Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 293 (5532): 1142-1146

Copyright © 2001 by the American Association for the Advancement of Science

Snf1--a Histone Kinase That Works in Concert with the Histone Acetyltransferase Gcn5 to Regulate Transcription

Wan-Sheng Lo,1 Laura Duggan,1 N. C. Tolga , Emre,1 Rimma Belotserkovskya,1 William S. Lane,2 Ramin Shiekhattar,1 Shelley L. Berger1*

Modification of histones is an important element in the regulation of gene expression. Previous work suggested a link between acetylation and phosphorylation, but questioned its mechanistic basis. We have purified a histone H3 serine-10 kinase complex from Saccharomyces cerevisiae and have identified its catalytic subunit as Snf1. The Snf1/AMPK family of kinases function in conserved signal transduction pathways. Our results show that Snf1 and the acetyltransferase Gcn5 function in an obligate sequence to enhance INO1 transcription by modifying histone H3 serine-10 and lysine-14. Thus, phosphorylation and acetylation are targeted to the same histone by promoter-specific regulation by a kinase/acetyltransferase pair, supporting models of gene regulation wherein transcription is controlled by coordinated patterns of histone modification.

1 Molecular Genetics Program, The Wistar Institute, Philadelphia, PA 19104, USA.
2 Harvard Microchemistry and Proteomics Analysis Facility, Harvard University, Cambridge, MA 02138, USA.
*   To whom correspondence should be addressed at The Wistar Institute, 3601 Spruce Street, Room 389, Philadelphia, PA 19104, USA. E-mail: berger{at}wistar.upenn.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae.
J. Zhang, S. Vaga, P. Chumnanpuen, R. Kumar, G. N. Vemuri, R. Aebersold, and J. Nielsen (2014)
Mol Syst Biol 7, 545
   Abstract »    Full Text »    PDF »
Evolution and functional cross-talk of protein post-translational modifications.
P. Beltrao, P. Bork, N. J. Krogan, and V. van Noort (2014)
Mol Syst Biol 9, 714
   Abstract »    Full Text »    PDF »
The Yeast AMPK Homolog SNF1 Regulates Acetyl Coenzyme A Homeostasis and Histone Acetylation.
M. Zhang, L. Galdieri, and A. Vancura (2013)
Mol. Cell. Biol. 33, 4701-4717
   Abstract »    Full Text »    PDF »
Nutritional Control of Growth and Development in Yeast.
J. R. Broach (2012)
Genetics 192, 73-105
   Abstract »    Full Text »    PDF »
The AMP-activated Protein Kinase Snf1 Regulates Transcription Factor Binding, RNA Polymerase II Activity, and mRNA Stability of Glucose-repressed Genes in Saccharomyces cerevisiae.
E. T. Young, C. Zhang, K. M. Shokat, P. K. Parua, and K. A. Braun (2012)
J. Biol. Chem. 287, 29021-29034
   Abstract »    Full Text »    PDF »
Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster.
A. Villar-Garea, I. Forne, I. Vetter, E. Kremmer, A. Thomae, and A. Imhof (2012)
Nucleic Acids Res. 40, 1536-1549
   Abstract »    Full Text »    PDF »
A Peek into the Complex Realm of Histone Phosphorylation.
T. Banerjee and D. Chakravarti (2011)
Mol. Cell. Biol. 31, 4858-4873
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase Regulates E3 Ligases in Rodent Heart.
K. K. Baskin and H. Taegtmeyer (2011)
Circ. Res. 109, 1153-1161
   Abstract »    Full Text »    PDF »
The role of epigenetic processes in controlling flowering time in plants exposed to stress.
M. W. Yaish, J. Colasanti, and S. J. Rothstein (2011)
J. Exp. Bot. 62, 3727-3735
   Abstract »    Full Text »    PDF »
A novel mechanism for target gene-specific SWI/SNF recruitment via the Snf2p N-terminus.
M. Weider, A. Schroder, F. Klebl, and N. Sauer (2011)
Nucleic Acids Res. 39, 4088-4098
   Abstract »    Full Text »    PDF »
The histone H3K36 demethylase Rph1/KDM4 regulates the expression of the photoreactivation gene PHR1.
C.-Y. Liang, P.-H. Hsu, D.-F. Chou, C.-Y. Pan, L.-C. Wang, W.-C. Huang, M.-D. Tsai, and W.-S. Lo (2011)
Nucleic Acids Res. 39, 4151-4165
   Abstract »    Full Text »    PDF »
Derepression of INO1 Transcription Requires Cooperation between the Ino2p-Ino4p Heterodimer and Cbf1p and Recruitment of the ISW2 Chromatin-Remodeling Complex.
A. Shetty and J. M. Lopes (2010)
Eukaryot. Cell 9, 1845-1855
   Abstract »    Full Text »    PDF »
Targeting the Core of Transcription.
D. G. Hardie (2010)
Science 329, 1158-1159
   Abstract »    Full Text »    PDF »
Functional Interplay between Acetylation and Methylation of the RelA Subunit of NF-{kappa}B.
X. D. Yang, E. Tajkhorshid, and L. F. Chen (2010)
Mol. Cell. Biol. 30, 2170-2180
   Abstract »    Full Text »    PDF »
cAMP-response Element-binding Protein (CREB) Controls MSK1-mediated Phosphorylation of Histone H3 at the c-fos Promoter in Vitro.
M. Shimada, T. Nakadai, A. Fukuda, and K. Hisatake (2010)
J. Biol. Chem. 285, 9390-9401
   Abstract »    Full Text »    PDF »
Snf1p Regulates Gcn5p Transcriptional Activity by Antagonizing Spt3p.
Y. Liu, X. Xu, and M.-H. Kuo (2010)
Genetics 184, 91-105
   Abstract »    Full Text »    PDF »
The Snf1 kinase and proteasome-associated Rad23 regulate UV-responsive gene expression.
S. L. Wade, K. Poorey, S. Bekiranov, and D. T. Auble (2009)
EMBO J. 28, 2919-2931
   Abstract »    Full Text »    PDF »
Snf1 Controls the Activity of Adr1 Through Dephosphorylation of Ser230.
S. Ratnakumar, N. Kacherovsky, E. Arms, and E. T. Young (2009)
Genetics 182, 735-745
   Abstract »    Full Text »    PDF »
Histone H3 as a novel substrate for MAP kinase phosphatase-1.
C. M. Kinney, U. M. Chandrasekharan, L. Yang, J. Shen, M. Kinter, M. S. McDermott, and P. E. DiCorleto (2009)
Am J Physiol Cell Physiol 296, C242-C249
   Abstract »    Full Text »    PDF »
RNA polymerase II-mediated transcription at active loci does not require histone H3S10 phosphorylation in Drosophila.
W. Cai, X. Bao, H. Deng, Y. Jin, J. Girton, J. Johansen, and K. M. Johansen (2008)
Development 135, 2917-2925
   Abstract »    Full Text »    PDF »
14-3-3 Interaction with Histone H3 Involves a Dual Modification Pattern of Phosphoacetylation.
W. Walter, D. Clynes, Y. Tang, R. Marmorstein, J. Mellor, and S. L. Berger (2008)
Mol. Cell. Biol. 28, 2840-2849
   Abstract »    Full Text »    PDF »
Cyclic AMP-Protein Kinase A and Snf1 Signaling Mechanisms Underlie the Superior Potency of Sucrose for Induction of Filamentation in Saccharomyces cerevisiae.
S. Van de Velde and J. M. Thevelein (2008)
Eukaryot. Cell 7, 286-293
   Abstract »    Full Text »    PDF »
Transcriptional Adaptor ADA3 of Drosophila melanogaster Is Required for Histone Modification, Position Effect Variegation, and Transcription.
B. Grau, C. Popescu, L. Torroja, D. Ortuno-Sahagun, I. Boros, and A. Ferrus (2008)
Mol. Cell. Biol. 28, 376-385
   Abstract »    Full Text »    PDF »
Phosphatidic Acid Plays a Central Role in the Transcriptional Regulation of Glycerophospholipid Synthesis in Saccharomyces cerevisiae.
G. M. Carman and S. A. Henry (2007)
J. Biol. Chem. 282, 37293-37297
   Full Text »    PDF »
A Poised Initiation Complex Is Activated by SNF1.
C. Tachibana, R. Biddick, G. L. Law, and E. T. Young (2007)
J. Biol. Chem. 282, 37308-37315
   Abstract »    Full Text »    PDF »
A new role for histone tail modifications in transcription elongation.
G. A. Hartzog and J. W. Tamkun (2007)
Genes & Dev. 21, 3209-3213
   Full Text »    PDF »
Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila.
M. S. Ivaldi, C. S. Karam, and V. G. Corces (2007)
Genes & Dev. 21, 2818-2831
   Abstract »    Full Text »    PDF »
The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes.
A. Pascual-Ahuir and M. Proft (2007)
EMBO J. 26, 3098-3108
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells.
B. J. Krawiec, G. J. Nystrom, R. A. Frost, L. S. Jefferson, and C. H. Lang (2007)
Am J Physiol Endocrinol Metab 292, E1555-E1567
   Abstract »    Full Text »    PDF »
Chromatin Remodeling and Circadian Control: Master Regulator CLOCK Is an Enzyme.
B. Grimaldi, Y. Nakahata, S. Sahar, M. Kaluzova, D. Gauthier, K. Pham, N. Patel, J. Hirayama, and P. Sassone-Corsi (2007)
Cold Spring Harb Symp Quant Biol 72, 105-112
   Abstract »    PDF »
Dynamic Interplay of Transcriptional Machinery and Chromatin Regulates "Late" Expression of the Chemokine RANTES in T Lymphocytes.
Y.-T. Ahn, B. Huang, L. McPherson, C. Clayberger, and A. M. Krensky (2007)
Mol. Cell. Biol. 27, 253-266
   Abstract »    Full Text »    PDF »
Regulation of the Nucleocytoplasmic Distribution of Snf1-Gal83 Protein Kinase.
K. Hedbacker and M. Carlson (2006)
Eukaryot. Cell 5, 1950-1956
   Abstract »    Full Text »    PDF »
AKINbeta{gamma} Contributes to SnRK1 Heterotrimeric Complexes and Interacts with Two Proteins Implicated in Plant Pathogen Resistance through Its KIS/GBD Sequence.
L. Gissot, C. Polge, M. Jossier, T. Girin, J.-P. Bouly, M. Kreis, and M. Thomas (2006)
Plant Physiology 142, 931-944
   Abstract »    Full Text »    PDF »
A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity.
Y. Li, G. D. Kao, B. A. Garcia, J. Shabanowitz, D. F. Hunt, J. Qin, C. Phelan, and M. A. Lazar (2006)
Genes & Dev. 20, 2566-2579
   Abstract »    Full Text »    PDF »
Functional Interplay between Histone Demethylase and Deacetylase Enzymes.
M. G. Lee, C. Wynder, D. A. Bochar, M.-A. Hakimi, N. Cooch, and R. Shiekhattar (2006)
Mol. Cell. Biol. 26, 6395-6402
   Abstract »    Full Text »    PDF »
Methylation of Histone H3 Mediates the Association of the NuA3 Histone Acetyltransferase with Chromatin.
D. G. E. Martin, D. E. Grimes, K. Baetz, and L. Howe (2006)
Mol. Cell. Biol. 26, 3018-3028
   Abstract »    Full Text »    PDF »
Contribution of the Histone H3 and H4 Amino Termini to Gcn4p- and Gcn5p-mediated Transcription in Yeast.
C. Yu, M. J. Palumbo, C. E. Lawrence, and R. H. Morse (2006)
J. Biol. Chem. 281, 9755-9764
   Abstract »    Full Text »    PDF »
Distinct Roles for the Essential MYST Family HAT Esa1p in Transcriptional Silencing.
A. S. Clarke, E. Samal, and L. Pillus (2006)
Mol. Biol. Cell 17, 1744-1757
   Abstract »    Full Text »    PDF »
Histone acetylation and transcriptional regulation in the genome of Saccharomyces cerevisiae.
X. Guo, K. Tatsuoka, and R. Liu (2006)
Bioinformatics 22, 392-399
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinase Cascade-Mediated Histone H3 Phosphorylation Is Critical for Telomerase Reverse Transcriptase Expression/Telomerase Activation Induced by Proliferation.
Z. Ge, C. Liu, M. Bjorkholm, A. Gruber, and D. Xu (2006)
Mol. Cell. Biol. 26, 230-237
   Abstract »    Full Text »    PDF »
Histone H3 Ser10 Phosphorylation-Independent Function of Snf1 and Reg1 Proteins Rescues a gcn5- Mutant in HIS3 Expression.
Y. Liu, X. Xu, S. Singh-Rodriguez, Y. Zhao, and M.-H. Kuo (2005)
Mol. Cell. Biol. 25, 10566-10579
   Abstract »    Full Text »    PDF »
A Decade of Histone Acetylation: Marking Eukaryotic Chromosomes with Specific Codes.
A. Kimura, K. Matsubara, and M. Horikoshi (2005)
J. Biochem. 138, 647-662
   Abstract »    Full Text »    PDF »
NF-{kappa}B RelA Phosphorylation Regulates RelA Acetylation.
L.-F. Chen, S. A. Williams, Y. Mu, H. Nakano, J. M. Duerr, L. Buckbinder, and W. C. Greene (2005)
Mol. Cell. Biol. 25, 7966-7975
   Abstract »    Full Text »    PDF »
Regulation of NuA4 Histone Acetyltransferase Activity in Transcription and DNA Repair by Phosphorylation of Histone H4.
R. T. Utley, N. Lacoste, O. Jobin-Robitaille, S. Allard, and J. Cote (2005)
Mol. Cell. Biol. 25, 8179-8190
   Abstract »    Full Text »    PDF »
Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications.
S. Huang, M. Litt, and G. Felsenfeld (2005)
Genes & Dev. 19, 1885-1893
   Abstract »    Full Text »    PDF »
ERK Activation Following Macrophage Fc{gamma}R Ligation Leads to Chromatin Modifications at the IL-10 Locus.
M. Lucas, X. Zhang, V. Prasanna, and D. M. Mosser (2005)
J. Immunol. 175, 469-477
   Abstract »    Full Text »    PDF »
Mot1-mediated control of transcription complex assembly and activity.
A. Dasgupta, S. A. Juedes, R. O. Sprouse, and D. T. Auble (2005)
EMBO J. 24, 1717-1729
   Abstract »    Full Text »    PDF »
Evidence That Spt10 and Spt21 of Saccharomyces cerevisiae Play Distinct Roles in Vivo and Functionally Interact With MCB-Binding Factor, SCB-Binding Factor and Snf1.
D. Hess and F. Winston (2005)
Genetics 170, 87-94
   Abstract »    Full Text »    PDF »
Inducible Covalent Posttranslational Modification of Histone H3.
A. M. Bode and Z. Dong (2005)
Sci. STKE 2005, re4
   Abstract »    Full Text »    PDF »
The Snf1 Protein Kinase and Sit4 Protein Phosphatase Have Opposing Functions in Regulating TATA-Binding Protein Association With the Saccharomyces cerevisiae INO1 Promoter.
M. K. Shirra, S. E. Rogers, D. E. Alexander, and K. M. Arndt (2005)
Genetics 169, 1957-1972
   Abstract »    Full Text »    PDF »
Combined Global Localization Analysis and Transcriptome Data Identify Genes That Are Directly Coregulated by Adr1 and Cat8.
C. Tachibana, J. Y. Yoo, J.-B. Tagne, N. Kacherovsky, T. I. Lee, and E. T. Young (2005)
Mol. Cell. Biol. 25, 2138-2146
   Abstract »    Full Text »    PDF »
Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms.
W.-S. Lo, E. R. Gamache, K. W. Henry, D. Yang, L. Pillus, and S. L. Berger (2005)
EMBO J. 24, 997-1008
   Abstract »    Full Text »    PDF »
Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins.
D. Chen, M. Dundr, C. Wang, A. Leung, A. Lamond, T. Misteli, and S. Huang (2005)
J. Cell Biol. 168, 41-54
   Abstract »    Full Text »    PDF »
Sequential Histone Modifications at Hoxd4 Regulatory Regions Distinguish Anterior from Posterior Embryonic Compartments.
M. Rastegar, L. Kobrossy, E. N. Kovacs, I. Rambaldi, and M. Featherstone (2004)
Mol. Cell. Biol. 24, 8090-8103
   Abstract »    Full Text »    PDF »
Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo.
H. Aihara, T. Nakagawa, K. Yasui, T. Ohta, S. Hirose, N. Dhomae, K. Takio, M. Kaneko, Y. Takeshima, M. Muramatsu, et al. (2004)
Genes & Dev. 18, 877-888
   Abstract »    Full Text »    PDF »
The Protein Kinase Snf1 Is Required for Tolerance to the Ribonucleotide Reductase Inhibitor Hydroxyurea.
C. Dubacq, A. Chevalier, and C. Mann (2004)
Mol. Cell. Biol. 24, 2560-2572
   Abstract »    Full Text »    PDF »
Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism.
K. A. Borkovich, L. A. Alex, O. Yarden, M. Freitag, G. E. Turner, N. D. Read, S. Seiler, D. Bell-Pedersen, J. Paietta, N. Plesofsky, et al. (2004)
Microbiol. Mol. Biol. Rev. 68, 1-108
   Abstract »    Full Text »    PDF »
Roles of SWI/SNF and HATs throughout the dynamic transcription of a yeast glucose-repressible gene.
F. Geng and B. C. Laurent (2004)
EMBO J. 23, 127-137
   Abstract »    Full Text »    PDF »
Saccharomyces cerevisiae JEN1 Promoter Activity Is Inversely Related to Concentration of Repressing Sugar.
P. Chambers, A. Issaka, and S. P. Palecek (2004)
Appl. Envir. Microbiol. 70, 8-17
   Abstract »    Full Text »    PDF »
Histone H3 Amino-Terminal Tail Phosphorylation and Acetylation: Synergistic or Independent Transcriptional Regulatory Marks?.
C.J. FRY, M.A. SHOGREN-KNAAK, and C.L. PETERSON (2004)
Cold Spring Harb Symp Quant Biol 69, 219-226
   Abstract »    PDF »
Histone H2B Ubiquitylation and Deubiquitylation in Genomic Regulation.
N.C.T. EMRE and S.L. BERGER (2004)
Cold Spring Harb Symp Quant Biol 69, 289-300
   Abstract »    PDF »
Functional Diversity of Protein Phosphatase-1, a Cellular Economizer and Reset Button.
H. CEULEMANS and M. BOLLEN (2004)
Physiol Rev 84, 1-39
   Abstract »    Full Text »    PDF »
Global Control of Histone Modification by the Anaphase-Promoting Complex.
V. Ramaswamy, J. S. Williams, K. M. Robinson, R. L. Sopko, and M. C. Schultz (2003)
Mol. Cell. Biol. 23, 9136-9149
   Abstract »    Full Text »    PDF »
Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons.
C. Crosio, E. Heitz, C. D. Allis, E. Borrelli, and P. Sassone-Corsi (2003)
J. Cell Sci. 116, 4905-4914
   Abstract »    Full Text »    PDF »
Phosphorylation of serine 10 in histone H3, what for?.
C. Prigent and S. Dimitrov (2003)
J. Cell Sci. 116, 3677-3685
   Abstract »    Full Text »    PDF »
Longevity Regulation in Saccharomyces cerevisiae: Linking Metabolism, Genome Stability, and Heterochromatin.
K. J. Bitterman, O. Medvedik, and D. A. Sinclair (2003)
Microbiol. Mol. Biol. Rev. 67, 376-399
   Abstract »    Full Text »    PDF »
Gts1p Activates SNF1-dependent Derepression of HSP104 and TPS1 in the Stationary Phase of Yeast Growth.
S.-i. Yaguchi and K. Tsurugi (2003)
J. Biol. Chem. 278, 29760-29768
   Abstract »    Full Text »    PDF »
Reactivation of the silenced and imprinted alleles of ARHI is associated with increased histone H3 acetylation and decreased histone H3 lysine 9 methylation.
S. Fujii, R. Z. Luo, J. Yuan, M. Kadota, M. Oshimura, S. R. Dent, Y. Kondo, J.-P. J. Issa, R. C. Bast Jr, and Y. Yu (2003)
Hum. Mol. Genet. 12, 1791-1800
   Abstract »    Full Text »    PDF »
AMP-activated Protein Kinase Regulates HNF4{alpha} Transcriptional Activity by Inhibiting Dimer Formation and Decreasing Protein Stability.
Y. H. Hong, U. S. Varanasi, W. Yang, and T. Leff (2003)
J. Biol. Chem. 278, 27495-27501
   Abstract »    Full Text »    PDF »
Multiple Pathways Are Co-regulated by the Protein Kinase Snf1 and the Transcription Factors Adr1 and Cat8.
E. T. Young, K. M. Dombek, C. Tachibana, and T. Ideker (2003)
J. Biol. Chem. 278, 26146-26158
   Abstract »    Full Text »    PDF »
An epigenetic road map for histone lysine methylation.
M. Lachner, R. J. O'Sullivan, and T. Jenuwein (2003)
J. Cell Sci. 116, 2117-2124
   Full Text »    PDF »
MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14.
A. Soloaga, S. Thomson, G. R. Wiggin, N. Rampersaud, M. H. Dyson, C. A. Hazzalin, L. C. Mahadevan, and J. S. C. Arthur (2003)
EMBO J. 22, 2788-2797
   Abstract »    Full Text »    PDF »
BIR-1, a Caenorhabditis elegans homologue of Survivin, regulates transcription and development.
M. Kostrouchova, Z. Kostrouch, V. Saudek, J. Piatigorsky, and J. E. Rall (2003)
PNAS 100, 5240-5245
   Abstract »    Full Text »    PDF »
Sip2, an N-Myristoylated beta Subunit of Snf1 Kinase, Regulates Aging in Saccharomyces cerevisiae by Affecting Cellular Histone Kinase Activity, Recombination at rDNA Loci, and Silencing.
S. S. Lin, J. K. Manchester, and J. I. Gordon (2003)
J. Biol. Chem. 278, 13390-13397
   Abstract »    Full Text »    PDF »
Exercise Increases Nuclear AMPK {alpha}2 in Human Skeletal Muscle.
S. L. McGee, K. F. Howlett, R. L. Starkie, D. Cameron-Smith, B. E. Kemp, and M. Hargreaves (2003)
Diabetes 52, 926-928
   Abstract »    Full Text »    PDF »
The Set2 Histone Methyltransferase Functions through the Phosphorylated Carboxyl-terminal Domain of RNA Polymerase II.
B. Li, L. Howe, S. Anderson, J. R. Yates III, and J. L. Workman (2003)
J. Biol. Chem. 278, 8897-8903
   Abstract »    Full Text »    PDF »
Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise.
M. Yu, N. K Stepto, A. V Chibalin, L. G D Fryer, D. Carling, A. Krook, J. A Hawley, and J. R Zierath (2003)
J. Physiol. 546, 327-335
   Abstract »    Full Text »    PDF »
Phosphorylation of histone H3 during transcriptional activation depends on promoter structure.
M. Labrador and V. G. Corces (2003)
Genes & Dev. 17, 43-48
   Abstract »    Full Text »    PDF »
Inhibitors of Histone Deacetylase and DNA Methyltransferase Synergistically Activate the Methylated Metallothionein I Promoter by Activating the Transcription Factor MTF-1 and Forming an Open Chromatin Structure.
K. Ghoshal, J. Datta, S. Majumder, S. Bai, X. Dong, M. Parthun, and S. T. Jacob (2002)
Mol. Cell. Biol. 22, 8302-8319
   Abstract »    Full Text »    PDF »
Activation of the Mouse Histone Deacetylase 1 Gene by Cooperative Histone Phosphorylation and Acetylation.
C. Hauser, B. Schuettengruber, S. Bartl, G. Lagger, and C. Seiser (2002)
Mol. Cell. Biol. 22, 7820-7830
   Abstract »    Full Text »    PDF »
Snf1 Protein Kinase Regulates Adr1 Binding to Chromatin but Not Transcription Activation.
E. T. Young, N. Kacherovsky, and K. Van Riper (2002)
J. Biol. Chem. 277, 38095-38103
   Abstract »    Full Text »    PDF »
Involvement of Histone Methylation and Phosphorylation in Regulation of Transcription by Thyroid Hormone Receptor.
J. Li, Q. Lin, H.-G. Yoon, Z.-Q. Huang, B. D. Strahl, C. D. Allis, and J. Wong (2002)
Mol. Cell. Biol. 22, 5688-5697
   Abstract »    Full Text »    PDF »
Site-specific Loss of Acetylation upon Phosphorylation of Histone H3.
D. G. Edmondson, J. K. Davie, J. Zhou, B. Mirnikjoo, K. Tatchell, and S. Y. R. Dent (2002)
J. Biol. Chem. 277, 29496-29502
   Abstract »    Full Text »    PDF »
Sugar Sensing and Signaling in Plants.
F. Rolland, B. Moore, and J. Sheen (2002)
PLANT CELL 14, S185-S205
   Full Text »    PDF »
Regulation of Histone Acetylation and Transcription by Nuclear Protein pp32, a Subunit of the INHAT Complex.
S.-b. Seo, T. Macfarlan, P. McNamara, R. Hong, Y. Mukai, S. Heo, and D. Chakravarti (2002)
J. Biol. Chem. 277, 14005-14010
   Abstract »    Full Text »    PDF »
Phosphorylation of histone H3 is functionally linked to retinoic acid receptor {beta} promoter activation.
B. Lefebvre, K. Ozato, and P. Lefebvre (2002)
EMBO Rep. 3, 335-340
   Abstract »    Full Text »    PDF »
Old dogs and new tricks: Meeting on mechanisms of eukaryotic transcription.
E. Ejkova and W. P. Tansey (2002)
EMBO Rep. 3, 219-223
   Full Text »    PDF »
Histone acetylation: a switch between repressive and permissive chromatin: Second in review series on chromatin dynamics.
A. Eberharter and P. B. Becker (2002)
EMBO Rep. 3, 224-229
   Abstract »    Full Text »    PDF »
Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription.
A. Loyola, G. LeRoy, Y.-H. Wang, and D. Reinberg (2001)
Genes & Dev. 15, 2837-2851
   Abstract »    Full Text »    PDF »
Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails.
Y. Zhang and D. Reinberg (2001)
Genes & Dev. 15, 2343-2360
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882