Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 293 (5529): 506-509

Copyright © 2001 by the American Association for the Advancement of Science

NPAS2: An Analog of Clock Operative in the Mammalian Forebrain

Martin Reick,1 Joseph A. Garcia,2 Carol Dudley,1 Steven L. McKnight1*

Neuronal PAS domain protein 2 (NPAS2) is a transcription factor expressed primarily in the mammalian forebrain. NPAS2 is highly related in primary amino acid sequence to Clock, a transcription factor expressed in the suprachiasmatic nucleus that heterodimerizes with BMAL1 and regulates circadian rhythm. To investigate the biological role of NPAS2, we prepared a neuroblastoma cell line capable of conditional induction of the NPAS2:BMAL1 heterodimer and identified putative target genes by representational difference analysis, DNA microarrays, and Northern blotting. Coinduction of NPAS2 and BMAL1 activated transcription of the endogenous Per1, Per2, and Cry1 genes, which encode negatively activating components of the circadian regulatory apparatus, and repressed transcription of the endogenous BMAL1 gene. Analysis of the frontal cortex of wild-type mice kept in a 24-hour light-dark cycle revealed that Per1, Per2, and Cry1 mRNA levels were elevated during darkness and reduced during light, whereas BMAL1 mRNA displayed the opposite pattern. In situ hybridization assays of mice kept in constant darkness revealed that Per2 mRNA abundance did not oscillate as a function of the circadian cycle in NPAS2-deficient mice. Thus, NPAS2 likely functions as part of a molecular clock operative in the mammalian forebrain.

1 Department of Biochemistry,
2 Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
*   To whom correspondence should be addressed. E-mail: smckni{at}biochem.swmed.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Interactions between endocrine and circadian systems.
A. H. Tsang, J. L. Barclay, and H. Oster (2014)
J. Mol. Endocrinol. 52, R1-R16
   Abstract »    Full Text »    PDF »
Nuclear Receptor-mediated Cell-autonomous Oscillatory Expression of the Circadian Transcription Factor, Neuronal PAS Domain Protein 2 (NPAS2).
R. Matsumura, C. Matsubara, K. Node, T. Takumi, and M. Akashi (2013)
J. Biol. Chem. 288, 36548-36553
   Abstract »    Full Text »    PDF »
Circadian Rhythm of Contrast Sensitivity Is Regulated by a Dopamine-Neuronal PAS-Domain Protein 2-Adenylyl Cyclase 1 Signaling Pathway in Retinal Ganglion Cells.
C. K. Hwang, S. S. Chaurasia, C. R. Jackson, G. C.- K. Chan, D. R. Storm, and P. M. Iuvone (2013)
J. Neurosci. 33, 14989-14997
   Abstract »    Full Text »    PDF »
Suppressed cellular oscillations in after-hours mutant mice are associated with enhanced circadian phase-resetting.
C. Guilding, F. Scott, D. A. Bechtold, T. M. Brown, S. Wegner, and H. D. Piggins (2013)
J. Physiol. 591, 1063-1080
   Abstract »    Full Text »    PDF »
PKC{gamma} participates in food entrainment by regulating BMAL1.
L. Zhang, D. Abraham, S.-T. Lin, H. Oster, G. Eichele, Y.-H. Fu, and L. J. Ptacek (2012)
PNAS 109, 20679-20684
   Abstract »    Full Text »    PDF »
Tissue-Specific Interaction of Per1/2 and Dec2 in the Regulation of Fibroblast Circadian Rhythms.
A. H. Tsang, C. Sanchez-Moreno, B. Bode, M. J. Rossner, M. Garaulet, and H. Oster (2012)
J Biol Rhythms 27, 478-489
   Abstract »    Full Text »    PDF »
Observation of dually decoded regions of the human genome using ribosome profiling data.
A. M. Michel, K. R. Choudhury, A. E. Firth, N. T. Ingolia, J. F. Atkins, and P. V. Baranov (2012)
Genome Res. 22, 2219-2229
   Abstract »    Full Text »    PDF »
Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals.
N. Koike, S.-H. Yoo, H.-C. Huang, V. Kumar, C. Lee, T.-K. Kim, and J. S. Takahashi (2012)
Science 338, 349-354
   Abstract »    Full Text »    PDF »
Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression.
R. Massart, R. Mongeau, and L. Lanfumey (2012)
Phil Trans R Soc B 367, 2485-2494
   Abstract »    Full Text »    PDF »
PML regulates PER2 nuclear localization and circadian function.
T. Miki, Z. Xu, M. Chen-Goodspeed, M. Liu, A. Van Oort-Jansen, M. A. Rea, Z. Zhao, C. C. Lee, and K.-S. Chang (2012)
EMBO J. 31, 1427-1439
   Abstract »    Full Text »    PDF »
Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening.
Z. Chen, S.-H. Yoo, Y.-S. Park, K.-H. Kim, S. Wei, E. Buhr, Z.-Y. Ye, H.-L. Pan, and J. S. Takahashi (2012)
PNAS 109, 101-106
   Abstract »    Full Text »    PDF »
Daily Rhythms in Olfactory Discrimination Depend on Clock Genes but Not the Suprachiasmatic Nucleus.
D. Granados-Fuentes, G. Ben-Josef, G. Perry, D. A. Wilson, A. Sullivan-Wilson, and E. D. Herzog (2011)
J Biol Rhythms 26, 552-560
   Abstract »    PDF »
Photic Resetting and Entrainment in CLOCK-Deficient Mice.
R. Dallmann, J. P. DeBruyne, and D. R. Weaver (2011)
J Biol Rhythms 26, 390-401
   Abstract »    PDF »
Biochemical Analysis of the Canonical Model for the Mammalian Circadian Clock.
R. Ye, C. P. Selby, N. Ozturk, Y. Annayev, and A. Sancar (2011)
J. Biol. Chem. 286, 25891-25902
   Abstract »    Full Text »    PDF »
Constant Darkness Induces IL-6-Dependent Depression-Like Behavior through the NF-{kappa}B Signaling Pathway.
F. J. Monje, M. Cabatic, I. Divisch, E.-J. Kim, K. R. Herkner, B. R. Binder, and D. D. Pollak (2011)
J. Neurosci. 31, 9075-9083
   Abstract »    Full Text »    PDF »
Circadian Regulation of ATP Release in Astrocytes.
L. Marpegan, A. E. Swanstrom, K. Chung, T. Simon, P. G. Haydon, S. K. Khan, A. C. Liu, E. D. Herzog, and C. Beaule (2011)
J. Neurosci. 31, 8342-8350
   Abstract »    Full Text »    PDF »
Retinoic acid-related orphan receptor {gamma} directly regulates neuronal PAS domain protein 2 transcription in vivo.
Y. Takeda, H. S. Kang, M. Angers, and A. M. Jetten (2011)
Nucleic Acids Res. 39, 4769-4782
   Abstract »    Full Text »    PDF »
Characterization of the Core Mammalian Clock Component, NPAS2, as a REV-ERB{alpha}/ROR{alpha} Target Gene.
C. Crumbley, Y. Wang, D. J. Kojetin, and T. P. Burris (2010)
J. Biol. Chem. 285, 35386-35392
   Abstract »    Full Text »    PDF »
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors.
I. Schmutz, J. A. Ripperger, S. Baeriswyl-Aebischer, and U. Albrecht (2010)
Genes & Dev. 24, 345-357
   Abstract »    Full Text »    PDF »
Clock Genes and Cancer.
P. A. Wood, Xiaoming Yang, and W. J. M. Hrushesky (2009)
Integr Cancer Ther 8, 303-308
   Abstract »    PDF »
Clock genes and metabolic disease.
B. Marcheva, K. M. Ramsey, A. Affinati, and J. Bass (2009)
J Appl Physiol 107, 1638-1646
   Abstract »    Full Text »    PDF »
Time Is of the Essence: Vascular Implications of the Circadian Clock.
R. D. Rudic (2009)
Circulation 120, 1714-1721
   Full Text »    PDF »
Brain Clocks: From the Suprachiasmatic Nuclei to a Cerebral Network.
J. Mendoza and E. Challet (2009)
Neuroscientist 15, 477-488
   Abstract »    PDF »
Preferential Inhibition of BMAL2-CLOCK Activity by PER2 Reemphasizes Its Negative Role and a Positive Role of BMAL2 in the Circadian Transcription.
M. Sasaki, H. Yoshitane, N.-H. Du, T. Okano, and Y. Fukada (2009)
J. Biol. Chem. 284, 25149-25159
   Abstract »    Full Text »    PDF »
The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes.
J. A. Mohawk, M. L. Baer, and M. Menaker (2009)
PNAS 106, 3519-3524
   Abstract »    Full Text »    PDF »
Glucocorticoids and the circadian clock.
T. Dickmeis (2009)
J. Endocrinol. 200, 3-22
   Abstract »    Full Text »    PDF »
The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake.
G. M. Sutton, D. Perez-Tilve, R. Nogueiras, J. Fang, J. K. Kim, R. D. Cone, J. M. Gimble, M. H. Tschop, and A. A. Butler (2008)
J. Neurosci. 28, 12946-12955
   Abstract »    Full Text »    PDF »
CLOCK Is Required for Maintaining the Circadian Rhythms of Opsin mRNA Expression in Photoreceptor Cells.
P. Li, S. S. Chaurasia, Y. Gao, A. L. Carr, P. M. Iuvone, and L. Li (2008)
J. Biol. Chem. 283, 31673-31678
   Abstract »    Full Text »    PDF »
The Circadian Gene NPAS2, a Putative Tumor Suppressor, Is Involved in DNA Damage Response.
A. E. Hoffman, T. Zheng, Y. Ba, and Y. Zhu (2008)
Mol. Cancer Res. 6, 1461-1468
   Abstract »    Full Text »    PDF »
Cardiac ErbB-1/ErbB-2 mutant expression in young adult mice leads to cardiac dysfunction.
V. Rajagopalan, I. H. Zucker, J. A. Jones, M. Carlson, and Y. J. Ma (2008)
Am J Physiol Heart Circ Physiol 295, H543-H554
   Abstract »    Full Text »    PDF »
Sleep Deprivation Effects on Circadian Clock Gene Expression in the Cerebral Cortex Parallel Electroencephalographic Differences among Mouse Strains.
J. P. Wisor, R. K. Pasumarthi, D. Gerashchenko, C. L. Thompson, S. Pathak, A. Sancar, P. Franken, E. S. Lein, and T. S. Kilduff (2008)
J. Neurosci. 28, 7193-7201
   Abstract »    Full Text »    PDF »
Evidence for an Overlapping Role of CLOCK and NPAS2 Transcription Factors in Liver Circadian Oscillators.
C. Bertolucci, N. Cavallari, I. Colognesi, J. Aguzzi, Z. Chen, P. Caruso, A. Foa, G. Tosini, F. Bernardi, and M. Pinotti (2008)
Mol. Cell. Biol. 28, 3070-3075
   Abstract »    Full Text »    PDF »
Probing the Relative Importance of Molecular Oscillations in the Circadian Clock.
X. Zheng and A. Sehgal (2008)
Genetics 178, 1147-1155
   Abstract »    Full Text »    PDF »
The Dorsomedial Hypothalamic Nucleus Is Not Necessary for the Expression of Circadian Food-Anticipatory Activity in Rats.
G. J. Landry, G. R. Yamakawa, I. C. Webb, R. J. Mear, and R. E. Mistlberger (2007)
J Biol Rhythms 22, 467-478
   Abstract »    PDF »
FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress.
X. Zheng, Z. Yang, Z. Yue, J. D. Alvarez, and A. Sehgal (2007)
PNAS 104, 15899-15904
   Abstract »    Full Text »    PDF »
Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues.
D. J. Kennaway, J. A. Owens, A. Voultsios, M. J. Boden, and T. J. Varcoe (2007)
Am J Physiol Regulatory Integrative Comp Physiol 293, R1528-R1537
   Abstract »    Full Text »    PDF »
Tumor Suppression and Circadian Function.
M. Chen-Goodspeed and Cheng Chi Lee (2007)
J Biol Rhythms 22, 291-298
   Abstract »    PDF »
Peripheral Circadian Clocks in the Vasculature.
D. F. Reilly, E. J. Westgate, and G. A. FitzGerald (2007)
Arterioscler Thromb Vasc Biol 27, 1694-1705
   Abstract »    Full Text »    PDF »
Postnatal ontogenesis of the circadian clock within the rat liver.
M. Sladek, Z. Jindrakova, Z. Bendova, and A. Sumova (2007)
Am J Physiol Regulatory Integrative Comp Physiol 292, R1224-R1229
   Abstract »    Full Text »    PDF »
Systems Biology of Mammalian Circadian Clocks.
H. R. Ueda (2007)
Cold Spring Harb Symp Quant Biol 72, 365-380
   Abstract »    PDF »
Inducible Clocks: Living in an Unpredictable World.
C. B. Saper and P. M. Fuller (2007)
Cold Spring Harb Symp Quant Biol 72, 543-550
   Abstract »    PDF »
Molecular components of the mammalian circadian clock.
C. H. Ko and J. S. Takahashi (2006)
Hum. Mol. Genet. 15, R271-R277
   Abstract »    Full Text »    PDF »
Transcriptional Profiling in the Adrenal Gland Reveals Circadian Regulation of Hormone Biosynthesis Genes and Nucleosome Assembly Genes.
H. Oster, S. Damerow, R. A. Hut, and G. Eichele (2006)
J Biol Rhythms 21, 350-361
   Abstract »    PDF »
Functional central rhythmicity and light entrainment, but not liver and muscle rhythmicity, are Clock independent.
D. J. Kennaway, J. A. Owens, A. Voultsios, and T. J. Varcoe (2006)
Am J Physiol Regulatory Integrative Comp Physiol 291, R1172-R1180
   Abstract »    Full Text »    PDF »
The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker.
M. Mieda, S. C. Williams, J. A. Richardson, K. Tanaka, and M. Yanagisawa (2006)
PNAS 103, 12150-12155
   Abstract »    Full Text »    PDF »
NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: Genotype and sex interactions.
P. Franken, C. A. Dudley, S. J. Estill, M. Barakat, R. Thomason, B. F. O'Hara, and S. L. McKnight (2006)
PNAS 103, 7118-7123
   Abstract »    Full Text »    PDF »
Drosophila CLOCK Is Constitutively Expressed in Circadian Oscillator and Non-Oscillator Cells.
J. H. Houl, W. Yu, S. M. Dudek, and P. E. Hardin (2006)
J Biol Rhythms 21, 93-103
   Abstract »    PDF »
Characterization of peripheral circadian clocks in adipose tissues..
S. Zvonic, A. A. Ptitsyn, S. A. Conrad, L. K. Scott, Z. E. Floyd, G. Kilroy, X. Wu, B. C. Goh, R. L. Mynatt, and J. M. Gimble (2006)
Diabetes 55, 962-970
   Abstract »    Full Text »    PDF »
The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function.
M. E. Young (2006)
Am J Physiol Heart Circ Physiol 290, H1-H16
   Abstract »    Full Text »    PDF »
Tissue-Specific Disruption of Rhythmic Expression of Dec1 and Dec2 in Clock Mutant Mice.
M. Noshiro, M. Furukawa, S. Honma, T. Kawamoto, T. Hamada, K.-i. Honma, and Y. Kato (2005)
J Biol Rhythms 20, 404-418
   Abstract »    PDF »
Mammalian sprouty proteins assemble into large monodisperse particles having the properties of intracellular nanobatteries.
X. Wu, P. B. Alexander, Y. He, M. Kikkawa, P. D. Vogel, and S. L. McKnight (2005)
PNAS 102, 14058-14062
   Abstract »    Full Text »    PDF »
PHYSIOLOGY: Biological Clocks Coordinately Keep Life on Time.
M. U. Gillette and T. J. Sejnowski (2005)
Science 309, 1196-1198
   Abstract »    Full Text »    PDF »
Abnormal development of the locus coeruleus in Ear2(Nr2f6)-deficient mice impairs the functionality of the forebrain clock and affects nociception.
M. Warnecke, H. Oster, J.-P. Revelli, G. Alvarez-Bolado, and G. Eichele (2005)
Genes & Dev. 19, 614-625
   Abstract »    Full Text »    PDF »
Orexin Neurons Function in an Efferent Pathway of a Food-Entrainable Circadian Oscillator in Eliciting Food-Anticipatory Activity and Wakefulness.
M. Mieda, S. C. Williams, C. M. Sinton, J. A. Richardson, T. Sakurai, and M. Yanagisawa (2004)
J. Neurosci. 24, 10493-10501
   Abstract »    Full Text »    PDF »
Clock Gene Evolution and Functional Divergence.
E. Tauber, K. S. Last, P. J.W. Olive, and C. P. Kyriacou (2004)
J Biol Rhythms 19, 445-458
   Abstract »    PDF »
Retinal Circadian Clocks and Control of Retinal Physiology.
C. B. Green and J. C. Besharse (2004)
J Biol Rhythms 19, 91-102
   Abstract »    PDF »
Dec1 and Dec2 Expression is Disrupted in the Suprachiasmatic Nuclei of Clock Mutant Mice.
M. P. Butler, S. Honma, T. Fukumoto, T. Kawamoto, K. Fujimoto, M. Noshiro, Y. Kato, and K.-I. Honma (2004)
J Biol Rhythms 19, 126-134
   Abstract »    PDF »
Signal transduction by heme-containing PAS-domain proteins.
M.-A. Gilles-Gonzalez and G. Gonzalez (2004)
J Appl Physiol 96, 774-783
   Abstract »    Full Text »    PDF »
Molecular Mechanism of Mammalian Circadian Clock.
Y. Isojima, N. Okumura, and K. Nagai (2003)
J. Biochem. 134, 777-784
   Abstract »    Full Text »    PDF »
Mammalian Cultured Cells as a Model System of Peripheral Circadian Clocks.
Y. Tsuchiya and E. Nishida (2003)
J. Biochem. 134, 785-790
   Abstract »    Full Text »    PDF »
Insulin Regulation in AhR-null Mice: Embryonic Cardiac Enlargement, Neonatal Macrosomia, and Altered Insulin Regulation and Response in Pregnant and Aging AhR-null Females.
E. A. Thackaberry, E. J. Bedrick, M. B. Goens, L. Danielson, A. K. Lund, D. Gabaldon, S. M. Smith, and M. K. Walker (2003)
Toxicol. Sci. 76, 407-417
   Abstract »    Full Text »    PDF »
The Days and Nights of Cancer Cells.
L. Canaple, T. Kakizawa, and V. Laudet (2003)
Cancer Res. 63, 7545-7552
   Abstract »    Full Text »    PDF »
Identification of the Downstream Targets of SIM1 and ARNT2, a Pair of Transcription Factors Essential for Neuroendocrine Cell Differentiation.
C. Liu, E. Goshu, A. Wells, and C.-M. Fan (2003)
J. Biol. Chem. 278, 44857-44867
   Abstract »    Full Text »    PDF »
A Globin in the Nucleus!.
E. Geuens, I. Brouns, D. Flamez, S. Dewilde, J.-P. Timmermans, and L. Moens (2003)
J. Biol. Chem. 278, 30417-30420
   Abstract »    Full Text »    PDF »
Altered Patterns of Sleep and Behavioral Adaptability in NPAS2-Deficient Mice.
C. A. Dudley, C. Erbel-Sieler, S. J. Estill, M. Reick, P. Franken, S. Pitts, and S. L. McKnight (2003)
Science 301, 379-383
   Abstract »    Full Text »    PDF »
CIRCADIAN RHYTHMS: Clocks on the Brain.
C. B. Green and M. Menaker (2003)
Science 301, 319-320
   Abstract »    Full Text »    PDF »
Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice.
S. Pitts, E. Perone, and R. Silver (2003)
Am J Physiol Regulatory Integrative Comp Physiol 285, R57-R67
   Abstract »    Full Text »    PDF »
Disruption of the neuronal PAS3 gene in a family affected with schizophrenia.
D Kamnasaran, W J Muir, M A Ferguson-Smith, and D W Cox (2003)
J. Med. Genet. 40, 325-332
   Abstract »    Full Text »    PDF »
Melatonin and activity rhythm responses to light pulses in mice with the Clock mutation.
D. J. Kennaway, A. Voultsios, T. J. Varcoe, and R. W. Moyer (2003)
Am J Physiol Regulatory Integrative Comp Physiol 284, R1231-R1240
   Abstract »    Full Text »    PDF »
Gender Dimorphism in the Role of cycle (BMAL1) in Rest, Rest Regulation, and Longevity in Drosophila melanogaster.
J. C. Hendricks, S. Lu, K. Kume, J. C.-P. Yin, Z. Yang, and A. Sehgal (2003)
J Biol Rhythms 18, 12-25
   Abstract »    PDF »
Genetics of Schizophrenia and Bipolar Affective Disorder: Strategies to Identify Candidate Genes.
D.J. PORTEOUS, K.L. EVANS, J.K. MILLAR, B.S. PICKARD, P.A. THOMSON, R. JAMES, S. MACGREGOR, N.R. WRAY, P.M. VISSCHER, W.J. MUIR, et al. (2003)
Cold Spring Harb Symp Quant Biol 68, 383-394
   Abstract »    PDF »
CIRCADIAN RHYTHMS: Carbon Monoxide and Clocks.
D. Boehning and S. H. Snyder (2002)
Science 298, 2339-2340
   Full Text »    PDF »
NPAS2: A Gas-Responsive Transcription Factor.
E. M. Dioum, J. Rutter, J. R. Tuckerman, G. Gonzalez, M.-A. Gilles-Gonzalez, and S. L. McKnight (2002)
Science 298, 2385-2387
   Abstract »    Full Text »    PDF »
Origins of Circadian Rhythmicity.
E. Rosato and C. P. Kyriacou (2002)
J Biol Rhythms 17, 506-511
   PDF »
Central and peripheral circadian oscillator mechanisms in flies and mammals.
N. R. J. Glossop and P. E. Hardin (2002)
J. Cell Sci. 115, 3369-3377
   Abstract »    Full Text »    PDF »
High-throughput Expression Profiling Techniques.
T. S. McClintock (2002)
Chem Senses 27, 289-291
   Full Text »    PDF »
Functional Genomics of Sleep and Circadian Rhythm: Invited Review: A neural clockwork for encoding circadian time.
E. D. Herzog and W. J. Schwartz (2002)
J Appl Physiol 92, 401-408
   Abstract »    Full Text »    PDF »
Regulation of Clock and NPAS2 DNA Binding by the Redox State of NAD Cofactors.
J. Rutter, M. Reick, L. C. Wu, and S. L. McKnight (2001)
Science 293, 510-514
   Abstract »    Full Text »    PDF »
CIRCADIAN RHYTHMS: Chronobiology--Reducing Time.
U. Schibler, J. A. Ripperger, and S. A. Brown (2001)
Science 293, 437-438
   Full Text »
Regulation of Clock and NPAS2 DNA Binding by the Redox State of NAD Cofactors.
J. Rutter, M. Reick, L. C. Wu, and S. L. McKnight (2001)
Science 293, 510-514
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882