 187, 1833-1844
   Abstract »    Full Text »    PDF »
Methicillin-Resistant Staphylococcus aureus: An Evolutionary, Epidemiologic, and Therapeutic Odyssey.
S. Deresinski (2005)
Clinical Infectious Diseases 40, 562-573
   Abstract »    Full Text »    PDF »
{beta}-Lactamase Gene Expression in a Penicillin-Resistant Bacillus anthracis Strain.
Y. Chen, F. C. Tenover, and T. M. Koehler (2004)
Antimicrob. Agents Chemother. 48, 4873-4877
   Abstract »    Full Text »    PDF »
Crystal Structures of the Apo and Penicillin-acylated Forms of the BlaR1 {beta}-Lactam Sensor of Staphylococcus aureus.
M. S. Wilke, T. L. Hills, H.-Z. Zhang, H. F. Chambers, and N. C. J. Strynadka (2004)
J. Biol. Chem. 279, 47278-47287
   Abstract »    Full Text »    PDF »
Novel Non-mecA-Containing Staphylococcal Chromosomal Cassette Composite Island Containing pbp4 and tagF Genes in a Commensal Staphylococcal Species: a Possible Reservoir for Antibiotic Resistance Islands in Staphylococcus aureus.
K. Mongkolrattanothai, S. Boyle, T. V. Murphy, and R. S. Daum (2004)
Antimicrob. Agents Chemother. 48, 1823-1836
   Abstract »    Full Text »    PDF »
On the Transcriptional Regulation of Methicillin Resistance: MecI REPRESSOR IN COMPLEX WITH ITS OPERATOR.
R. Garcia-Castellanos, G. Mallorqui-Fernandez, A. Marrero, J. Potempa, M. Coll, and F. X. Gomis-Ruth (2004)
J. Biol. Chem. 279, 17888-17896
   Abstract »    Full Text »    PDF »
Evidence of an Intramolecular Interaction between the Two Domains of the BlaR1 Penicillin Receptor during the Signal Transduction.
S. Hanique, M.-L. Colombo, E. Goormaghtigh, P. Soumillion, J.-M. Frere, and B. Joris (2004)
J. Biol. Chem. 279, 14264-14272
   Abstract »    Full Text »    PDF »
PBP 2a Mutations Producing Very-High-Level Resistance to Beta-Lactams.
Y. Katayama, H.-Z. Zhang, and H. F. Chambers (2004)
Antimicrob. Agents Chemother. 48, 453-459
   Abstract »    Full Text »    PDF »
Three-dimensional Structure of MecI: MOLECULAR BASIS FOR TRANSCRIPTIONAL REGULATION OF STAPHYLOCOCCAL METHICILLIN RESISTANCE.
R. Garcia-Castellanos, A. Marrero, G. Mallorqui-Fernandez, J. Potempa, M. Coll, and F. X. Gomis-Ruth (2003)
J. Biol. Chem. 278, 39897-39905
   Abstract »    Full Text »    PDF »
Jumping the Barrier to {beta}-Lactam Resistance in Staphylococcus aureus.
Y. Katayama, H.-Z. Zhang, D. Hong, and H. F. Chambers (2003)
J. Bacteriol. 185, 5465-5472
   Abstract »    Full Text »    PDF »
Quantitation of mecA Transcription in Oxacillin-Resistant Staphylococcus aureus Clinical Isolates.
A. E. Rosato, W. A. Craig, and G. L. Archer (2003)
J. Bacteriol. 185, 3446-3452
   Abstract »    Full Text »    PDF »
Resistance to {beta}-Lactam Antibiotics and Its Mediation by the Sensor Domain of the Transmembrane BlaR Signaling Pathway in Staphylococcus aureus.
D. Golemi-Kotra, J. Y. Cha, S. O. Meroueh, S. B. Vakulenko, and S. Mobashery (2003)
J. Biol. Chem. 278, 18419-18425
   Abstract »    Full Text »    PDF »
Dimerization and DNA Binding Properties of the Bacillus licheniformis 749/I BlaI Repressor.
P. Filee, C. Vreuls, R. Herman, I. Thamm, T. Aerts, P. P. De Deyn, J.-M. Frere, and B. Joris (2003)
J. Biol. Chem. 278, 16482-16487
   Abstract »    Full Text »    PDF »
{beta}-Lactamase Genes of the Penicillin-Susceptible Bacillus anthracis Sterne Strain.
Y. Chen, J. Succi, F. C. Tenover, and T. M. Koehler (2003)
J. Bacteriol. 185, 823-830
   Abstract »    Full Text »    PDF »
Biochemistry and Comparative Genomics of SxxK Superfamily Acyltransferases Offer a Clue to the Mycobacterial Paradox: Presence of Penicillin-Susceptible Target Proteins versus Lack of Efficiency of Penicillin as Therapeutic Agent.
C. Goffin and J.-M. Ghuysen (2002)
Microbiol. Mol. Biol. Rev. 66, 702-738
   Abstract »    Full Text »    PDF »
Transcription of the Gene Mediating Methicillin Resistance in Staphylococcus aureus (mecA) Is Corepressed but Not Coinduced by Cognate mecA and beta -Lactamase Regulators.
T. K. McKinney, V. K. Sharma, W. A. Craig, and G. L. Archer (2001)
J. Bacteriol. 183, 6862-6868
   Abstract »    Full Text »    PDF »
MICROBIOLOGY: Signaling Antibiotic Resistance in Staphylococci.
G. L. Archer and J. M. Bosilevac (2001)
Science 291, 1915-1916
   Full Text »
The Active 80S Ribosome-Sec61 Complex.
R. BECKMANN, C.M.T. SPAHN, J. FRANK, and G. BLOBEL (2001)
Cold Spring Harb Symp Quant Biol 66, 543-554
   Abstract »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882