Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 292 (5519): 1164-1167

Copyright © 2001 by the American Association for the Advancement of Science

Control of a Genetic Regulatory Network by a Selector Gene

Kirsten A. Guss,* Craig E. Nelson,* Angela Hudson, Mary Ellen Kraus, Sean B. Carrolldagger

The formation of many complex structures is controlled by a special class of transcription factors encoded by selector genes. It is shown that SCALLOPED, the DNA binding component of the selector protein complex for the Drosophila wing field, binds to and directly regulates the cis-regulatory elements of many individual target genes within the genetic regulatory network controlling wing development. Furthermore, combinations of binding sites for SCALLOPED and transcriptional effectors of signaling pathways are necessary and sufficient to specify wing-specific responses to different signaling pathways. The obligate integration of selector and signaling protein inputs on cis-regulatory DNA may be a general mechanism by which selector proteins control extensive genetic regulatory networks during development.

Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: sbcarrol{at}facstaff.wisc.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Causes and Consequences of Genetic Background Effects Illuminated by Integrative Genomic Analysis.
C. H. Chandler, S. Chari, D. Tack, and I. Dworkin (2014)
Genetics 196, 1321-1336
   Abstract »    Full Text »    PDF »
Dissecting the mechanisms of Notch induced hyperplasia.
A. Djiane, A. Krejci, F. Bernard, S. Fexova, K. Millen, and S. J. Bray (2013)
EMBO J. 32, 60-71
   Abstract »    Full Text »    PDF »
Control of target gene specificity during metamorphosis by the steroid response gene E93.
X. Mou, D. M. Duncan, E. H. Baehrecke, and I. Duncan (2012)
PNAS 109, 2949-2954
   Abstract »    Full Text »    PDF »
Erect Wing facilitates context-dependent Wnt/Wingless signaling by recruiting the cell-specific Armadillo-TCF adaptor Earthbound to chromatin.
N. Xin, H. Benchabane, A. Tian, K. Nguyen, L. Klofas, and Y. Ahmed (2011)
Development 138, 4955-4967
   Abstract »    Full Text »    PDF »
Organization of developmental enhancers in the Drosophila embryo.
D. Papatsenko, Y. Goltsev, and M. Levine (2009)
Nucleic Acids Res. 37, 5665-5677
   Abstract »    Full Text »    PDF »
Genomic Consequences of Background Effects on scalloped Mutant Expressivity in the Wing of Drosophila melanogaster.
I. Dworkin, E. Kennerly, D. Tack, J. Hutchinson, J. Brown, J. Mahaffey, and G. Gibson (2009)
Genetics 181, 1065-1076
   Abstract »    Full Text »    PDF »
Cell-type-specific transcription of prospero is controlled by combinatorial signaling in the Drosophila eye.
T. Hayashi, C. Xu, and R. W. Carthew (2008)
Development 135, 2787-2796
   Abstract »    Full Text »    PDF »
Redundant Roles of Tead1 and Tead2 in Notochord Development and the Regulation of Cell Proliferation and Survival.
A. Sawada, H. Kiyonari, K. Ukita, N. Nishioka, Y. Imuta, and H. Sasaki (2008)
Mol. Cell. Biol. 28, 3177-3189
   Abstract »    Full Text »    PDF »
Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13.
I. Carrera, F. Janody, N. Leeds, F. Duveau, and J. E. Treisman (2008)
PNAS 105, 6644-6649
   Abstract »    Full Text »    PDF »
Logic of Wg and Dpp induction of distal and medial fates in the Drosophila leg.
C. Estella and R. S. Mann (2008)
Development 135, 627-636
   Abstract »    Full Text »    PDF »
Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification.
H. Ogino, M. Fisher, and R. M. Grainger (2008)
Development 135, 249-258
   Abstract »    Full Text »    PDF »
Notch-GATA synergy promotes endoderm-specific expression of ref-1 in C. elegans.
A. Neves, K. English, and J. R. Priess (2007)
Development 134, 4459-4468
   Abstract »    Full Text »    PDF »
Collaboration between Smads and a Hox protein in target gene repression.
C. M. Walsh and S. B. Carroll (2007)
Development 134, 3585-3592
   Abstract »    Full Text »    PDF »
Recruitment of cells into the Drosophila wing primordium by a feed-forward circuit of vestigial autoregulation.
M. Zecca and G. Struhl (2007)
Development 134, 3001-3010
   Abstract »    Full Text »    PDF »
Control of Drosophila wing growth by the vestigial quadrant enhancer.
M. Zecca and G. Struhl (2007)
Development 134, 3011-3020
   Abstract »    Full Text »    PDF »
Studying statistical properties of regulatory DNA sequences, and their use in predicting regulatory regions in the eukaryotic genomes.
I. Abnizova and W. R. Gilks (2006)
Brief Bioinform 7, 48-54
   Abstract »    Full Text »    PDF »
Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor.
A. Sawada, Y. Nishizaki, H. Sato, Y. Yada, R. Nakayama, S. Yamamoto, N. Nishioka, H. Kondoh, and H. Sasaki (2005)
Development 132, 4719-4729
   Abstract »    Full Text »    PDF »
Peak levels of BMP in the Drosophila embryo control target genes by a feed-forward mechanism.
M. Xu, N. Kirov, and C. Rushlow (2005)
Development 132, 1637-1647
   Abstract »    Full Text »    PDF »
Regulation of spalt expression in the Drosophila wing blade in response to the Decapentaplegic signaling pathway.
R. Barrio and J. F. de Celis (2004)
PNAS 101, 6021-6026
   Abstract »    Full Text »    PDF »
Multiple signaling pathways and a selector protein sequentially regulate Drosophila wing development.
S.-J. Yan, Y. Gu, W. X. Li, and R. J. Fleming (2004)
Development 131, 285-298
   Abstract »    Full Text »    PDF »
Tgf{beta} signaling acts on a Hox response element to confer specificity and diversity to Hox protein function.
A. Grienenberger, S. Merabet, J. Manak, I. Iltis, A. Fabre, H. Berenger, M. P. Scott, J. Pradel, and Y. Graba (2003)
Development 130, 5445-5455
   Abstract »    Full Text »    PDF »
Distance preferences in the arrangement of binding motifs and hierarchical levels in organization of transcription regulatory information.
V. J. Makeev, A. P. Lifanov, A. G. Nazina, and D. A. Papatsenko (2003)
Nucleic Acids Res. 31, 6016-6026
   Abstract »    Full Text »    PDF »
Mesenchymal patterning by Hoxa2 requires blocking Fgf-dependent activation of Ptx1.
N. Bobola, M. Carapuco, S. Ohnemus, B. Kanzler, A. Leibbrandt, A. Neubuser, J. Drouin, and M. Mallo (2003)
Development 130, 3403-3414
   Abstract »    Full Text »    PDF »
An in Vivo Analysis of the vestigial Gene in Drosophila melanogaster Defines the Domains Required for Vg Function.
J. O. MacKay, K. H. Soanes, A. Srivastava, A. Simmonds, W. J. Brook, and J. B. Bell (2003)
Genetics 163, 1365-1373
   Abstract »    Full Text »    PDF »
Control of growth and patterning of the Drosophila wing imaginal disc by EGFR-mediated signaling.
M. Zecca and G. Struhl (2003)
Development 129, 1369-1376
   Abstract »    Full Text »    PDF »
Activation of the knirps locus links patterning to morphogenesis of the second wing vein in Drosophila.
K. Lunde, J. L. Trimble, A. Guichard, K. A. Guss, U. Nauber, and E. Bier (2003)
Development 130, 235-248
   Abstract »    Full Text »    PDF »
Cross signaling, cell specificity, and physiology.
J. E. Dumont, S. Dremier, I. Pirson, and C. Maenhaut (2002)
Am J Physiol Cell Physiol 283, C2-C28
   Abstract »    Full Text »    PDF »
Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling.
S. Barolo and J. W. Posakony (2002)
Genes & Dev. 16, 1167-1181
   Full Text »    PDF »
Regulation of Organogenesis by the Caenorhabditis elegans FoxA Protein PHA-4.
J. Gaudet and S. E. Mango (2002)
Science 295, 821-825
   Abstract »    Full Text »    PDF »
Deciphering genetic regulatory codes: A challenge for functional genomics.
A. M. Michelson (2002)
PNAS 99, 546-548
   Full Text »    PDF »
Early subdivisions in the neural plate define distinct competence for inductive signals.
D. Kobayashi, M. Kobayashi, K. Matsumoto, T. Ogura, M. Nakafuku, and K. Shimamura (2002)
Development 129, 83-93
   Abstract »    Full Text »    PDF »
Critical Roles of a Cyclic AMP Responsive Element and an E-box in Regulation of Mouse Renin Gene Expression.
L. Pan, T. A. Black, Q. Shi, C. A. Jones, N. Petrovic, J. Loudon, C. Kane, C. D. Sigmund, and K. W. Gross (2001)
J. Biol. Chem. 276, 45530-45538
   Abstract »    Full Text »    PDF »
Specificity of FGF signaling in cell migration in Drosophila.
C. Dossenbach, S. Rock, and M. Affolter (2001)
Development 128, 4563-4572
   Abstract »    Full Text »    PDF »
DEVELOPMENT: Legs, Eyes, or Wings--Selectors and Signals Make the Difference.
M. Affolter and R. Mann (2001)
Science 292, 1080-1081
   Full Text »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882