Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 291 (5511): 2144-2147

Copyright © 2001 by the American Association for the Advancement of Science

A Sperm Cytoskeletal Protein That Signals Oocyte Meiotic Maturation and Ovulation

Michael A. Miller,1 Viet Q. Nguyen,2 Min-Ho Lee,3 Mary Kosinski,1 Tim Schedl,3 Richard M. Caprioli,2 David Greenstein1*

Caenorhabditis elegans oocytes, like those of most animals, arrest during meiotic prophase. Sperm promote the resumption of meiosis (maturation) and contraction of smooth muscle-like gonadal sheath cells, which are required for ovulation. We show that the major sperm cytoskeletal protein (MSP) is a bipartite signal for oocyte maturation and sheath contraction. MSP also functions in sperm locomotion, playing a role analogous to actin. Thus, during evolution, MSP has acquired extracellular signaling and intracellular cytoskeletal functions for reproduction. Proteins with MSP-like domains are found in plants, fungi, and other animals, suggesting that related signaling functions may exist in other phyla.

1 Department of Cell Biology,
2 Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
3 Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
*   To whom correspondence should be addressed. E-mail: david.greenstein{at}mcmail.vanderbilt.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
RNA Recognition by the Caenorhabditis elegans Oocyte Maturation Determinant OMA-1.
E. Kaymak and S. P. Ryder (2013)
J. Biol. Chem. 288, 30463-30472
   Abstract »    Full Text »    PDF »
Sex differences in body composition, fat storage, and gene expression profile in Caenorhabditis elegans in response to dietary restriction.
C. Miersch and F. Doring (2013)
Physiol Genomics 45, 539-551
   Abstract »    Full Text »    PDF »
akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I.
A. M. Clemons, H. M. Brockway, Y. Yin, B. Kasinathan, Y. S. Butterfield, S. J. M. Jones, M. P. Colaiacovo, and S. Smolikove (2013)
Mol. Biol. Cell 24, 1053-1067
   Abstract »    Full Text »    PDF »
SACY-1 DEAD-Box Helicase Links the Somatic Control of Oocyte Meiotic Maturation to the Sperm-to-Oocyte Switch and Gamete Maintenance in Caenorhabditis elegans.
S. Kim, J. A. Govindan, Z. J. Tu, and D. Greenstein (2012)
Genetics 192, 905-928
   Abstract »    Full Text »    PDF »
Sperm Development and Motility are Regulated by PP1 Phosphatases in Caenorhabditis elegans.
J.-c. Wu, A. C. Go, M. Samson, T. Cintra, S. Mirsoian, T. F. Wu, M. M. Jow, E. J. Routman, and D. S. Chu (2012)
Genetics 190, 143-157
   Abstract »    Full Text »    PDF »
Developmental Control of Oocyte Maturation and Egg Activation in Metazoan Models.
J. R. Von Stetina and T. L. Orr-Weaver (2011)
Cold Spring Harb Perspect Biol 3, a005553
   Abstract »    Full Text »    PDF »
C. elegans STK39/SPAK ortholog-mediated inhibition of ClC anion channel activity is regulated by WNK-independent ERK kinase signaling.
R. A. Falin, H. Miyazaki, and K. Strange (2011)
Am J Physiol Cell Physiol 300, C624-C635
   Abstract »    Full Text »    PDF »
The EGR family gene egrh-1 functions non-autonomously in the control of oocyte meiotic maturation and ovulation in C. elegans.
L. M. Clary and P. G. Okkema (2010)
Development 137, 3129-3137
   Abstract »    Full Text »    PDF »
A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing.
C. Cantacessi, A. R. Jex, R. S. Hall, N. D. Young, B. E. Campbell, A. Joachim, M. J. Nolan, S. Abubucker, P. W. Sternberg, S. Ranganathan, et al. (2010)
Nucleic Acids Res. 38, e171
   Abstract »    Full Text »    PDF »
RNF-121 Is an Endoplasmic Reticulum-Membrane E3 Ubiquitin Ligase Involved in the Regulation of {beta}-Integrin.
A. Darom, U. Bening-Abu-Shach, and L. Broday (2010)
Mol. Biol. Cell 21, 1788-1798
   Abstract »    Full Text »    PDF »
cdc-25.2, a C. elegans ortholog of cdc25, is required to promote oocyte maturation.
J. Kim, I. Kawasaki, and Y.-H. Shim (2010)
J. Cell Sci. 123, 993-1000
   Abstract »    Full Text »    PDF »
Mutations in Two Independent Pathways Are Sufficient to Create Hermaphroditic Nematodes.
C. Baldi, S. Cho, and R. E. Ellis (2009)
Science 326, 1002-1005
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans FOS-1 and JUN-1 Regulate plc-1 Expression in the Spermatheca to Control Ovulation.
S. M. Hiatt, H. M. Duren, Y. J. Shyu, R. E. Ellis, N. Hisamoto, K. Matsumoto, K.-i. Kariya, T. K. Kerppola, and C.-D. Hu (2009)
Mol. Biol. Cell 20, 3888-3895
   Abstract »    Full Text »    PDF »
Somatic cAMP signaling regulates MSP-dependent oocyte growth and meiotic maturation in C. elegans.
J. A. Govindan, S. Nadarajan, S. Kim, T. A. Starich, and D. Greenstein (2009)
Development 136, 2211-2221
   Abstract »    Full Text »    PDF »
MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans.
S. Nadarajan, J. A. Govindan, M. McGovern, E. J. A. Hubbard, and D. Greenstein (2009)
Development 136, 2223-2234
   Abstract »    Full Text »    PDF »
A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm.
M. A. Henderson, E. Cronland, S. Dunkelbarger, V. Contreras, S. Strome, and B. D. Keiper (2009)
J. Cell Sci. 122, 1529-1539
   Abstract »    Full Text »    PDF »
Reduction in ovulation or male sex phenotype increases long-term anoxia survival in a daf-16-independent manner in Caenorhabditis elegans.
A. R. Mendenhall, M. G. LeBlanc, D. P. Mohan, and P. A. Padilla (2009)
Physiol Genomics 36, 167-178
   Abstract »    Full Text »    PDF »
C. elegans La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis.
K. Nykamp, M.-H. Lee, and J. Kimble (2008)
RNA 14, 1378-1389
   Abstract »    Full Text »    PDF »
Proteomics in Caenorhabditis elegans.
A. Audhya and A. Desai (2008)
Briefings in Functional Genomics 7, 205-210
   Abstract »    Full Text »    PDF »
Multiple Functions and Dynamic Activation of MPK-1 Extracellular Signal-Regulated Kinase Signaling in Caenorhabditis elegans Germline Development.
M.-H. Lee, M. Ohmachi, S. Arur, S. Nayak, R. Francis, D. Church, E. Lambie, and T. Schedl (2007)
Genetics 177, 2039-2062
   Abstract »    Full Text »    PDF »
GLH-1, the C. elegans P granule protein, is controlled by the JNK KGB-1 and by the COP9 subunit CSN-5.
A. M. Orsborn, W. Li, T. J. McEwen, T. Mizuno, E. Kuzmin, K. Matsumoto, and K. L. Bennett (2007)
Development 134, 3383-3392
   Abstract »    Full Text »    PDF »
Meiotic Parthenogenesis in a Root-Knot Nematode Results in Rapid Genomic Homozygosity.
Q. L. Liu, V. P. Thomas, and V. M. Williamson (2007)
Genetics 176, 1483-1490
   Abstract »    Full Text »    PDF »
Functional genomics and biochemical characterization of the C. elegans orthologue of the Machado-Joseph disease protein ataxin-3.
A.-J. Rodrigues, G. Coppola, C. Santos, M. d. C. Costa, M. Ailion, J. Sequeiros, D. H. Geschwind, and P. Maciel (2007)
FASEB J 21, 1126-1136
   Abstract »    Full Text »    PDF »
Proteasomal Ubiquitin Receptor RPN-10 Controls Sex Determination in Caenorhabditis elegans.
M. Shimada, K. Kanematsu, K. Tanaka, H. Yokosawa, and H. Kawahara (2006)
Mol. Biol. Cell 17, 5356-5371
   Abstract »    Full Text »    PDF »
Function of a STIM1 Homologue in C. elegans: Evidence that Store-operated Ca2+ Entry Is Not Essential for Oscillatory Ca2+ Signaling and ER Ca2+ Homeostasis.
X. Yan, J. Xing, C. Lorin-Nebel, A. Y. Estevez, K. Nehrke, T. Lamitina, and K. Strange (2006)
J. Gen. Physiol. 128, 443-459
   Abstract »    Full Text »    PDF »
High Nucleotide Polymorphism and Rapid Decay of Linkage Disequilibrium in Wild Populations of Caenorhabditis remanei.
A. D. Cutter, S. E. Baird, and D. Charlesworth (2006)
Genetics 174, 901-913
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans CPI-2a Cystatin-like Inhibitor Has an Essential Regulatory Role during Oogenesis and Fertilization.
S. Hashmi, J. Zhang, Y. Oksov, Q. Ji, and S. Lustigman (2006)
J. Biol. Chem. 281, 28415-28429
   Abstract »    Full Text »    PDF »
C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival..
E. A. Kritikou, S. Milstein, P.-O. Vidalain, G. Lettre, E. Bogan, K. Doukoumetzidis, P. Gray, T. G. Chappell, M. Vidal, and M. O. Hengartner (2006)
Genes & Dev. 20, 2279-2292
   Abstract »    Full Text »    PDF »
Dynamic Regulation of Caveolin-1 Trafficking in the Germ Line and Embryo of Caenorhabditis elegans.
K. Sato, M. Sato, A. Audhya, K. Oegema, P. Schweinsberg, and B. D. Grant (2006)
Mol. Biol. Cell 17, 3085-3094
   Abstract »    Full Text »    PDF »
Genetic redundancy masks diverse functions of the tumor suppressor gene PTEN during C. elegans development..
Y. Suzuki and M. Han (2006)
Genes & Dev. 20, 423-428
   Abstract »    Full Text »    PDF »
The C. elegans Myt1 ortholog is required for the proper timing of oocyte maturation.
A. E. Burrows, B. K. Sceurman, M. E. Kosinski, C. T. Richie, P. L. Sadler, J. M. Schumacher, and A. Golden (2006)
Development 133, 697-709
   Abstract »    Full Text »    PDF »
LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans.
M.-H. Lee, B. Hook, L. B. Lamont, M. Wickens, and J. Kimble (2006)
EMBO J. 25, 88-96
   Abstract »    Full Text »    PDF »
Eph and NMDA receptors control Ca2+/calmodulin-dependent protein kinase II activation during C. elegans oocyte meiotic maturation.
C. Corrigan, R. Subramanian, and M. A. Miller (2005)
Development 132, 5225-5237
   Abstract »    Full Text »    PDF »
C. elegans sperm bud vesicles to deliver a meiotic maturation signal to distant oocytes.
M. Kosinski, K. McDonald, J. Schwartz, I. Yamamoto, and D. Greenstein (2005)
Development 132, 3357-3369
   Abstract »    Full Text »    PDF »
Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB.
B. E. Thompson, D. S. Bernstein, J. L. Bachorik, A. G. Petcherski, M. Wickens, and J. Kimble (2005)
Development 132, 3471-3481
   Abstract »    Full Text »    PDF »
Cells in D.C.: The American Society for Cell Biology: Washington, D.C. December 4-8, 2004.
N. LeBrasseur and K. Powell (2005)
J. Cell Biol. 168, 526-531
   Full Text »    PDF »
Inositol 1,4,5-Trisphosphate Signaling Regulates Rhythmic Contractile Activity of Myoepithelial Sheath Cells in Caenorhabditis elegans.
X. Yin, N. J.D. Gower, H. A. Baylis, and K. Strange (2004)
Mol. Biol. Cell 15, 3938-3949
   Abstract »    Full Text »    PDF »
PAR-3 is required for epithelial cell polarity in the distal spermatheca of C. elegans.
S. Aono, R. Legouis, W. A. Hoose, and K. J. Kemphues (2004)
Development 131, 2865-2874
   Abstract »    Full Text »    PDF »
Tropomyosin and Troponin Are Required for Ovarian Contraction in the Caenorhabditis elegans Reproductive System.
K. Ono and S. Ono (2004)
Mol. Biol. Cell 15, 2782-2793
   Abstract »    Full Text »    PDF »
C. elegans pro-1 activity is required for soma/germline interactions that influence proliferation and differentiation in the germ line.
D. J. Killian and E. J. A. Hubbard (2004)
Development 131, 1267-1278
   Abstract »    Full Text »    PDF »
Protein Profiling in Brain Tumors Using Mass Spectrometry: Feasibility of a New Technique for the Analysis of Protein Expression.
S. A. Schwartz, R. J. Weil, M. D. Johnson, S. A. Toms, and R. M. Caprioli (2004)
Clin. Cancer Res. 10, 981-987
   Abstract »    Full Text »    PDF »
Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function.
A. Palmer and R. Klein (2003)
Genes & Dev. 17, 1429-1450
   Full Text »    PDF »
The multifaceted C. elegans major sperm protein: an ephrin signaling antagonist in oocyte maturation.
P. E. Kuwabara (2003)
Genes & Dev. 17, 155-161
   Full Text »    PDF »
An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans.
M. A. Miller, P. J. Ruest, M. Kosinski, S. K. Hanks, and D. Greenstein (2003)
Genes & Dev. 17, 187-200
   Abstract »    Full Text »    PDF »
The C.elegans MAPK phosphatase LIP-1 is required for the G2/M meiotic arrest of developing oocytes.
A. Hajnal and T. Berset (2002)
EMBO J. 21, 4317-4326
   Abstract »    Full Text »    PDF »
GenomeHistory: a software tool and its application to fully sequenced genomes.
G. C. Conant and A. Wagner (2002)
Nucleic Acids Res. 30, 3378-3386
   Abstract »    Full Text »    PDF »
Fertilization in the sea: the chemical identity of an abalone sperm attractant.
J. A. Riffell, P. J. Krug, and R. K. Zimmer (2002)
J. Exp. Biol. 205, 1439-1450
   Abstract »    Full Text »    PDF »
How nematode sperm crawl.
D. Bottino, A. Mogilner, T. Roberts, M. Stewart, and G. Oster (2002)
J. Cell Sci. 115, 367-384
   Abstract »    Full Text »    PDF »
DEVELOPMENT: How to Stimulate Your Partner.
A. M. Villeneuve (2001)
Science 291, 2099-2101
   Full Text »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882