Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 292 (5518): 926-929

Copyright © 2001 by the American Association for the Advancement of Science

Glia-Synapse Interaction Through Ca2+-Permeable AMPA Receptors in Bergmann Glia

Masae Iino,12 Kaori Goto,12 Wataru Kakegawa,12 Haruo Okado,23 Makoto Sudo,1 Shogo Ishiuchi,12 Akiko Miwa,23 Yukihiro Takayasu,12 Izumu Saito,4 Keisuke Tsuzuki,12 Seiji Ozawa12*

Glial cells express a variety of neurotransmitter receptors. Notably, Bergmann glial cells in the cerebellum have Ca2+-permeable alpha -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) assembled without the GluR2 subunit. To elucidate the role of these Ca2+-permeable AMPARs, we converted them into Ca2+-impermeable receptors by adenoviral-mediated delivery of the GluR2 gene. This conversion retracted the glial processes ensheathing synapses on Purkinje cell dendritic spines and retarded the removal of synaptically released glutamate. Furthermore, it caused multiple innervation of Purkinje cells by the climbing fibers. Thus, the glial Ca2+-permeable AMPARs are indispensable for proper structural and functional relations between Bergmann glia and glutamatergic synapses.

1 Gunma University School of Medicine, Maebashi, Gunma 371-8511, Japan.
2 Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.
3 Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu 183-8526, Japan.
4 Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan.
*   To whom correspondence should be addressed. E-mail: ozawas{at}med.gunma-u.ac.jp



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Ectopic release of glutamate contributes to spillover at parallel fibre synapses in the cerebellum.
S. Balakrishnan, K. L. Dobson, C. Jackson, and T. C. Bellamy (2014)
J. Physiol. 592, 1493-1503
   Abstract »    Full Text »    PDF »
Shp2-Dependent ERK Signaling Is Essential for Induction of Bergmann Glia and Foliation of the Cerebellum.
K. Li, A. W. Leung, Q. Guo, W. Yang, and J. Y. H. Li (2014)
J. Neurosci. 34, 922-931
   Abstract »    Full Text »    PDF »
Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse.
J. Sibille, U. Pannasch, and N. Rouach (2014)
J. Physiol. 592, 87-102
   Abstract »    Full Text »    PDF »
Astrocyte Plasticity: Implications for Synaptic and Neuronal Activity.
T. M. Pirttimaki and H. R. Parri (2013)
Neuroscientist 19, 604-615
   Abstract »    Full Text »    PDF »
Glial Cells Decipher Synaptic Competition at the Mammalian Neuromuscular Junction.
H. Darabid, D. Arbour, and R. Robitaille (2013)
J. Neurosci. 33, 1297-1313
   Abstract »    Full Text »    PDF »
Bergmann Glial AMPA Receptors Are Required for Fine Motor Coordination.
A. S. Saab, A. Neumeyer, H. M. Jahn, A. Cupido, A. A. M. Simek, H.-J. Boele, A. Scheller, K. Le Meur, M. Gotz, H. Monyer, et al. (2012)
Science 337, 749-753
   Abstract »    Full Text »    PDF »
Neuronal Glutamate Transporters Regulate Glial Excitatory Transmission.
M.-C. Tsai, K. Tanaka, L. Overstreet-Wadiche, and J. I. Wadiche (2012)
J. Neurosci. 32, 1528-1535
   Abstract »    Full Text »    PDF »
Vagal Afferent Stimulation Activates Astrocytes in the Nucleus of the Solitary Tract Via AMPA Receptors: Evidence of an Atypical Neural-Glial Interaction in the Brainstem.
D. H. McDougal, G. E. Hermann, and R. C. Rogers (2011)
J. Neurosci. 31, 14037-14045
   Abstract »    Full Text »    PDF »
Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors.
M. Lavialle, G. Aumann, E. Anlauf, F. Prols, M. Arpin, and A. Derouiche (2011)
PNAS 108, 12915-12919
   Abstract »    Full Text »    PDF »
Radial Glia: Progenitor, Pathway, and Partner.
M. Sild and E. S. Ruthazer (2011)
Neuroscientist 17, 288-302
   Abstract »    PDF »
Astroglial networks scale synaptic activity and plasticity.
U. Pannasch, L. Vargova, J. Reingruber, P. Ezan, D. Holcman, C. Giaume, E. Sykova, and N. Rouach (2011)
PNAS 108, 8467-8472
   Abstract »    Full Text »    PDF »
The Relative Roles of Diffusion and Uptake in Clearing Synaptically Released Glutamate Change during Early Postnatal Development.
C. G. Thomas, H. Tian, and J. S. Diamond (2011)
J. Neurosci. 31, 4743-4754
   Abstract »    Full Text »    PDF »
In Vivo Development of Outer Retinal Synapses in the Absence of Glial Contact.
P. R. Williams, S. C. Suzuki, T. Yoshimatsu, O. T. Lawrence, S. J. Waldron, M. J. Parsons, M. L. Nonet, and R. O. L. Wong (2010)
J. Neurosci. 30, 11951-11961
   Abstract »    Full Text »    PDF »
Imaging extrasynaptic glutamate dynamics in the brain.
Y. Okubo, H. Sekiya, S. Namiki, H. Sakamoto, S. Iinuma, M. Yamasaki, M. Watanabe, K. Hirose, and M. Iino (2010)
PNAS 107, 6526-6531
   Abstract »    Full Text »    PDF »
Functions of Mature Mammalian Astrocytes: A Current View.
H. K. Kimelberg (2010)
Neuroscientist 16, 79-106
   Abstract »    PDF »
Synapses on NG2-expressing progenitors in the brain: multiple functions?.
V. Gallo, J.-M. Mangin, M. Kukley, and D. Dietrich (2008)
J. Physiol. 586, 3767-3781
   Abstract »    Full Text »    PDF »
Activity-Dependent Structural and Functional Plasticity of Astrocyte-Neuron Interactions.
D. T. Theodosis, D. A. Poulain, and S. H. R. Oliet (2008)
Physiol Rev 88, 983-1008
   Abstract »    Full Text »    PDF »
The {delta}2 'ionotropic' glutamate receptor functions as a non-ionotropic receptor to control cerebellar synaptic plasticity.
W. Kakegawa, K. Kohda, and M. Yuzaki (2007)
J. Physiol. 584, 89-96
   Abstract »    Full Text »    PDF »
Ca2+-Permeable AMPA Receptors Regulate Growth of Human Glioblastoma via Akt Activation.
S. Ishiuchi, Y. Yoshida, K. Sugawara, M. Aihara, T. Ohtani, T. Watanabe, N. Saito, K. Tsuzuki, H. Okado, A. Miwa, et al. (2007)
J. Neurosci. 27, 7987-8001
   Abstract »    Full Text »    PDF »
Glutamatergic and Purinergic Receptor-Mediated Calcium Transients in Bergmann Glial Cells.
R. Piet and C. E. Jahr (2007)
J. Neurosci. 27, 4027-4035
   Abstract »    Full Text »    PDF »
Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses..
M. Haber, L. Zhou, and K. K. Murai (2006)
J. Neurosci. 26, 8881-8891
   Abstract »    Full Text »    PDF »
Brief bursts of parallel fiber activity trigger calcium signals in bergmann glia..
M. Beierlein and W. G. Regehr (2006)
J. Neurosci. 26, 6958-6967
   Abstract »    Full Text »    PDF »
Glial glutamate transporters maintain one-to-one relationship at the climbing fiber-Purkinje cell synapse by preventing glutamate spillover..
Y. Takayasu, M. Iino, K. Shimamoto, K. Tanaka, and S. Ozawa (2006)
J. Neurosci. 26, 6563-6572
   Abstract »    Full Text »    PDF »
Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors..
W.-P. Ge, X.-J. Yang, Z. Zhang, H.-K. Wang, W. Shen, Q.-D. Deng, and S. Duan (2006)
Science 312, 1533-1537
   Abstract »    Full Text »    PDF »
Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs.
E. Watanabe, T. Y. Hiyama, H. Shimizu, R. Kodama, N. Hayashi, S. Miyata, Y. Yanagawa, K. Obata, and M. Noda (2006)
Am J Physiol Regulatory Integrative Comp Physiol 290, R568-R576
   Abstract »    Full Text »    PDF »
Characterization of AMPA receptors targeted by the climbing fiber transmitter mediating presynaptic inhibition of GABAergic transmission at cerebellar interneuron-Purkinje cell synapses..
S. Satake, S.-Y. Song, Q. Cao, H. Satoh, D. A. Rusakov, Y. Yanagawa, E.-A. Ling, K. Imoto, and S. Konishi (2006)
J. Neurosci. 26, 2278-2289
   Abstract »    Full Text »    PDF »
The Subfornical Organ, a Specialized Sodium Channel, and the Sensing of Sodium Levels in the Brain.
M. Noda (2006)
Neuroscientist 12, 80-91
   Abstract »    PDF »
Maintenance of presynaptic function by AMPA receptor-mediated excitatory postsynaptic activity in adult brain.
S. Kakizawa, T. Miyazaki, D. Yanagihara, M. Iino, M. Watanabe, and M. Kano (2005)
PNAS 102, 19180-19185
   Abstract »    Full Text »    PDF »
High-Concentration Rapid Transients of Glutamate Mediate Neural-Glial Communication via Ectopic Release.
K. Matsui, C. E. Jahr, and M. E. Rubio (2005)
J. Neurosci. 25, 7538-7547
   Abstract »    Full Text »    PDF »
PTEN deletion in Bergmann glia leads to premature differentiation and affects laminar organization.
Q. Yue, M. Groszer, J. S. Gil, A. J. Berk, A. Messing, H. Wu, and X. Liu (2005)
Development 132, 3281-3291
   Abstract »    Full Text »    PDF »
The Molecular Pharmacology and Cell Biology of {alpha}-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptors.
C. L. Palmer, L. Cotton, and J. M. Henley (2005)
Pharmacol. Rev. 57, 253-277
   Abstract »    Full Text »    PDF »
Metabotropic P2Y Purinoceptor-Mediated Presynaptic and Postsynaptic Enhancement of Cerebellar GABAergic Transmission.
F. Saitow, T. Murakoshi, H. Suzuki, and S. Konishi (2005)
J. Neurosci. 25, 2108-2116
   Abstract »    Full Text »    PDF »
A Truncated Tropo-Myosine-Related Kinase B Receptor, T1, Regulates Glial Cell Morphology via Rho GDP Dissociation Inhibitor 1.
K. Ohira, H. Kumanogoh, Y. Sahara, K. J. Homma, H. Hirai, S. Nakamura, and M. Hayashi (2005)
J. Neurosci. 25, 1343-1353
   Abstract »    Full Text »    PDF »
Vascular Endothelial Cells Promote Acute Plasticity in Ependymoglial Cells of the Neuroendocrine Brain.
S. De Seranno, C. Estrella, A. Loyens, A. Cornea, S. R. Ojeda, J.-C. Beauvillain, and V. Prevot (2004)
J. Neurosci. 24, 10353-10363
   Abstract »    Full Text »    PDF »
Differential Control of Synaptic and Ectopic Vesicular Release of Glutamate.
K. Matsui and C. E. Jahr (2004)
J. Neurosci. 24, 8932-8939
   Abstract »    Full Text »    PDF »
Astrocyte Glutamate Transporters Regulate Metabotropic Glutamate Receptor-Mediated Excitation of Hippocampal Interneurons.
Y. H. Huang, S. R. Sinha, K. Tanaka, J. D. Rothstein, and D. E. Bergles (2004)
J. Neurosci. 24, 4551-4559
   Abstract »    Full Text »    PDF »
Meteorin: a secreted protein that regulates glial cell differentiation and promotes axonal extension.
J. Nishino, K. Yamashita, H. Hashiguchi, H. Fujii, T. Shimazaki, and H. Hamada (2004)
EMBO J. 23, 1998-2008
   Abstract »    Full Text »    PDF »
Glutamate Receptor-Mediated Oligodendrocyte Toxicity in Periventricular Leukomalacia: A Protective Role for Topiramate.
P. L. Follett, W. Deng, W. Dai, D. M. Talos, L. J. Massillon, P. A. Rosenberg, J. J. Volpe, and F. E. Jensen (2004)
J. Neurosci. 24, 4412-4420
   Abstract »    Full Text »    PDF »
Diversity of Functional Astroglial Properties in the Respiratory Network.
D. Grass, P. G. Pawlowski, J. Hirrlinger, N. Papadopoulos, D. W. Richter, F. Kirchhoff, and S. Hulsmann (2004)
J. Neurosci. 24, 1358-1365
   Abstract »    Full Text »    PDF »
Motor training compensates for cerebellar dysfunctions caused by oligodendrocyte ablation.
L. Collin, A. Usiello, E. Erbs, C. Mathis, and E. Borrelli (2004)
PNAS 101, 325-330
   Abstract »    Full Text »    PDF »
Muscarine-Induced Increase in Frequency of Spontaneous EPSCs in Purkinje Cells in the Vestibulo-Cerebellum of the Rat.
Y. Takayasu, M. Iino, N. Furuya, and S. Ozawa (2003)
J. Neurosci. 23, 6200-6208
   Abstract »    Full Text »    PDF »
Extracellular vestibule determinants of Ca2+ influx in Ca2+-permeable AMPA receptor channels.
C. Jatzke, M. Hernandez, and L. P Wollmuth (2003)
J. Physiol. 549, 439-452
   Abstract »    Full Text »    PDF »
Metabotropic Glutamate Receptor Activation Enhances the Activities of Two Types of Ca2+-Activated K+ Channels in Rat Hippocampal Astrocytes.
D. Gebremedhin, K. Yamaura, C. Zhang, J. Bylund, R. C. Koehler, and D. R. Harder (2003)
J. Neurosci. 23, 1678-1687
   Abstract »    Full Text »    PDF »
Insights into glutamate transport regulation in human astrocytes: Cloning of the promoter for excitatory amino acid transporter 2 (EAAT2).
Z.-z. Su, M. Leszczyniecka, D.-c. Kang, D. Sarkar, W. Chao, D. J. Volsky, and P. B. Fisher (2003)
PNAS 100, 1955-1960
   Abstract »    Full Text »    PDF »
Bergmann Glia GABAA Receptors Concentrate on the Glial Processes That Wrap Inhibitory Synapses.
R. Riquelme, C. P. Miralles, and A. L. De Blas (2002)
J. Neurosci. 22, 10720-10730
   Abstract »    Full Text »    PDF »
Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices.
J. Brockhaus and J. W Deitmer (2002)
J. Physiol. 545, 581-593
   Abstract »    Full Text »    PDF »
NEUROBIOLOGY: Cholesterol--Making or Breaking the Synapse.
B. A. Barres and S. J. Smith (2001)
Science 294, 1296-1297
   Full Text »    PDF »
NEUROSCIENCE: Unwrapping Glial Cells from the Synapse: What Lies Inside?.
V. Gallo and R. Chittajallu (2001)
Science 292, 872-873
   Full Text »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882