Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 293 (5531): 872-875

Copyright © 2001 by the American Association for the Advancement of Science

Sorting of Striatal and Cortical Interneurons Regulated by Semaphorin-Neuropilin Interactions

Oscar Marín,1 Avraham Yaron,2 Anil Bagri,2 Marc Tessier-Lavigne,2 John L. R. Rubenstein1*

Most striatal and cortical interneurons arise from the basal telencephalon, later segregating to their respective targets. Here, we show that migrating cortical interneurons avoid entering the striatum because of a chemorepulsive signal composed at least in part of semaphorin 3A and semaphorin 3F. Migrating interneurons expressing neuropilins, receptors for semaphorins, are directed to the cortex; those lacking them go to the striatum. Loss of neuropilin function increases the number of interneurons that migrate into the striatum. These observations reveal a mechanism by which neuropilins mediate sorting of distinct neuronal populations into different brain structures, and provide evidence that, in addition to guiding axons, these receptors also control neuronal migration in the central nervous system.

1 Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, Langley Porter Psychiatric Institute,
2 Department of Anatomy, Howard Hughes Medical Institute (HHMI), and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA.
*   To whom correspondence should be addressed. E-mail: jlrr{at}

Cortical Interneurons Require Jnk1 to Enter and Navigate the Developing Cerebral Cortex.
A. K. Myers, D. W. Meechan, D. R. Adney, and E. S. Tucker (2014)
J. Neurosci. 34, 7787-7801
   Abstract »    Full Text »    PDF »
EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence.
A. Steinecke, C. Gampe, G. Zimmer, J. Rudolph, and J. Bolz (2014)
Development 141, 460-471
   Abstract »    Full Text »    PDF »
Soluble Guanylate Cyclase Generation of cGMP Regulates Migration of MGE Neurons.
S. Mandal, A. Stanco, E. S. Buys, G. Enikolopov, and J. L. R. Rubenstein (2013)
J. Neurosci. 33, 16897-16914
   Abstract »    Full Text »    PDF »
Lineage-dependent circuit assembly in the neocortex.
P. Gao, K. T. Sultan, X.-J. Zhang, and S.-H. Shi (2013)
Development 140, 2645-2655
   Abstract »    Full Text »    PDF »
Limk2 mediates semaphorin signalling in cortical interneurons migrating through the subpallium.
W. D. Andrews, A. Zito, F. Memi, G. Jones, N. Tamamaki, and J. G. Parnavelas (2013)
Biology Open 2, 277-282
   Abstract »    Full Text »    PDF »
Specific Sets of Intrinsic and Extrinsic Factors Drive Excitatory and Inhibitory Circuit Formation.
A. Terauchi and H. Umemori (2012)
Neuroscientist 18, 271-286
   Abstract »    Full Text »    PDF »
COUP-TFII controls amygdala patterning by regulating neuropilin expression.
K. Tang, J. L. R. Rubenstein, S. Y. Tsai, and M.-J. Tsai (2012)
Development 139, 1630-1639
   Abstract »    Full Text »    PDF »
Bidirectional EphrinB3/EphA4 Signaling Mediates the Segregation of Medial Ganglionic Eminence- and Preoptic Area-Derived Interneurons in the Deep and Superficial Migratory Stream.
G. Zimmer, J. Rudolph, J. Landmann, K. Gerstmann, A. Steinecke, C. Gampe, and J. Bolz (2011)
J. Neurosci. 31, 18364-18380
   Abstract »    Full Text »    PDF »
Pallial origin of basal forebrain cholinergic neurons in the nucleus basalis of Meynert and horizontal limb of the diagonal band nucleus.
A. Pombero, C. Bueno, L. Saglietti, M. Rodenas, J. Guimera, A. Bulfone, and S. Martinez (2011)
Development 138, 4315-4326
   Abstract »    Full Text »    PDF »
MET signaling in GABAergic neuronal precursors of the medial ganglionic eminence restricts GDNF activity in cells that express GFR{alpha}1 and a new transmembrane receptor partner.
M. Perrinjaquet, D. Sjostrand, A. Moliner, S. Zechel, F. Lamballe, F. Maina, and C. F. Ibanez (2011)
J. Cell Sci. 124, 2797-2805
   Abstract »    Full Text »    PDF »
Focal Adhesion Kinase Modulates Radial Glia-Dependent Neuronal Migration through Connexin-26.
M. Valiente, G. Ciceri, B. Rico, and O. Marin (2011)
J. Neurosci. 31, 11678-11691
   Abstract »    Full Text »    PDF »
Tangential migration and proliferation of intermediate progenitors of GABAergic neurons in the mouse telencephalon.
S. Wu, S. Esumi, K. Watanabe, J. Chen, K. C. Nakamura, K. Nakamura, K. Kometani, N. Minato, Y. Yanagawa, K. Akashi, et al. (2011)
Development 138, 2499-2509
   Abstract »    Full Text »    PDF »
Robo1 Regulates Semaphorin Signaling to Guide the Migration of Cortical Interneurons through the Ventral Forebrain.
L. R. Hernandez-Miranda, A. Cariboni, C. Faux, C. Ruhrberg, J. H. Cho, J.-F. Cloutier, B. J. Eickholt, J. G. Parnavelas, and W. D. Andrews (2011)
J. Neurosci. 31, 6174-6187
   Abstract »    Full Text »    PDF »
Timing of Cortical Interneuron Migration Is Influenced by the Cortical Hem.
G. Caronia-Brown and E. A. Grove (2011)
Cereb Cortex 21, 748-755
   Abstract »    Full Text »    PDF »
Decorin, erythroblastic leukaemia viral oncogene homologue B4 and signal transducer and activator of transcription 3 regulation of semaphorin 3A in central nervous system scar tissue.
K. H. Minor, J. C. Bournat, N. Toscano, R. J. Giger, and S. J. A. Davies (2011)
Brain 134, 1140-1155
   Abstract »    Full Text »    PDF »
Chondroitin Sulfate Acts in Concert with Semaphorin 3A to Guide Tangential Migration of Cortical Interneurons in the Ventral Telencephalon.
G. Zimmer, S. M. Schanuel, S. Burger, F. Weth, A. Steinecke, J. Bolz, and R. Lent (2010)
Cereb Cortex 20, 2411-2422
   Abstract »    Full Text »    PDF »
Molecules and Mechanisms Involved in the Generation and Migration of Cortical Interneurons.
L. R. Hernandez-Miranda, J. G. Parnavelas, and F. Chiara (2010)
ASN Neuro 2, AN20090053
   Abstract »    Full Text »    PDF »
Gene Deletion Mutants Reveal a Role for Semaphorin Receptors of the Plexin-B Family in Mechanisms Underlying Corticogenesis.
A. Hirschberg, S. Deng, A. Korostylev, E. Paldy, M. R. Costa, T. Worzfeld, P. Vodrazka, A. Wizenmann, M. Gotz, S. Offermanns, et al. (2010)
Mol. Cell. Biol. 30, 764-780
   Abstract »    Full Text »    PDF »
Guiding Neuronal Cell Migrations.
O. Marin, M. Valiente, X. Ge, and L.-H. Tsai (2010)
Cold Spring Harb Perspect Biol 2, a001834
   Abstract »    Full Text »    PDF »
Semaphorin 3F Is a Bifunctional Guidance Cue for Dopaminergic Axons and Controls Their Fasciculation, Channeling, Rostral Growth, and Intracortical Targeting.
S. M. Kolk, R.-A. F. Gunput, T. S. Tran, D. M. A. van den Heuvel, A. A. Prasad, A. J. C. G. M. Hellemons, Y. Adolfs, D. D. Ginty, A. L. Kolodkin, J. P. H. Burbach, et al. (2009)
J. Neurosci. 29, 12542-12557
   Abstract »    Full Text »    PDF »
Regionalized Loss of Parvalbumin Interneurons in the Cerebral Cortex of Mice with Deficits in GFR{alpha}1 Signaling.
A. J. Canty, J. Dietze, M. Harvey, H. Enomoto, J. Milbrandt, and C. F. Ibanez (2009)
J. Neurosci. 29, 10695-10705
   Abstract »    Full Text »    PDF »
The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons.
D. M. Gelman, F. J. Martini, S. Nobrega-Pereira, A. Pierani, N. Kessaris, and O. Marin (2009)
J. Neurosci. 29, 9380-9389
   Abstract »    Full Text »    PDF »
Fbxo45 Forms a Novel Ubiquitin Ligase Complex and Is Required for Neuronal Development.
T. Saiga, T. Fukuda, M. Matsumoto, H. Tada, H. J. Okano, H. Okano, and K. I. Nakayama (2009)
Mol. Cell. Biol. 29, 3529-3543
   Abstract »    Full Text »    PDF »
Dlx1 and Mash1 Transcription Factors Control MGE and CGE Patterning and Differentiation through Parallel and Overlapping Pathways.
J. E. Long, I. Cobos, G. B. Potter, and J. L. R. Rubenstein (2009)
Cereb Cortex 19, i96-i106
   Abstract »    Full Text »    PDF »
The Role of Robo3 in the Development of Cortical Interneurons.
M. Barber, T. Di Meglio, W. D. Andrews, L. R. Hernandez-Miranda, F. Murakami, A. Chedotal, and J. G. Parnavelas (2009)
Cereb Cortex 19, i22-i31
   Abstract »    Full Text »    PDF »
Transcriptional Control of Neuronal Migration in the Developing Mouse Brain.
S. Nobrega-Pereira and O. Marin (2009)
Cereb Cortex 19, i107-i113
   Abstract »    Full Text »    PDF »
The Protocadherin Gene Celsr3 Is Required for Interneuron Migration in the Mouse Forebrain.
G. Ying, S. Wu, R. Hou, W. Huang, M. R. Capecchi, and Q. Wu (2009)
Mol. Cell. Biol. 29, 3045-3061
   Abstract »    Full Text »    PDF »
Semaphorin 5B Is a Novel Inhibitory Cue for Corticofugal Axons.
R. L. M. Lett, W. Wang, and T. P. O'Connor (2009)
Cereb Cortex 19, 1408-1421
   Abstract »    Full Text »    PDF »
Gene Expression in Cortical Interneuron Precursors is Prescient of their Mature Function.
R. Batista-Brito, R. Machold, C. Klein, and G. Fishell (2008)
Cereb Cortex 18, 2306-2317
   Abstract »    Full Text »    PDF »
Semaphorin 3F Confines Ventral Tangential Migration of Lateral Olfactory Tract Neurons onto the Telencephalon Surface.
K. Ito, T. Kawasaki, S. Takashima, I. Matsuda, A. Aiba, and T. Hirata (2008)
J. Neurosci. 28, 4414-4422
   Abstract »    Full Text »    PDF »
Pax6-/- Mice Have a Cell Nonautonomous Defect in Nonradial Interneuron Migration.
P. P. Gopal and J. A. Golden (2008)
Cereb Cortex 18, 752-762
   Abstract »    Full Text »    PDF »
Themes and Strategies for Studying the Biology of Stroke Recovery in the Poststroke Epoch.
S. T. Carmichael (2008)
Stroke 39, 1380-1388
   Abstract »    Full Text »    PDF »
Chemokine Signaling Controls Intracortical Migration and Final Distribution of GABAergic Interneurons.
G. Lopez-Bendito, J. A. Sanchez-Alcaniz, R. Pla, V. Borrell, E. Pico, M. Valdeolmillos, and O. Marin (2008)
J. Neurosci. 28, 1613-1624
   Abstract »    Full Text »    PDF »
Regional Distribution of Cortical Interneurons and Development of Inhibitory Tone Are Regulated by Cxcl12/Cxcr4 Signaling.
G. Li, H. Adesnik, J. Li, J. Long, R. A. Nicoll, J. L. R. Rubenstein, and S. J. Pleasure (2008)
J. Neurosci. 28, 1085-1098
   Abstract »    Full Text »    PDF »
Ctip2 Controls the Differentiation of Medium Spiny Neurons and the Establishment of the Cellular Architecture of the Striatum.
P. Arlotta, B. J. Molyneaux, D. Jabaudon, Y. Yoshida, and J. D. Macklis (2008)
J. Neurosci. 28, 622-632
   Abstract »    Full Text »    PDF »
Autocrine Factors That Sustain Glioma Invasion and Paracrine Biology in the Brain Microenvironment.
D. B. Hoelzinger, T. Demuth, and M. E. Berens (2007)
J Natl Cancer Inst 99, 1583-1593
   Abstract »    Full Text »    PDF »
Transcriptional Regulation of Cortical Interneuron Development.
S. J. B. Butt, I. Cobos, J. Golden, N. Kessaris, V. Pachnis, and S. Anderson (2007)
J. Neurosci. 27, 11847-11850
   Full Text »    PDF »
Dlx Homeobox Genes Promote Cortical Interneuron Migration from the Basal Forebrain by Direct Repression of the Semaphorin Receptor Neuropilin-2.
T. N. Le, G. Du, M. Fonseca, Q.-P. Zhou, J. T. Wigle, and D. D. Eisenstat (2007)
J. Biol. Chem. 282, 19071-19081
   Abstract »    Full Text »    PDF »
Neuropilins and Their Ligands Are Important in the Migration of Gonadotropin-Releasing Hormone Neurons.
A. Cariboni, J. Hickok, S. Rakic, W. Andrews, R. Maggi, S. Tischkau, and J. G. Parnavelas (2007)
J. Neurosci. 27, 2387-2395
   Abstract »    Full Text »    PDF »
Collapsin Response Mediator Protein 1 Mediates Reelin Signaling in Cortical Neuronal Migration.
N. Yamashita, Y. Uchida, T. Ohshima, S.-i. Hirai, F. Nakamura, M. Taniguchi, K. Mikoshiba, J. Honnorat, P. Kolattukudy, N. Thomasset, et al. (2006)
J. Neurosci. 26, 13357-13362
   Abstract »    Full Text »    PDF »
Cell Migration along the Lateral Cortical Stream to the Developing Basal Telencephalic Limbic System..
R. S. E. Carney, T. B. Alfonso, D. Cohen, H. Dai, S. Nery, B. Stoica, J. Slotkin, B. S. Bregman, G. Fishell, and J. G. Corbin (2006)
J. Neurosci. 26, 11562-11574
   Abstract »    Full Text »    PDF »
Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain.
W. Andrews, A. Liapi, C. Plachez, L. Camurri, J. Zhang, S. Mori, F. Murakami, J. G. Parnavelas, V. Sundaresan, and L. J. Richards (2006)
Development 133, 2243-2252
   Abstract »    Full Text »    PDF »
Classic cadherins regulate tangential migration of precerebellar neurons in the caudal hindbrain.
H. Taniguchi, D. Kawauchi, K. Nishida, and F. Murakami (2006)
Development 133, 1923-1931
   Abstract »    Full Text »    PDF »
BDNF-modulated Spatial Organization of Cajal-Retzius and GABAergic Neurons in the Marginal Zone Plays a Role in the Development of Cortical Organization.
S. Alcantara, E. Pozas, C. F. Ibanez, and E. Soriano (2006)
Cereb Cortex 16, 487-499
   Abstract »    Full Text »    PDF »
Pax6-dependent boundary defines alignment of migrating olfactory cortex neurons via the repulsive activity of ephrin A5.
T. Nomura, J. Holmberg, J. Frisen, and N. Osumi (2006)
Development 133, 1335-1345
   Abstract »    Full Text »    PDF »
A cell-autonomous requirement for the cell cycle regulatory protein, Rb, in neuronal migration.
K. L. Ferguson, K. A. McClellan, J. L. Vanderluit, W. C. McIntosh, C. Schuurmans, F. Polleux, and R. S. Slack (2005)
EMBO J. 24, 4381-4391
   Abstract »    Full Text »    PDF »
Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon.
Q. Xu, C. P. Wonders, and S. A. Anderson (2005)
Development 132, 4987-4998
   Abstract »    Full Text »    PDF »
The Caudal Migratory Stream: A Novel Migratory Stream of Interneurons Derived from the Caudal Ganglionic Eminence in the Developing Mouse Forebrain.
M. Yozu, H. Tabata, and K. Nakajima (2005)
J. Neurosci. 25, 7268-7277
   Abstract »    Full Text »    PDF »
Secreted Semaphorins Modulate Synaptic Transmission in the Adult Hippocampus.
A. Sahay, C.-H. Kim, J. P. Sepkuty, E. Cho, R. L. Huganir, D. D. Ginty, and A. L. Kolodkin (2005)
J. Neurosci. 25, 3613-3620
   Abstract »    Full Text »    PDF »
Topical Review: Neuronal Migration in Developmental Disorders.
M. F. McManus and J. A. Golden (2005)
J Child Neurol 20, 280-286
   Abstract »    PDF »
Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve.
Q. Schwarz, C. Gu, H. Fujisawa, K. Sabelko, M. Gertsenstein, A. Nagy, M. Taniguchi, A. L. Kolodkin, D. D. Ginty, D. T. Shima, et al. (2004)
Genes & Dev. 18, 2822-2834
   Abstract »    Full Text »    PDF »
Preferential Origin and Layer Destination of GAD65-GFP Cortical Interneurons.
G. Lopez-Bendito, K. Sturgess, F. Erdelyi, G. Szabo, Z. Molnar, and O. Paulsen (2004)
Cereb Cortex 14, 1122-1133
   Abstract »    Full Text »    PDF »
Lhx6 Regulates the Migration of Cortical Interneurons from the Ventral Telencephalon But Does Not Specify their GABA Phenotype.
P. Alifragis, A. Liapi, and J. G. Parnavelas (2004)
J. Neurosci. 24, 5643-5648
   Abstract »    Full Text »    PDF »
Cocaine Exposure Decreases GABA Neuron Migration from the Ganglionic Eminence to the Cerebral Cortex in Embryonic Mice.
J. E. Crandall, H. E. Hackett, S. A. Tobet, B. E. Kosofsky, and P. G. Bhide (2004)
Cereb Cortex 14, 665-675
   Abstract »    Full Text »    PDF »
Topical Review: Neuronal Migration in Developmental Disorders.
M. F. McManus and J. A. Golden (2004)
J Child Neurol 19, 280-286
   Abstract »    PDF »
Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins.
D. Tanaka, Y. Nakaya, Y. Yanagawa, K. Obata, and F. Murakami (2003)
Development 130, 5803-5813
   Abstract »    Full Text »    PDF »
Subpallial origin of a population of projecting pioneer neurons during corticogenesis.
J. Morante-Oria, A. Carleton, B. Ortino, E. J. Kremer, A. Fairen, and P.-M. Lledo (2003)
PNAS 100, 12468-12473
   Abstract »    Full Text »    PDF »
Semaphorin 3F Is Critical for Development of Limbic System Circuitry and Is Required in Neurons for Selective CNS Axon Guidance Events.
A. Sahay, M. E. Molliver, D. D. Ginty, and A. L. Kolodkin (2003)
J. Neurosci. 23, 6671-6680
   Abstract »    Full Text »    PDF »
Semaphorin3a1 regulates angioblast migration and vascular development in zebrafish embryos.
W. Shoji, S. Isogai, M. Sato-Maeda, M. Obinata, and J. Y. Kuwada (2003)
Development 130, 3227-3236
   Abstract »    Full Text »    PDF »
Retinoschisin, a Photoreceptor-Secreted Protein, and Its Interaction with Bipolar and Muller Cells.
S. N. M. Reid, C. Yamashita, and D. B. Farber (2003)
J. Neurosci. 23, 6030-6040
   Abstract »    Full Text »    PDF »
Four-Dimensional Migratory Coordinates of GABAergic Interneurons in the Developing Mouse Cortex.
E. S. B. C. Ang Jr, T. F. Haydar, V. Gluncic, and P. Rakic (2003)
J. Neurosci. 23, 5805-5815
   Abstract »    Full Text »    PDF »
The glial sling is a migratory population of developing neurons.
T. Shu, Y. Li, A. Keller, and L. J. Richards (2003)
Development 130, 2929-2937
   Abstract »    Full Text »    PDF »
CXCR4 Regulates Interneuron Migration in the Developing Neocortex.
R. K. Stumm, C. Zhou, T. Ara, F. Lazarini, M. Dubois-Dalcq, T. Nagasawa, V. Hollt, and S. Schulz (2003)
J. Neurosci. 23, 5123-5130
   Abstract »    Full Text »    PDF »
Directional guidance of interneuron migration to the cerebral cortex relies on subcortical Slit1/2-independent repulsion and cortical attraction.
O. Marin, A. S. Plump, N. Flames, C. Sanchez-Camacho, M. Tessier-Lavigne, and J. L. R. Rubenstein (2003)
Development 130, 1889-1901
   Abstract »    Full Text »    PDF »
Connecting the eye to the brain: the molecular basis of ganglion cell axon guidance.
S F Oster and D W Sretavan (2003)
Br J Ophthalmol 87, 639-645
   Abstract »    Full Text »    PDF »
The chemokine SDF1 regulates migration of dentate granule cells.
A. Bagri, T. Gurney, X. He, Y.-R. Zou, D. R. Littman, M. Tessier-Lavigne, and S. J. Pleasure (2003)
Development 129, 4249-4260
   Abstract »    Full Text »    PDF »
Neural Development of the Neuregulin Receptor ErbB4 in the Cerebral Cortex and the Hippocampus: Preferential Expression by Interneurons Tangentially Migrating from the Ganglionic Eminences.
H.-J. Yau, H.-F. Wang, C. Lai, and F.-C. Liu (2003)
Cereb Cortex 13, 252-264
   Abstract »    Full Text »    PDF »
Permissive corridor and diffusible gradients direct medial ganglionic eminence cell migration to the neocortex.
H. Wichterle, M. Alvarez-Dolado, L. Erskine, and A. Alvarez-Buylla (2003)
PNAS 100, 727-732
   Abstract »    Full Text »    PDF »
Genetic Disruption of Cortical Interneuron Development Causes Region- and GABA Cell Type-Specific Deficits, Epilepsy, and Behavioral Dysfunction.
E. M. Powell, D. B. Campbell, G. D. Stanwood, C. Davis, J. L. Noebels, and P. Levitt (2003)
J. Neurosci. 23, 622-631
   Abstract »    Full Text »    PDF »
Neuronal migration and molecular conservation with leukocyte chemotaxis.
Y. Rao, K. Wong, M. Ward, C. Jurgensen, and J. Y. Wu (2002)
Genes & Dev. 16, 2973-2984
   Full Text »    PDF »
Receptor-activated Calcium Signals in Tangentially Migrating Cortical Cells.
J.M. Soria and M. Valdeolmillos (2002)
Cereb Cortex 12, 831-839
   Abstract »    Full Text »    PDF »
Directional Guidance of Oligodendroglial Migration by Class 3 Semaphorins and Netrin-1.
N. Spassky, F. de Castro, B. Le Bras, K. Heydon, F. Queraud-LeSaux, E. Bloch-Gallego, A. Chedotal, B. Zalc, and J.-L. Thomas (2002)
J. Neurosci. 22, 5992-6004
   Abstract »    Full Text »    PDF »
Evidence of Common Progenitors and Patterns of Dispersion in Rat Striatum and Cerebral Cortex.
C. B. Reid and C. A. Walsh (2002)
J. Neurosci. 22, 4002-4014
   Abstract »    Full Text »    PDF »
Knowing How to Navigate: Mechanisms of Semaphorin Signaling in the Nervous System.
Z. He, K. C. Wang, V. Koprivica, G. Ming, and H.-J. Song (2002)
Sci. STKE 2002, re1
   Abstract »    Full Text »    PDF »
Developmental functions of the Distal-less/Dlx homeobox genes.
G. Panganiban and J. L. R. Rubenstein (2002)
Development 129, 4371-4386
   Abstract »    Full Text »    PDF »
Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling.
F. Polleux, K. L. Whitford, P. A. Dijkhuizen, T. Vitalis, and A. Ghosh (2002)
Development 129, 3147-3160
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882