Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 292 (5526): 2501-2504

Copyright © 2001 by the American Association for the Advancement of Science

Conditional Restoration of Hippocampal Synaptic Potentiation in GluR-A-Deficient Mice

Volker Mack,1 Nail Burnashev,2* Katharina M. M. Kaiser,2 Andrei Rozov,2 Vidar Jensen,3 Øvind Hvalby,3 Peter H. Seeburg,1 Bert Sakmann,2 Rolf Sprengel1dagger

Plasticity of mature hippocampal CA1 synapses is dependent on L-alpha -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors containing the glutamate receptor A (GluR-A) subunit. In GluR-A-deficient mice, plasticity could be restored by controlled expression of green fluorescent protein (GFP)-tagged GluR-A, which contributes to channel formation and displayed the developmental redistribution of AMPA receptors in CA1 pyramidal neurons. Long-term potentiation (LTP) induced by pairing or tetanic stimulation was rescued in adult GluR-A-/- mice when GFPGluR-A expression was constitutive or induced in already fully developed pyramidal cells. This shows that GluR-A-independent forms of synaptic plasticity can mediate the establishment of mature hippocampal circuits that are prebuilt to express GluR-A-dependent LTP.

Departments of
1 Molecular Neurobiology and
2 Cell Physiology at the Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany.
3 Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0462 Oslo, Norway.
*   Present address: Department of Neurophysiology, Faculty of Biology, Vrije University, 1081 HV, Amsterdam, Netherlands.

dagger    To whom correspondence should be addressed. E-mail: sprengel{at}

Central Amygdala GluA1 Facilitates Associative Learning of Opioid Reward.
Y.-Q. Cai, W. Wang, Y.-Y. Hou, Z. Zhang, J. Xie, and Z. Z. Pan (2013)
J. Neurosci. 33, 1577-1588
   Abstract »    Full Text »    PDF »
The Effects of GluA1 Deletion on the Hippocampal Population Code for Position.
E. Resnik, J. M. McFarland, R. Sprengel, B. Sakmann, and M. R. Mehta (2012)
J. Neurosci. 32, 8952-8968
   Abstract »    Full Text »    PDF »
I{kappa}B Kinase/Nuclear Factor {kappa}B-Dependent Insulin-Like Growth Factor 2 (Igf2) Expression Regulates Synapse Formation and Spine Maturation via Igf2 Receptor Signaling.
M. J. Schmeisser, B. Baumann, S. Johannsen, G. F. Vindedal, V. Jensen, O. C. Hvalby, R. Sprengel, J. Seither, A. Maqbool, A. Magnutzki, et al. (2012)
J. Neurosci. 32, 5688-5703
   Abstract »    Full Text »    PDF »
JNK1 Inhibits GluR1 Expression and GluR1-Mediated Calcium Influx through Phosphorylation and Stabilization of Hes-1.
C. H. Lin and E. H. Y. Lee (2012)
J. Neurosci. 32, 1826-1846
   Abstract »    Full Text »    PDF »
Glutamate Receptor Ion Channels: Structure, Regulation, and Function.
S. F. Traynelis, L. P. Wollmuth, C. J. McBain, F. S. Menniti, K. M. Vance, K. K. Ogden, K. B. Hansen, H. Yuan, S. J. Myers, and R. Dingledine (2010)
Pharmacol. Rev. 62, 405-496
   Abstract »    Full Text »    PDF »
Activity Pattern-Dependent Long-Term Potentiation in Neocortex and Hippocampus of GluA1 (GluR-A) Subunit-Deficient Mice.
M. C. Frey, R. Sprengel, and T. Nevian (2009)
J. Neurosci. 29, 5587-5596
   Abstract »    Full Text »    PDF »
Synaptic ionotropic glutamate receptors and plasticity are developmentally altered in the CA1 field of Fmr1 knockout mice.
Y. Pilpel, A. Kolleker, S. Berberich, M. Ginger, A. Frick, E. Mientjes, B. A. Oostra, and P. H. Seeburg (2009)
J. Physiol. 587, 787-804
   Abstract »    Full Text »    PDF »
Postsynaptic Action Potentials Are Required for Nitric-Oxide-Dependent Long-Term Potentiation in CA1 Neurons of Adult GluR1 Knock-Out and Wild-Type Mice.
K. G. Phillips, N. R. Hardingham, and K. Fox (2008)
J. Neurosci. 28, 14031-14041
   Abstract »    Full Text »    PDF »
A Pathway-Specific Function for Different AMPA Receptor Subunits in Amygdala Long-Term Potentiation and Fear Conditioning.
Y. Humeau, D. Reisel, A. W. Johnson, T. Borchardt, V. Jensen, C. Gebhardt, V. Bosch, P. Gass, D. M. Bannerman, M. A. Good, et al. (2007)
J. Neurosci. 27, 10947-10956
   Abstract »    Full Text »    PDF »
Differential Regulation of AMPA Receptor Trafficking by Neurabin-Targeted Synaptic Protein Phosphatase-1 in Synaptic Transmission and Long-Term Depression in Hippocampus.
X.-d. Hu, Q. Huang, X. Yang, and H. Xia (2007)
J. Neurosci. 27, 4674-4686
   Abstract »    Full Text »    PDF »
Neural encoding of the concept of nest in the mouse brain.
L. Lin, G. Chen, H. Kuang, D. Wang, and J. Z. Tsien (2007)
PNAS 104, 6066-6071
   Abstract »    Full Text »    PDF »
Forebrain-Specific Glutamate Receptor B Deletion Impairs Spatial Memory But Not Hippocampal Field Long-Term Potentiation..
D. R. Shimshek, V. Jensen, T. Celikel, Y. Geng, B. Schupp, T. Bus, V. Mack, V. Marx, O. Hvalby, P. H. Seeburg, et al. (2006)
J. Neurosci. 26, 8428-8440
   Abstract »    Full Text »    PDF »
Role of the neurogranin concentrated in spines in the induction of long-term potentiation..
A. M. Zhabotinsky, R. N. Camp, I. R. Epstein, and J. E. Lisman (2006)
J. Neurosci. 26, 7337-7347
   Abstract »    Full Text »    PDF »
Presynaptic and postsynaptic Ca2+ and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons..
F.-M. Lu and R. D. Hawkins (2006)
PNAS 103, 4264-4269
   Abstract »    Full Text »    PDF »
State-dependent Ras signaling and AMPA receptor trafficking.
Y. Qin, Y. Zhu, J. P. Baumgart, R. L. Stornetta, K. Seidenman, V. Mack, L. van Aelst, and J. J. Zhu (2005)
Genes & Dev. 19, 2000-2015
   Abstract »    Full Text »    PDF »
The Molecular Pharmacology and Cell Biology of {alpha}-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptors.
C. L. Palmer, L. Cotton, and J. M. Henley (2005)
Pharmacol. Rev. 57, 253-277
   Abstract »    Full Text »    PDF »
Regulation of GluR1 abundance in murine hippocampal neurones by serum- and glucocorticoid-inducible kinase 3.
N. Strutz-Seebohm, G. Seebohm, A. F. Mack, H.-J. Wagner, L. Just, T. Skutella, U. E. Lang, G. Henke, M. Striegel, M. Hollmann, et al. (2005)
J. Physiol. 565, 381-390
   Abstract »    Full Text »    PDF »
{gamma}-Protocadherins, Presenilin-mediated Release of C-terminal Fragment Promotes Locus Expression.
B. Hambsch, V. Grinevich, P. H. Seeburg, and M. K. Schwarz (2005)
J. Biol. Chem. 280, 15888-15897
   Abstract »    Full Text »    PDF »
In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy.
J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer (2004)
J Neurophysiol 92, 3121-3133
   Abstract »    Full Text »    PDF »
Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones.
B. K. Andrasfalvy and J. C. Magee (2004)
J. Physiol. 559, 543-554
   Abstract »    Full Text »    PDF »
Molecular Biology and Ontogeny of Glutamate Receptors in the Mammalian Central Nervous System.
T. A. Simeone, R. M. Sanchez, and J. M. Rho (2004)
J Child Neurol 19, 343-360
   Abstract »    PDF »
Epileptiform activity in rat hippocampus strengthens excitatory synapses.
M. H. Abegg, N. Savic, M. U. Ehrengruber, R. A. McKinney, and B. H. Gahwiler (2004)
J. Physiol. 554, 439-448
   Abstract »    Full Text »    PDF »
A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A.
V. Jensen, K. M M Kaiser, T. Borchardt, G. Adelmann, A. Rozov, N. Burnashev, C. Brix, M. Frotscher, P. Andersen, O. Hvalby, et al. (2003)
J. Physiol. 553, 843-856
   Abstract »    Full Text »    PDF »
Impaired Regulation of Synaptic Strength in Hippocampal Neurons from GluR1-Deficient Mice.
B. K Andrasfalvy, M. A Smith, T. Borchardt, R. Sprengel, and J. C Magee (2003)
J. Physiol. 552, 35-45
   Abstract »    Full Text »    PDF »
NMDA and {beta}1-Adrenergic Receptors Differentially Signal Phosphorylation of Glutamate Receptor Type 1 in Area CA1 of Hippocampus.
A. M. Vanhoose and D. G. Winder (2003)
J. Neurosci. 23, 5827-5834
   Abstract »    Full Text »    PDF »
Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain.
H. Wang, E. Shimizu, Y.-P. Tang, M. Cho, M. Kyin, W. Zuo, D. A. Robinson, P. J. Alaimo, C. Zhang, H. Morimoto, et al. (2003)
PNAS 100, 4287-4292
   Abstract »    Full Text »    PDF »
Selective Disruption of Stimulus-Reward Learning in Glutamate Receptor gria1 Knock-Out Mice.
A. N. Mead and D. N. Stephens (2003)
J. Neurosci. 23, 1041-1048
   Abstract »    Full Text »    PDF »
Molecular dissection of hippocampal theta-burst pairing potentiation.
D. A. Hoffman, R. Sprengel, and B. Sakmann (2002)
PNAS 99, 7740-7745
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882