Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 292 (5525): 2333-2337

Copyright © 2001 by the American Association for the Advancement of Science

Recruitment of HAT Complexes by Direct Activator Interactions with the ATM-Related Tra1 Subunit

Christine E. Brown,12 LeAnn Howe,12 Kyle Sousa,12 Stephen C. Alley,3 Michael J. Carrozza,12 Song Tan,2 Jerry L. Workman1*

Promoter-specific recruitment of histone acetyltransferase activity is often critical for transcriptional activation. We present a detailed study of the interaction between the histone acetyltransferase complexes SAGA and NuA4, and transcription activators. We demonstrate by affinity chromatography and photo-cross-linking label transfer that acidic activators directly interact with Tra1p, a shared subunit of SAGA and NuA4. Mutations within the COOH-terminus of Tra1p disrupted its interaction with activators and resulted in gene-specific transcriptional defects that correlated with lowered promoter-specific histone acetylation. These data demonstrate that the essential Tra1 protein serves as a common target for activators in both SAGA and NuA4 acetyltransferases.

1 Howard Hughes Medical Institute,
2 Department of Biochemistry and Molecular Biology,
3 Department of Chemistry, The Pennsylvania State University, 306 Althouse Laboratory, University Park, PA 16802, USA.
*   To whom correspondence should be addressed: E-mail: jlw10{at}psu.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The TAF9 C-Terminal Conserved Region Domain Is Required for SAGA and TFIID Promoter Occupancy To Promote Transcriptional Activation.
M. Saint, S. Sawhney, I. Sinha, R. P. Singh, R. Dahiya, A. Thakur, R. Siddharthan, and K. Natarajan (2014)
Mol. Cell. Biol. 34, 1547-1563
   Abstract »    Full Text »    PDF »
The C-terminal Residues of Saccharomyces cerevisiae Mec1 Are Required for Its Localization, Stability, and Function.
L. F. DaSilva, S. Pillon, J. Genereaux, M. J. Davey, G. B. Gloor, J. Karagiannis, and C. J. Brandl (2013)
g3 3, 1661-1674
   Abstract »    Full Text »    PDF »
Direct TFIIA-TFIID Protein Contacts Drive Budding Yeast Ribosomal Protein Gene Transcription.
J. H. Layer and P. A. Weil (2013)
J. Biol. Chem. 288, 23273-23294
   Abstract »    Full Text »    PDF »
The Phosphatidylinositol 3,5-Bisphosphate (PI(3,5)P2)-dependent Tup1 Conversion (PIPTC) Regulates Metabolic Reprogramming from Glycolysis to Gluconeogenesis.
B.-K. Han and S. D. Emr (2013)
J. Biol. Chem. 288, 20633-20645
   Abstract »    Full Text »    PDF »
Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome.
N. E. Vorobyeva, M. U. Mazina, A. K. Golovnin, D. V. Kopytova, D. Y. Gurskiy, E. N. Nabirochkina, S. G. Georgieva, P. G. Georgiev, and A. N. Krasnov (2013)
Nucleic Acids Res. 41, 5717-5730
   Abstract »    Full Text »    PDF »
Genetic Evidence Links the ASTRA Protein Chaperone Component Tti2 to the SAGA Transcription Factor Tra1.
J. Genereaux, S. Kvas, D. Dobransky, J. Karagiannis, G. B. Gloor, and C. J. Brandl (2012)
Genetics 191, 765-780
   Abstract »    Full Text »    PDF »
The 19S proteasome subcomplex promotes the targeting of NuA4 HAT to the promoters of ribosomal protein genes to facilitate the recruitment of TFIID for transcriptional initiation in vivo.
B. Uprety, S. Lahudkar, S. Malik, and S. R. Bhaumik (2012)
Nucleic Acids Res. 40, 1969-1983
   Abstract »    Full Text »    PDF »
Analysis of Gal4-directed transcription activation using Tra1 mutants selectively defective for interaction with Gal4.
L. Lin, L. Chamberlain, L. J. Zhu, and M. R. Green (2012)
PNAS 109, 1997-2002
   Abstract »    Full Text »    PDF »
Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators.
S. Hahn and E. T. Young (2011)
Genetics 189, 705-736
   Abstract »    Full Text »    PDF »
Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation.
H.-W. Nutzmann, Y. Reyes-Dominguez, K. Scherlach, V. Schroeckh, F. Horn, A. Gacek, J. Schumann, C. Hertweck, J. Strauss, and A. A. Brakhage (2011)
PNAS 108, 14282-14287
   Abstract »    Full Text »    PDF »
Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex.
D. Helmlinger, S. Marguerat, J. Villen, D. L. Swaney, S. P. Gygi, J. Bahler, and F. Winston (2011)
EMBO J. 30, 2843-2852
   Abstract »    Full Text »    PDF »
Domains of Tra1 Important for Activator Recruitment and Transcription Coactivator Functions of SAGA and NuA4 Complexes.
B. A. Knutson and S. Hahn (2011)
Mol. Cell. Biol. 31, 818-831
   Abstract »    Full Text »    PDF »
Sequential Recruitment of SAGA and TFIID in a Genomic Response to DNA Damage in Saccharomyces cerevisiae.
S. Ghosh and B. F. Pugh (2011)
Mol. Cell. Biol. 31, 190-202
   Abstract »    Full Text »    PDF »
Identification of Pep4p as the Protease Responsible for Formation of the SAGA-related SLIK Protein Complex.
G. Spedale, N. Mischerikow, A. J. R. Heck, H. T. M. Timmers, and W. W. M. P. Pijnappel (2010)
J. Biol. Chem. 285, 22793-22799
   Abstract »    Full Text »    PDF »
Mechanism of Mediator Recruitment by Tandem Gcn4 Activation Domains and Three Gal11 Activator-Binding Domains.
E. Herbig, L. Warfield, L. Fish, J. Fishburn, B. A. Knutson, B. Moorefield, D. Pacheco, and S. Hahn (2010)
Mol. Cell. Biol. 30, 2376-2390
   Abstract »    Full Text »    PDF »
Activation of a Poised RNAPII-Dependent Promoter Requires Both SAGA and Mediator.
S. K. Lee, A. G. L. Fletcher, L. Zhang, X. Chen, J. A. Fischbeck, and L. A. Stargell (2010)
Genetics 184, 659-672
   Abstract »    Full Text »    PDF »
NuA4 Lysine Acetyltransferase Esa1 Is Targeted to Coding Regions and Stimulates Transcription Elongation with Gcn5.
D. S. Ginsburg, C. K. Govind, and A. G. Hinnebusch (2009)
Mol. Cell. Biol. 29, 6473-6487
   Abstract »    Full Text »    PDF »
Insights into SAGA function during gene expression.
S. Rodriguez-Navarro (2009)
EMBO Rep. 10, 843-850
   Abstract »    Full Text »    PDF »
A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA.
R. M. N. Friis, B. P. Wu, S. N. Reinke, D. J. Hockman, B. D. Sykes, and M. C. Schultz (2009)
Nucleic Acids Res. 37, 3969-3980
   Abstract »    Full Text »    PDF »
Structures of three distinct activator-TFIID complexes.
W.-L. Liu, R. A. Coleman, E. Ma, P. Grob, J. L. Yang, Y. Zhang, G. Dailey, E. Nogales, and R. Tjian (2009)
Genes & Dev. 23, 1510-1521
   Abstract »    Full Text »    PDF »
A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome.
B. J. Venters and B. F. Pugh (2009)
Genome Res. 19, 360-371
   Abstract »    Full Text »    PDF »
Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3.
N. Mohibullah and S. Hahn (2008)
Genes & Dev. 22, 2994-3006
   Abstract »    Full Text »    PDF »
Efg1-mediated Recruitment of NuA4 to Promoters Is Required for Hypha-specific Swi/Snf Binding and Activation in Candida albicans.
Y. Lu, C. Su, X. Mao, P. P. Raniga, H. Liu, and J. Chen (2008)
Mol. Biol. Cell 19, 4260-4272
   Abstract »    Full Text »    PDF »
Multivalent Binding of p53 to the STAGA Complex Mediates Coactivator Recruitment after UV Damage.
A. M. Gamper and R. G. Roeder (2008)
Mol. Cell. Biol. 28, 2517-2527
   Abstract »    Full Text »    PDF »
Functional Dissection of the NuA4 Histone Acetyltransferase Reveals Its Role as a Genetic Hub and that Eaf1 Is Essential for Complex Integrity.
L. Mitchell, J.-P. Lambert, M. Gerdes, A. S. Al-Madhoun, I. S. Skerjanc, D. Figeys, and K. Baetz (2008)
Mol. Cell. Biol. 28, 2244-2256
   Abstract »    Full Text »    PDF »
Eaf1 Is the Platform for NuA4 Molecular Assembly That Evolutionarily Links Chromatin Acetylation to ATP-Dependent Exchange of Histone H2A Variants.
A. Auger, L. Galarneau, M. Altaf, A. Nourani, Y. Doyon, R. T. Utley, D. Cronier, S. Allard, and J. Cote (2008)
Mol. Cell. Biol. 28, 2257-2270
   Abstract »    Full Text »    PDF »
Catalytic-Site Mutations in the MYST Family Histone Acetyltransferase Esa1.
P. V. Decker, D. Y. Yu, M. Iizuka, Q. Qiu, and M. M. Smith (2008)
Genetics 178, 1209-1220
   Abstract »    Full Text »    PDF »
Transcriptional Adaptor ADA3 of Drosophila melanogaster Is Required for Histone Modification, Position Effect Variegation, and Transcription.
B. Grau, C. Popescu, L. Torroja, D. Ortuno-Sahagun, I. Boros, and A. Ferrus (2008)
Mol. Cell. Biol. 28, 376-385
   Abstract »    Full Text »    PDF »
Transcriptional Activation of Histone Genes Requires NPAT-Dependent Recruitment of TRRAP-Tip60 Complex to Histone Promoters during the G1/S Phase Transition.
M. DeRan, M. Pulvino, E. Greene, C. Su, and J. Zhao (2008)
Mol. Cell. Biol. 28, 435-447
   Abstract »    Full Text »    PDF »
Structure/Function Analysis of the Phosphatidylinositol-3-Kinase Domain of Yeast Tra1.
A. I. Mutiu, S. M. T. Hoke, J. Genereaux, C. Hannam, K. MacKenzie, O. Jobin-Robitaille, J. Guzzo, J. Cote, B. Andrews, D. B. Haniford, et al. (2007)
Genetics 177, 151-166
   Abstract »    Full Text »    PDF »
The Essential Gene wda Encodes a WD40 Repeat Subunit of Drosophila SAGA Required for Histone H3 Acetylation.
S. Guelman, T. Suganuma, L. Florens, V. Weake, S. K. Swanson, M. P. Washburn, S. M. Abmayr, and J. L. Workman (2006)
Mol. Cell. Biol. 26, 7178-7189
   Abstract »    Full Text »    PDF »
SWI/SNF Displaces SAGA-Acetylated Nucleosomes.
M. Chandy, J. L. Gutierrez, P. Prochasson, and J. L. Workman (2006)
Eukaryot. Cell 5, 1738-1747
   Abstract »    Full Text »    PDF »
The mRNA Export Factor Sus1 Is Involved in Spt/Ada/Gcn5 Acetyltransferase-mediated H2B Deubiquitinylation through Its Interaction with Ubp8 and Sgf11.
A. Kohler, P. Pascual-Garcia, A. Llopis, M. Zapater, F. Posas, E. Hurt, and S. Rodriguez-Navarro (2006)
Mol. Biol. Cell 17, 4228-4236
   Abstract »    Full Text »    PDF »
SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment.
D. Sermwittayawong and S. Tan (2006)
EMBO J. 25, 3791-3800
   Abstract »    Full Text »    PDF »
Nucleosome displacement in transcription.
J. L. Workman (2006)
Genes & Dev. 20, 2009-2017
   Abstract »    Full Text »    PDF »
The Swi2/Snf2 Bromodomain Is Required for the Displacement of SAGA and the Octamer Transfer of SAGA-acetylated Nucleosomes.
A. H. Hassan, S. Awad, and P. Prochasson (2006)
J. Biol. Chem. 281, 18126-18134
   Abstract »    Full Text »    PDF »
Yeast Gal4: a transcriptional paradigm revisited.
A. Traven, B. Jelicic, and M. Sopta (2006)
EMBO Rep. 7, 496-499
   Abstract »    Full Text »    PDF »
Methylation of Histone H3 Mediates the Association of the NuA3 Histone Acetyltransferase with Chromatin.
D. G. E. Martin, D. E. Grimes, K. Baetz, and L. Howe (2006)
Mol. Cell. Biol. 26, 3018-3028
   Abstract »    Full Text »    PDF »
Nipped-A, the Tra1/TRRAP Subunit of the Drosophila SAGA and Tip60 Complexes, Has Multiple Roles in Notch Signaling during Wing Development.
M. Gause, J. C. Eissenberg, A. F. MacRae, M. Dorsett, Z. Misulovin, and D. Dorsett (2006)
Mol. Cell. Biol. 26, 2347-2359
   Abstract »    Full Text »    PDF »
A Role for Gcn5-Mediated Global Histone Acetylation in Transcriptional Regulation.
R. M. Imoberdorf, I. Topalidou, and M. Strubin (2006)
Mol. Cell. Biol. 26, 1610-1616
   Abstract »    Full Text »    PDF »
Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) Recruitment and Chromatin Remodeling Activities on the HXT2 and HXT4 Promoters.
C. J. C. van Oevelen, H. A. A. M. van Teeffelen, F. J. van Werven, and H. Th. M. Timmers (2006)
J. Biol. Chem. 281, 4523-4531
   Abstract »    Full Text »    PDF »
Host Cell Factor and an Uncharacterized SANT Domain Protein Are Stable Components of ATAC, a Novel dAda2A/dGcn5-Containing Histone Acetyltransferase Complex in Drosophila.
S. Guelman, T. Suganuma, L. Florens, S. K. Swanson, C. L. Kiesecker, T. Kusch, S. Anderson, J. R. Yates III, M. P. Washburn, S. M. Abmayr, et al. (2006)
Mol. Cell. Biol. 26, 871-882
   Abstract »    Full Text »    PDF »
The Transcriptional Histone Acetyltransferase Cofactor TRRAP Associates with the MRN Repair Complex and Plays a Role in DNA Double-Strand Break Repair.
F. Robert, S. Hardy, Z. Nagy, C. Baldeyron, R. Murr, U. Dery, J.-Y. Masson, D. Papadopoulo, Z. Herceg, and L. Tora (2006)
Mol. Cell. Biol. 26, 402-412
   Abstract »    Full Text »    PDF »
Targets of the Gal4 Transcription Activator in Functional Transcription Complexes.
W. M. Reeves and S. Hahn (2005)
Mol. Cell. Biol. 25, 9092-9102
   Abstract »    Full Text »    PDF »
The Histone H3 Acetylase dGcn5 Is a Key Player in Drosophila melanogaster Metamorphosis.
C. Carre, D. Szymczak, J. Pidoux, and C. Antoniewski (2005)
Mol. Cell. Biol. 25, 8228-8238
   Abstract »    Full Text »    PDF »
Differential Requirement of SAGA Subunits for Mot1p and Taf1p Recruitment in Gene Activation.
C. J. C. van Oevelen, H. A. A. M. van Teeffelen, and H. T. M. Timmers (2005)
Mol. Cell. Biol. 25, 4863-4872
   Abstract »    Full Text »    PDF »
Interdependent Recruitment of SAGA and Srb Mediator by Transcriptional Activator Gcn4p.
H. Qiu, C. Hu, F. Zhang, G. J. Hwang, M. J. Swanson, C. Boonchird, and A. G. Hinnebusch (2005)
Mol. Cell. Biol. 25, 3461-3474
   Abstract »    Full Text »    PDF »
HAT cofactor Trrap regulates the mitotic checkpoint by modulation of Mad1 and Mad2 expression.
H. Li, C. Cuenin, R. Murr, Z.-Q. Wang, and Z. Herceg (2004)
EMBO J. 23, 4824-4834
   Abstract »    Full Text »    PDF »
Drosophila Ada2b Is Required for Viability and Normal Histone H3 Acetylation.
D. Qi, J. Larsson, and M. Mannervik (2004)
Mol. Cell. Biol. 24, 8080-8089
   Abstract »    Full Text »    PDF »
A Triad of Subunits from the Gal11/Tail Domain of Srb Mediator Is an In Vivo Target of Transcriptional Activator Gcn4p.
F. Zhang, L. Sumibcay, A. G. Hinnebusch, and M. J. Swanson (2004)
Mol. Cell. Biol. 24, 6871-6886
   Abstract »    Full Text »    PDF »
Molecular Requirements for Gene Expression Mediated by Targeted Histone Acetyltransferases.
S. Jacobson and L. Pillus (2004)
Mol. Cell. Biol. 24, 6029-6039
   Abstract »    Full Text »    PDF »
Spt3 and Mot1 cooperate in nucleosome remodeling independently of TBP recruitment.
I. Topalidou, M. Papamichos-Chronakis, G. Thireos, and D. Tzamarias (2004)
EMBO J. 23, 1943-1948
   Abstract »    Full Text »    PDF »
Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot.
T. Yamada, K.-i. Mizuno, K. Hirota, N. Kon, W. P. Wahls, E. Hartsuiker, H. Murofushi, T. Shibata, and K. Ohta (2004)
EMBO J. 23, 1792-1803
   Abstract »    Full Text »    PDF »
Identification, Mutational Analysis, and Coactivator Requirements of Two Distinct Transcriptional Activation Domains of the Saccharomyces cerevisiae Hap4 Protein.
J. L. Stebbins and S. J. Triezenberg (2004)
Eukaryot. Cell 3, 339-347
   Abstract »    Full Text »    PDF »
Structural and Functional Conservation of the NuA4 Histone Acetyltransferase Complex from Yeast to Humans.
Y. Doyon, W. Selleck, W. S. Lane, S. Tan, and J. Cote (2004)
Mol. Cell. Biol. 24, 1884-1896
   Abstract »    Full Text »    PDF »
Histone H3 variants and modifications on transcribed genes.
J. L. Workman and S. M. Abmayr (2004)
PNAS 101, 1429-1430
   Full Text »    PDF »
In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer.
S. R. Bhaumik, T. Raha, D. P. Aiello, and M. R. Green (2004)
Genes & Dev. 18, 333-343
   Abstract »    Full Text »    PDF »
Histone H2B Ubiquitylation and Deubiquitylation in Genomic Regulation.
N.C.T. EMRE and S.L. BERGER (2004)
Cold Spring Harb Symp Quant Biol 69, 289-300
   Abstract »    PDF »
A novel docking site on Mediator is critical for activation by VP16 in mammalian cells.
G. Mittler, T. Stuhler, L. Santolin, T. Uhlmann, E. Kremmer, F. Lottspeich, L. Berti, and M. Meisterernst (2003)
EMBO J. 22, 6494-6504
   Abstract »    Full Text »    PDF »
Genome-wide analysis of gene expression regulated by the HAT cofactor Trrap in conditional knockout cells.
Z. Herceg, H. Li, C. Cuenin, V. Shukla, M. Radolf, P. Steinlein, and Z.-Q. Wang (2003)
Nucleic Acids Res. 31, 7011-7023
   Abstract »    Full Text »    PDF »
Gcn4 occupancy of open reading frame regions results in the recruitment of chromatin-modifying complexes but not the mediator complex.
I. Topalidou and G. Thireos (2003)
EMBO Rep. 4, 872-876
   Abstract »    Full Text »    PDF »
H2A.Z has a function reminiscent of an activator required for preferential binding to intergenic DNA.
M. Larochelle and L. Gaudreau (2003)
EMBO J. 22, 4512-4522
   Abstract »    Full Text »    PDF »
A Targeted Histone Acetyltransferase Can Create a Sizable Region of Hyperacetylated Chromatin and Counteract the Propagation of Transcriptionally Silent Chromatin.
Y.-H. Chiu, Q. Yu, J. J. Sandmeier, and X. Bi (2003)
Genetics 165, 115-125
   Abstract »    Full Text »    PDF »
Yeast Enhancer of Polycomb defines global Esa1-dependent acetylation of chromatin.
A. A. Boudreault, D. Cronier, W. Selleck, N. Lacoste, R. T. Utley, S. Allard, J. Savard, W. S. Lane, S. Tan, and J. Cote (2003)
Genes & Dev. 17, 1415-1428
   Abstract »    Full Text »    PDF »
Multiple Mechanistically Distinct Functions of SAGA at the PHO5 Promoter.
S. Barbaric, H. Reinke, and W. Horz (2003)
Mol. Cell. Biol. 23, 3468-3476
   Abstract »    Full Text »    PDF »
Two Drosophila Ada2 Homologues Function in Different Multiprotein Complexes.
T. Kusch, S. Guelman, S. M. Abmayr, and J. L. Workman (2003)
Mol. Cell. Biol. 23, 3305-3319
   Abstract »    Full Text »    PDF »
The Set2 Histone Methyltransferase Functions through the Phosphorylated Carboxyl-terminal Domain of RNA Polymerase II.
B. Li, L. Howe, S. Anderson, J. R. Yates III, and J. L. Workman (2003)
J. Biol. Chem. 278, 8897-8903
   Abstract »    Full Text »    PDF »
Disruption Mutations of ADA2b and GCN5 Transcriptional Adaptor Genes Dramatically Affect Arabidopsis Growth, Development, and Gene Expression.
K. E. Vlachonasios, M. F. Thomashow, and S. J. Triezenberg (2003)
PLANT CELL 15, 626-638
   Abstract »    Full Text »    PDF »
Dynamic Chromatin Alterations Triggered by Natural and Synthetic Activation Domains.
A. M. Erkine and D. S. Gross (2003)
J. Biol. Chem. 278, 7755-7764
   Abstract »    Full Text »    PDF »
Use of a Genetically Introduced Cross-linker to Identify Interaction Sites of Acidic Activators within Native Transcription Factor IID and SAGA.
J. Klein, M. Nolden, S. L. Sanders, J. Kirchner, P. A. Weil, and K. Melcher (2003)
J. Biol. Chem. 278, 6779-6786
   Abstract »    Full Text »    PDF »
The Tor Pathway Regulates Gene Expression by Linking Nutrient Sensing to Histone Acetylation.
J. R. Rohde and M. E. Cardenas (2003)
Mol. Cell. Biol. 23, 629-635
   Abstract »    Full Text »    PDF »
The Novel SLIK Histone Acetyltransferase Complex Functions in the Yeast Retrograde Response Pathway.
M. G. Pray-Grant, D. Schieltz, S. J. McMahon, J. M. Wood, E. L. Kennedy, R. G. Cook, J. L. Workman, J. R. Yates III, and P. A. Grant (2002)
Mol. Cell. Biol. 22, 8774-8786
   Abstract »    Full Text »    PDF »
The VP16 Activation Domain Interacts with Multiple Transcriptional Components as Determined by Protein-Protein Cross-linking in Vivo.
D. B. Hall and K. Struhl (2002)
J. Biol. Chem. 277, 46043-46050
   Abstract »    Full Text »    PDF »
Differential Requirement of SAGA Components for Recruitment of TATA-Box-Binding Protein to Promoters In Vivo.
S. R. Bhaumik and M. R. Green (2002)
Mol. Cell. Biol. 22, 7365-7371
   Abstract »    Full Text »    PDF »
Targeted Recruitment of Rpd3 Histone Deacetylase Represses Transcription by Inhibiting Recruitment of Swi/Snf, SAGA, and TATA Binding Protein.
J. Deckert and K. Struhl (2002)
Mol. Cell. Biol. 22, 6458-6470
   Abstract »    Full Text »    PDF »
SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription.
D. E. Sterner, R. Belotserkovskaya, and S. L. Berger (2002)
PNAS 99, 11622-11627
   Abstract »    Full Text »    PDF »
TATA-binding Protein-free TAF-containing Complex (TFTC) and p300 Are Both Required for Efficient Transcriptional Activation.
S. Hardy, M. Brand, G. Mittler, J. Yanagisawa, S. Kato, M. Meisterernst, and L. Tora (2002)
J. Biol. Chem. 277, 32875-32882
   Abstract »    Full Text »    PDF »
Transcriptional Regulation of the mdm2 Oncogene by p53 Requires TRRAP Acetyltransferase Complexes.
P. G. Ard, C. Chatterjee, S. Kunjibettu, L. R. Adside, L. E. Gralinski, and S. B. McMahon (2002)
Mol. Cell. Biol. 22, 5650-5661
   Abstract »    Full Text »    PDF »
Analysis of Spt7 Function in the Saccharomyces cerevisiae SAGA Coactivator Complex.
P.-Y. J. Wu and F. Winston (2002)
Mol. Cell. Biol. 22, 5367-5379
   Abstract »    Full Text »    PDF »
Yng1p Modulates the Activity of Sas3p as a Component of the Yeast NuA3 Histone Acetyltransferase Complex.
L. Howe, T. Kusch, N. Muster, R. Chaterji, J. R. Yates III, and J. L. Workman (2002)
Mol. Cell. Biol. 22, 5047-5053
   Abstract »    Full Text »    PDF »
Gal80 Confers Specificity on HAT Complex Interactions with Activators.
M. J. Carrozza, S. John, A. K. Sil, J. E. Hopper, and J. L. Workman (2002)
J. Biol. Chem. 277, 24648-24652
   Abstract »    Full Text »    PDF »
Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein.
G. Peng and J. E. Hopper (2002)
PNAS 99, 8548-8553
   Abstract »    Full Text »    PDF »
A target essential for the activity of a nonacidic yeast transcriptional activator.
Z. Lu, A. Z. Ansari, X. Lu, A. Ogirala, and M. Ptashne (2002)
PNAS 99, 8591-8596
   Abstract »    Full Text »    PDF »
The E2 Ubiquitin Conjugase Rad6 Is Required for the ArgR/Mcm1 Repression of ARG1 Transcription.
S. D. Turner, A. R. Ricci, H. Petropoulos, J. Genereaux, I. S. Skerjanc, and C. J. Brandl (2002)
Mol. Cell. Biol. 22, 4011-4019
   Abstract »    Full Text »    PDF »
Components of the SAGA Histone Acetyltransferase Complex Are Required for Repressed Transcription of ARG1 in Rich Medium.
A. R. Ricci, J. Genereaux, and C. J. Brandl (2002)
Mol. Cell. Biol. 22, 4033-4042
   Abstract »    Full Text »    PDF »
Spt3 Plays Opposite Roles in Filamentous Growth in Saccharomyces cerevisiae and Candida albicans and Is Required for C. albicans Virulence.
L. Laprade, V. L. Boyartchuk, W. F. Dietrich, and F. Winston (2002)
Genetics 161, 509-519
   Abstract »    Full Text »    PDF »
Transcription Activator Interactions with Multiple SWI/SNF Subunits.
K. E. Neely, A. H. Hassan, C. E. Brown, L. Howe, and J. L. Workman (2002)
Mol. Cell. Biol. 22, 1615-1625
   Abstract »    Full Text »    PDF »
Histone acetylation: a switch between repressive and permissive chromatin: Second in review series on chromatin dynamics.
A. Eberharter and P. B. Becker (2002)
EMBO Rep. 3, 224-229
   Abstract »    Full Text »    PDF »
Role of the Ada2 and Ada3 Transcriptional Coactivators in Histone Acetylation.
R. Balasubramanian, M. G. Pray-Grant, W. Selleck, P. A. Grant, and S. Tan (2002)
J. Biol. Chem. 277, 7989-7995
   Abstract »    Full Text »    PDF »
The SANT Domain of Ada2 Is Required for Normal Acetylation of Histones by the Yeast SAGA Complex.
D. E. Sterner, X. Wang, M. H. Bloom, G. M. Simon, and S. L. Berger (2002)
J. Biol. Chem. 277, 8178-8186
   Abstract »    Full Text »    PDF »
Role of an ING1 Growth Regulator in Transcriptional Activation and Targeted Histone Acetylation by the NuA4 Complex.
A. Nourani, Y. Doyon, R. T. Utley, S. Allard, W. S. Lane, and J. Cote (2001)
Mol. Cell. Biol. 21, 7629-7640
   Abstract »    Full Text »    PDF »
The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.
E. Larschan and F. Winston (2001)
Genes & Dev. 15, 1946-1956
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882