Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 292 (5515): 278-281

Copyright © 2001 by the American Association for the Advancement of Science

Molecular Mechanisms of the Biological Clock in Cultured Fibroblasts

Kazuhiro Yagita,1 Filippo Tamanini,2 Gijsbertus T. J. van der Horst,2 Hitoshi Okamura1*

In mammals, the central circadian pacemaker resides in the hypothalamic suprachiasmatic nucleus (SCN), but circadian oscillators also exist in peripheral tissues. Here, using wild-type and cryptochrome (mCry)-deficient cell lines derived from mCry mutant mice, we show that the peripheral oscillator in cultured fibroblasts is identical to the oscillator in the SCN in (i) temporal expression profiles of all known clock genes, (ii) the phase of the various mRNA rhythms (i.e., antiphase oscillation of Bmal1 and mPer genes), (iii) the delay between maximum mRNA levels and appearance of nuclear mPER1 and mPER2 protein, (iv) the inability to produce oscillations in the absence of functional mCry genes, and (v) the control of period length by mCRY proteins.

1 Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan.
2 Center for Biomedical Genetics, Department of Cell Biology and Genetics, Erasmus University, Post Office Box 1738, 3000 DR, Rotterdam, Netherlands.
*   To whom correspondence should be addressed. E-mail: okamurah{at}kobe-u.ac.jp


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Dynamical signatures of cellular fluctuations and oscillator stability in peripheral circadian clocks.
J. Rougemont and F. Naef (2014)
Mol Syst Biol 3, 93
   Abstract »    Full Text »    PDF »
Cyclin-dependent Kinase 5 (Cdk5) Regulates the Function of CLOCK Protein by Direct Phosphorylation.
Y. Kwak, J. Jeong, S. Lee, Y.-U. Park, S.-A. Lee, D.-H. Han, J.-H. Kim, T. Ohshima, K. Mikoshiba, Y.-H. Suh, et al. (2013)
J. Biol. Chem. 288, 36878-36889
   Abstract »    Full Text »    PDF »
Rhythmic profiles of cell cycle and circadian clock gene transcripts in mice: a possible association between two periodic systems.
Y. Weigl, I. E. Ashkenazi, and L. Peleg (2013)
J. Exp. Biol. 216, 2276-2282
   Abstract »    Full Text »    PDF »
Cellular Circadian Clocks in Mood Disorders.
M. J. McCarthy and D. K. Welsh (2012)
J Biol Rhythms 27, 339-352
   Abstract »    Full Text »    PDF »
Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines.
R. Narasimamurthy, M. Hatori, S. K. Nayak, F. Liu, S. Panda, and I. M. Verma (2012)
PNAS 109, 12662-12667
   Abstract »    Full Text »    PDF »
Identification of a Novel Cryptochrome Differentiating Domain Required for Feedback Repression in Circadian Clock Function.
S. K. Khan, H. Xu, M. Ukai-Tadenuma, B. Burton, Y. Wang, H. R. Ueda, and A. C. Liu (2012)
J. Biol. Chem. 287, 25917-25926
   Abstract »    Full Text »    PDF »
Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening.
Z. Chen, S.-H. Yoo, Y.-S. Park, K.-H. Kim, S. Wei, E. Buhr, Z.-Y. Ye, H.-L. Pan, and J. S. Takahashi (2012)
PNAS 109, 101-106
   Abstract »    Full Text »    PDF »
Daily Rhythms in Olfactory Discrimination Depend on Clock Genes but Not the Suprachiasmatic Nucleus.
D. Granados-Fuentes, G. Ben-Josef, G. Perry, D. A. Wilson, A. Sullivan-Wilson, and E. D. Herzog (2011)
J Biol Rhythms 26, 552-560
   Abstract »    PDF »
hnRNP Q mediates a phase-dependent translation-coupled mRNA decay of mouse Period3.
D.-Y. Kim, E. Kwak, S.-H. Kim, K.-H. Lee, K.-C. Woo, and K.-T. Kim (2011)
Nucleic Acids Res. 39, 8901-8914
   Abstract »    Full Text »    PDF »
The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1.
H.-m. Lee, R. Chen, H. Kim, J.-P. Etchegaray, D. R. Weaver, and C. Lee (2011)
PNAS 108, 16451-16456
   Abstract »    Full Text »    PDF »
Serum factors in older individuals change cellular clock properties.
L. Pagani, K. Schmitt, F. Meier, J. Izakovic, K. Roemer, A. Viola, C. Cajochen, A. Wirz-Justice, S. A. Brown, and A. Eckert (2011)
PNAS 108, 7218-7223
   Abstract »    Full Text »    PDF »
Stoichiometric Relationship among Clock Proteins Determines Robustness of Circadian Rhythms.
Y. Lee, R. Chen, H.-m. Lee, and C. Lee (2011)
J. Biol. Chem. 286, 7033-7042
   Abstract »    Full Text »    PDF »
The Circadian Clock Starts Ticking at a Developmentally Early Stage.
E. Kowalska, E. Moriggi, C. Bauer, C. Dibner, and S. A. Brown (2010)
J Biol Rhythms 25, 442-449
   Abstract »    PDF »
Mammalian circadian clock and metabolism - the epigenetic link.
M. M. Bellet and P. Sassone-Corsi (2010)
J. Cell Sci. 123, 3837-3848
   Abstract »    Full Text »    PDF »
hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb {alpha} via IRES-mediated translation.
D.-Y. Kim, K.-C. Woo, K.-H. Lee, T.-D. Kim, and K.-T. Kim (2010)
Nucleic Acids Res. 38, 7068-7078
   Abstract »    Full Text »    PDF »
Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock.
Y. Lee, J. Lee, I. Kwon, Y. Nakajima, Y. Ohmiya, G. H. Son, K. H. Lee, and K. Kim (2010)
J. Cell Sci. 123, 3547-3557
   Abstract »    Full Text »    PDF »
Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro.
K. Yagita, K. Horie, S. Koinuma, W. Nakamura, I. Yamanaka, A. Urasaki, Y. Shigeyoshi, K. Kawakami, S. Shimada, J. Takeda, et al. (2010)
PNAS 107, 3846-3851
   Abstract »    Full Text »    PDF »
Time Is of the Essence: Vascular Implications of the Circadian Clock.
R. D. Rudic (2009)
Circulation 120, 1714-1721
   Full Text »    PDF »
A model of the cell-autonomous mammalian circadian clock.
H. P. Mirsky, A. C. Liu, D. K. Welsh, S. A. Kay, and F. J. Doyle III (2009)
PNAS 106, 11107-11112
   Abstract »    Full Text »    PDF »
Molecular characterization of Mybbp1a as a co-repressor on the Period2 promoter.
Y. Hara, Y. Onishi, K. Oishi, K. Miyazaki, A. Fukamizu, and N. Ishida (2009)
Nucleic Acids Res. 37, 1115-1126
   Abstract »    Full Text »    PDF »
Sleep Deprivation Effects on Circadian Clock Gene Expression in the Cerebral Cortex Parallel Electroencephalographic Differences among Mouse Strains.
J. P. Wisor, R. K. Pasumarthi, D. Gerashchenko, C. L. Thompson, S. Pathak, A. Sancar, P. Franken, E. S. Lein, and T. S. Kilduff (2008)
J. Neurosci. 28, 7193-7201
   Abstract »    Full Text »    PDF »
Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy.
Y. B. Kiyohara, K. Nishii, M. Ukai-Tadenuma, H. R. Ueda, Y. Uchiyama, and K. Yagita (2008)
Nucleic Acids Res. 36, e23
   Abstract »    Full Text »    PDF »
Molecular insights into human daily behavior.
S. A. Brown, D. Kunz, A. Dumas, P. O. Westermark, K. Vanselow, A. Tilmann-Wahnschaffe, H. Herzel, and A. Kramer (2008)
PNAS 105, 1602-1607
   Abstract »    Full Text »    PDF »
Circadian clocks: regulators of endocrine and metabolic rhythms.
M. Hastings, J. S O'Neill, and E. S Maywood (2007)
J. Endocrinol. 195, 187-198
   Abstract »    Full Text »    PDF »
{beta}-TrCP1-Mediated Degradation of PERIOD2 Is Essential for Circadian Dynamics.
S. Reischl, K. Vanselow, P. O. Westermark, N. Thierfelder, B. Maier, H. Herzel, and A. Kramer (2007)
J Biol Rhythms 22, 375-386
   Abstract »    PDF »
Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli.
E. Garbarino-Pico, S. Niu, M. D. Rollag, C. A. Strayer, J. C. Besharse, and C. B. Green (2007)
RNA 13, 745-755
   Abstract »    Full Text »    PDF »
Rapid activation of CLOCK by Ca2+-dependent protein kinase C mediates resetting of the mammalian circadian clock.
H. S. Shim, H. Kim, J. Lee, G. H. Son, S. Cho, T. H. Oh, S. H. Kang, D.-S. Seen, K. H. Lee, and K. Kim (2007)
EMBO Rep. 8, 366-371
   Abstract »    Full Text »    PDF »
Inter-subject differences in constitutive expression levels of the clock gene in man.
A. J Balmforth, P. J Grant, E. M Scott, S. B Wheatcroft, M. T Kearney, B. Staels, and N. Marx (2007)
Diabetes and Vascular Disease Research 4, 39-43
   Abstract »    PDF »
Role of Phosphorylation in the Mammalian Circadian Clock.
K. Vanselow and A. Kramer (2007)
Cold Spring Harb Symp Quant Biol 72, 167-176
   Abstract »    PDF »
Peripheral Clocks: Keeping Up with the Master Clock.
E. Kowalska and S. A. Brown (2007)
Cold Spring Harb Symp Quant Biol 72, 301-305
   Abstract »    PDF »
Regulation of Circadian Gene Expression in Liver by Systemic Signals and Hepatocyte Oscillators.
B. Kornmann, O. Schaad, H. Reinke, C. Saini, and U. Schibler (2007)
Cold Spring Harb Symp Quant Biol 72, 319-330
   Abstract »    PDF »
Systems Biology of Mammalian Circadian Clocks.
H. R. Ueda (2007)
Cold Spring Harb Symp Quant Biol 72, 365-380
   Abstract »    PDF »
Suprachiasmatic Nucleus Clock Time in the Mammalian Circadian System.
H. Okamura (2007)
Cold Spring Harb Symp Quant Biol 72, 551-556
   Abstract »    PDF »
Properties, Entrainment, and Physiological Functions of Mammalian Peripheral Oscillators.
M. Stratmann and U. Schibler (2006)
J Biol Rhythms 21, 494-506
   Abstract »    PDF »
BMAL1 Shuttling Controls Transactivation and Degradation of the CLOCK/BMAL1 Heterodimer.
I. Kwon, J. Lee, S. H. Chang, N. C. Jung, B. J. Lee, G. H. Son, K. Kim, and K. H. Lee (2006)
Mol. Cell. Biol. 26, 7318-7330
   Abstract »    Full Text »    PDF »
Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS).
K. Vanselow, J. T. Vanselow, P. O. Westermark, S. Reischl, B. Maier, T. Korte, A. Herrmann, H. Herzel, A. Schlosser, and A. Kramer (2006)
Genes & Dev. 20, 2660-2672
   Abstract »    Full Text »    PDF »
The Polycomb Group Protein EZH2 Is Required for Mammalian Circadian Clock Function.
J.-P. Etchegaray, X. Yang, J. P. DeBruyne, A. H. F. M. Peters, D. R. Weaver, T. Jenuwein, and S. M. Reppert (2006)
J. Biol. Chem. 281, 21209-21215
   Abstract »    Full Text »    PDF »
Essential Role of 3'-Untranslated Region-mediated mRNA Decay in Circadian Oscillations of Mouse Period3 mRNA.
E. Kwak, T.-D. Kim, and K.-T. Kim (2006)
J. Biol. Chem. 281, 19100-19106
   Abstract »    Full Text »    PDF »
The BMAL1 C terminus regulates the circadian transcription feedback loop.
Y. B. Kiyohara, S. Tagao, F. Tamanini, A. Morita, Y. Sugisawa, M. Yasuda, I. Yamanaka, H. R. Ueda, G. T. J. van der Horst, T. Kondo, et al. (2006)
PNAS 103, 10074-10079
   Abstract »    Full Text »    PDF »
How Senescent Vascular Cells Lose Their Clock Age-Dependent Impairment of Circadian Rhythmicity in Smooth Muscle Cells.
B. Illi, C. Gaetano, and M. C. Capogrossi (2006)
Circ. Res. 98, 450-452
   Full Text »    PDF »
Ser-557-phosphorylated mCRY2 Is Degraded upon Synergistic Phosphorylation by Glycogen Synthase Kinase-3{beta}.
Y. Harada, M. Sakai, N. Kurabayashi, T. Hirota, and Y. Fukada (2005)
J. Biol. Chem. 280, 31714-31721
   Abstract »    Full Text »    PDF »
Reduced {alpha}-adrenoceptor responsiveness and enhanced baroreflex sensitivity in Cry-deficient mice lacking a biological clock.
S. Masuki, T. Todo, Y. Nakano, H. Okamura, and H. Nose (2005)
J. Physiol. 566, 213-224
   Abstract »    Full Text »    PDF »
Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice.
F. W. Turek, C. Joshu, A. Kohsaka, E. Lin, G. Ivanova, E. McDearmon, A. Laposky, S. Losee-Olson, A. Easton, D. R. Jensen, et al. (2005)
Science 308, 1043-1045
   Abstract »    Full Text »    PDF »
mPER1-mediated nuclear export of mCRY1/2 is an important element in establishing circadian rhythm.
S. Loop, M. Katzer, and T. Pieler (2005)
EMBO Rep. 6, 341-347
   Abstract »    Full Text »    PDF »
Role of Cyclic mPer2 Expression in the Mammalian Cellular Clock.
Y. Yamamoto, K. Yagita, and H. Okamura (2005)
Mol. Cell. Biol. 25, 1912-1921
   Abstract »    Full Text »    PDF »
Circadian Rhythm Generation and Entrainment in Astrocytes.
L. M. Prolo, J. S. Takahashi, and E. D. Herzog (2005)
J. Neurosci. 25, 404-408
   Abstract »    Full Text »    PDF »
The orphan receptor Rev-erb{alpha} gene is a target of the circadian clock pacemaker.
G. Triqueneaux, S. Thenot, T. Kakizawa, M. P Antoch, R. Safi, J. S Takahashi, F. Delaunay, and V. Laudet (2004)
J. Mol. Endocrinol. 33, 585-608
   Abstract »    Full Text »    PDF »
Effect of Vitamin A Depletion on Nonvisual Phototransduction Pathways in Cryptochromeless Mice.
C. L. Thompson, C. P. Selby, R. N. Van Gelder, W. S. Blaner, J. Lee, L. Quadro, K. Lai, M. E. Gottesman, and A. Sancar (2004)
J Biol Rhythms 19, 504-517
   Abstract »    PDF »
Clock Genes in Cell Clocks: Roles, Actions, and Mysteries.
H. Okamura (2004)
J Biol Rhythms 19, 388-399
   Abstract »    PDF »
Circadian and Light-Induced Transcription of Clock Gene Per1 Depends on Histone Acetylation and Deacetylation.
Y. Naruse, K. Oh-hashi, N. Iijima, M. Naruse, H. Yoshioka, and M. Tanaka (2004)
Mol. Cell. Biol. 24, 6278-6287
   Abstract »    Full Text »    PDF »
Retinal Circadian Clocks and Control of Retinal Physiology.
C. B. Green and J. C. Besharse (2004)
J Biol Rhythms 19, 91-102
   Abstract »    PDF »
Expression of haPer1 and haBmal1 in Syrian Hamsters: Heterogeneity of Transcripts and Oscillations in the Periphery.
Y. Tong, H. Guo, J. M. Brewer, H. Lee, M. N. Lehman, and E. L. Bittman (2004)
J Biol Rhythms 19, 113-125
   Abstract »    PDF »
Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: Temperature compensation and damping.
M. Izumo, C. H. Johnson, and S. Yamazaki (2003)
PNAS 100, 16089-16094
   Abstract »    Full Text »    PDF »
Circadian Gene Expression Regulates Pulsatile Gonadotropin-Releasing Hormone (GnRH) Secretory Patterns in the Hypothalamic GnRH-Secreting GT1-7 Cell Line.
P. E. Chappell, R. S. White, and P. L. Mellon (2003)
J. Neurosci. 23, 11202-11213
   Abstract »    Full Text »    PDF »
Molecular Mechanism of Mammalian Circadian Clock.
Y. Isojima, N. Okumura, and K. Nagai (2003)
J. Biochem. 134, 777-784
   Abstract »    Full Text »    PDF »
Gates and Oscillators: A Network Model of the Brain Clock.
M. C. Antle, D. K. Foley, N. C. Foley, and R. Silver (2003)
J Biol Rhythms 18, 339-350
   Abstract »    PDF »
Alterations of Circadian Expressions of Clock Genes in Dahl Salt-Sensitive Rats Fed a High-Salt Diet.
T. Mohri, N. Emoto, H. Nonaka, H. Fukuya, K. Yagita, H. Okamura, and M. Yokoyama (2003)
Hypertension 42, 189-194
   Abstract »    Full Text »    PDF »
Altered Patterns of Sleep and Behavioral Adaptability in NPAS2-Deficient Mice.
C. A. Dudley, C. Erbel-Sieler, S. J. Estill, M. Reick, P. Franken, S. Pitts, and S. L. McKnight (2003)
Science 301, 379-383
   Abstract »    Full Text »    PDF »
Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice.
S. Pitts, E. Perone, and R. Silver (2003)
Am J Physiol Regulatory Integrative Comp Physiol 285, R57-R67
   Abstract »    Full Text »    PDF »
Peripheral Circadian Oscillators in Mammals: Time and Food.
U. Schibler, J. Ripperger, and S. A. Brown (2003)
J Biol Rhythms 18, 250-260
   Abstract »    PDF »
Loss of circadian rhythmicity in aging mPer1-/-mCry2-/- mutant mice.
H. Oster, S. Baeriswyl, G. T.J. van der Horst, and U. Albrecht (2003)
Genes & Dev. 17, 1366-1379
   Abstract »    Full Text »    PDF »
Glucose Down-regulates Per1 and Per2 mRNA Levels and Induces Circadian Gene Expression in Cultured Rat-1 Fibroblasts.
T. Hirota, T. Okano, K. Kokame, H. Shirotani-Ikejima, T. Miyata, and Y. Fukada (2002)
J. Biol. Chem. 277, 44244-44251
   Abstract »    Full Text »    PDF »
Circadian Regulation of nocturnin Transcription by Phosphorylated CREB in Xenopus Retinal Photoreceptor Cells.
X. Liu and C. B. Green (2002)
Mol. Cell. Biol. 22, 7501-7511
   Abstract »    Full Text »    PDF »
Regulation of Pituitary Adenylate Cyclase-activating Polypeptide Gene Transcription by TTF-1, a Homeodomain-containing Transcription Factor.
M. S. Kim, M. K. Hur, Y. J. Son, J.-I. Park, S. Y. Chun, A. V. D'Elia, G. Damante, S. Cho, K. Kim, and B. J. Lee (2002)
J. Biol. Chem. 277, 36863-36871
   Abstract »    Full Text »    PDF »
Central and peripheral circadian oscillator mechanisms in flies and mammals.
N. R. J. Glossop and P. E. Hardin (2002)
J. Cell Sci. 115, 3369-3377
   Abstract »    Full Text »    PDF »
Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity.
Z. Travnickova-Bendova, N. Cermakian, S. M. Reppert, and P. Sassone-Corsi (2002)
PNAS 99, 7728-7733
   Abstract »    Full Text »    PDF »
Tales from the Crypt(ochromes).
R. N. Van Gelder (2002)
J Biol Rhythms 17, 110-120
   Abstract »    PDF »
Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein.
K. Yagita, F. Tamanini, M. Yasuda, J. H. J. Hoeijmakers, G. T. J. van der Horst, and H. Okamura (2002)
EMBO J. 21, 1301-1314
   Abstract »    Full Text »    PDF »
Molecular Cloning and Circadian Regulation of Cryptochrome Genes in Japanese Quail (Coturnix coturnix japonica).
Z. Fu, M. Inaba, T. Noguchi, and H. Kato (2002)
J Biol Rhythms 17, 14-27
   Abstract »    PDF »
Functional Genomics of Sleep and Circadian Rhythm: Invited Review: A neural clockwork for encoding circadian time.
E. D. Herzog and W. J. Schwartz (2002)
J Appl Physiol 92, 401-408
   Abstract »    Full Text »    PDF »
Circadian rhythm of acidification in insect vas deferens regulated by rhythmic expression of vacuolar H+-ATPase.
P. Bebas, B. Cymborowski, and J. M. Giebultowicz (2002)
J. Exp. Biol. 205, 37-44
   Abstract »    Full Text »    PDF »
Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators.
N. Le Minh, F. Damiola, F. Tronche, G. Schutz, and U. Schibler (2001)
EMBO J. 20, 7128-7136
   Abstract »    Full Text »    PDF »
Circadian Regulation of Diverse Gene Products Revealed by mRNA Expression Profiling of Synchronized Fibroblasts.
C. Grundschober, F. Delaunay, A. Puhlhofer, G. Triqueneaux, V. Laudet, T. Bartfai, and P. Nef (2001)
J. Biol. Chem. 276, 46751-46758
   Abstract »    Full Text »    PDF »
Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain.
D. CHILOV, T. HOFER, C. BAUER, R. H. WENGER, and M. GASSMANN (2001)
FASEB J 15, 2613-2622
   Abstract »    Full Text »    PDF »
Signaling to the Mammalian Circadian Clocks: In Pursuit of the Primary Mammalian Circadian Photoreceptor.
M. P. Pando and P. Sassone-Corsi (2001)
Sci. STKE 2001, re16
   Abstract »    Full Text »    PDF »
Oscillating on Borrowed Time: Diffusible Signals from Immortalized Suprachiasmatic Nucleus Cells Regulate Circadian Rhythmicity in Cultured Fibroblasts.
G. Allen, J. Rappe, D. J. Earnest, and V. M. Cassone (2001)
J. Neurosci. 21, 7937-7943
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882