Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 293 (5534): 1499-1503

Copyright © 2001 by the American Association for the Advancement of Science

Crystal Structure of Sensory Rhodopsin II at 2.4 Angstroms: Insights into Color Tuning and Transducer Interaction

Hartmut Luecke,12* Brigitte Schobert,2 Janos K. Lanyi,2* Elena N. Spudich,3 John L. Spudich3*

We report an atomic-resolution structure for a sensory member of the microbial rhodopsin family, the phototaxis receptor sensory rhodopsin II (NpSRII), which mediates blue-light avoidance by the haloarchaeon Natronobacterium pharaonis. The 2.4 angstrom structure reveals features responsible for the 70- to 80-nanometer blue shift of its absorption maximum relative to those of haloarchaeal transport rhodopsins, as well as structural differences due to its sensory, as opposed to transport, function. Multiple factors appear to account for the spectral tuning difference with respect to bacteriorhodopsin: (i) repositioning of the guanidinium group of arginine 72, a residue that interacts with the counterion to the retinylidene protonated Schiff base; (ii) rearrangement of the protein near the retinal ring; and (iii) changes in tilt and slant of the retinal polyene chain. Inspection of the surface topography reveals an exposed polar residue, tyrosine 199, not present in bacteriorhodopsin, in the middle of the membrane bilayer. We propose that this residue interacts with the adjacent helices of the cognate NpSRII transducer NpHtrII.

1 Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
2 Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
3 Department of Microbiology and Molecular Genetics and Structural Biology Center, University of Texas Medical School, Houston, TX 77030, USA.
*   To whom correspondence should be addressed. E-mail: hudel{at} (H.L.), jlanyi{at} (J.K.L.), or john.l.spudich{at} (J.L.S.).

High-speed atomic force microscopy.
T. Ando (2013)
Microscopy (Tokyo) 62, 81-93
   Abstract »    Full Text »    PDF »
A Photochromic Histidine Kinase Rhodopsin (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light.
M. Luck, T. Mathes, S. Bruun, R. Fudim, R. Hagedorn, T. M. Tran Nguyen, S. Kateriya, J. T. M. Kennis, P. Hildebrandt, and P. Hegemann (2012)
J. Biol. Chem. 287, 40083-40090
   Abstract »    Full Text »    PDF »
Opposite Displacement of Helix F in Attractant and Repellent Signaling by Sensory Rhodopsin-Htr Complexes.
J. Sasaki, A.-l. Tsai, and J. L. Spudich (2011)
J. Biol. Chem. 286, 18868-18877
   Abstract »    Full Text »    PDF »
Spectral Tuning in Sensory Rhodopsin I from Salinibacter ruber.
Y. Sudo, Y. Yuasa, J. Shibata, D. Suzuki, and M. Homma (2011)
J. Biol. Chem. 286, 11328-11336
   Abstract »    Full Text »    PDF »
A Microbial Rhodopsin with a Unique Retinal Composition Shows Both Sensory Rhodopsin II and Bacteriorhodopsin-like Properties.
Y. Sudo, K. Ihara, S. Kobayashi, D. Suzuki, H. Irieda, T. Kikukawa, H. Kandori, and M. Homma (2011)
J. Biol. Chem. 286, 5967-5976
   Abstract »    Full Text »    PDF »
Evolution of phototaxis.
G. Jekely (2009)
Phil Trans R Soc B 364, 2795-2808
   Abstract »    Full Text »    PDF »
Molecular Determinants Differentiating Photocurrent Properties of Two Channelrhodopsins from Chlamydomonas.
H. Wang, Y. Sugiyama, T. Hikima, E. Sugano, H. Tomita, T. Takahashi, T. Ishizuka, and H. Yawo (2009)
J. Biol. Chem. 284, 5685-5696
   Abstract »    Full Text »    PDF »
Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.
H. Luecke, B. Schobert, J. Stagno, E. S. Imasheva, J. M. Wang, S. P. Balashov, and J. K. Lanyi (2008)
PNAS 105, 16561-16565
   Abstract »    Full Text »    PDF »
T. Kitajima-Ihara, Y. Furutani, D. Suzuki, K. Ihara, H. Kandori, M. Homma, and Y. Sudo (2008)
J. Biol. Chem. 283, 23533-23541
   Abstract »    Full Text »    PDF »
Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy.
X. Jiang, E. Zaitseva, M. Schmidt, F. Siebert, M. Engelhard, R. Schlesinger, K. Ataka, R. Vogel, and J. Heberle (2008)
PNAS 105, 12113-12117
   Abstract »    Full Text »    PDF »
The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment.
L. D. Alcaraz, G. Olmedo, G. Bonilla, R. Cerritos, G. Hernandez, A. Cruz, E. Ramirez, C. Putonti, B. Jimenez, E. Martinez, et al. (2008)
PNAS 105, 5803-5808
   Abstract »    Full Text »    PDF »
Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo.
V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth (2007)
J. Neurosci. 27, 14231-14238
   Full Text »    PDF »
Early Photocycle Structural Changes in a Bacteriorhodopsin Mutant Engineered to Transmit Photosensory Signals.
Y. Sudo, Y. Furutani, J. L. Spudich, and H. Kandori (2007)
J. Biol. Chem. 282, 15550-15558
   Abstract »    Full Text »    PDF »
On Parallel and Antiparallel Topology of a Homodimeric Multidrug Transporter.
M. Soskine, S. Mark, N. Tayer, R. Mizrachi, and S. Schuldiner (2006)
J. Biol. Chem. 281, 36205-36212
   Abstract »    Full Text »    PDF »
Functional Importance of the Interhelical Hydrogen Bond between Thr204 and Tyr174 of Sensory Rhodopsin II and Its Alteration during the Signaling Process.
Y. Sudo, Y. Furutani, H. Kandori, and J. L. Spudich (2006)
J. Biol. Chem. 281, 34239-34245
   Abstract »    Full Text »    PDF »
Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor.
Y. Sudo and J. L. Spudich (2006)
PNAS 103, 16129-16134
   Abstract »    Full Text »    PDF »
Anabaena Sensory Rhodopsin: A Photochromic Color Sensor at 2.0 A.
L. Vogeley, O. A. Sineshchekov, V. D. Trivedi, J. Sasaki, J. L. Spudich, and H. Luecke (2004)
Science 306, 1390-1393
   Abstract »    Full Text »    PDF »
Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea.
N. S. Baliga, R. Bonneau, M. T. Facciotti, M. Pan, G. Glusman, E. W. Deutsch, P. Shannon, Y. Chiu, R. S. Weng, R. R. Gan, et al. (2004)
Genome Res. 14, 2221-2234
   Abstract »    Full Text »    PDF »
Five Residues in the HtrI Transducer Membrane-proximal Domain Close the Cytoplasmic Proton-conducting Channel of Sensory Rhodopsin I.
X. Chen and J. L. Spudich (2004)
J. Biol. Chem. 279, 42964-42969
   Abstract »    Full Text »    PDF »
The Cytoplasmic Membrane-proximal Domain of the HtrII Transducer Interacts with the E-F Loop of Photoactivated Natronomonas pharaonis Sensory Rhodopsin II.
C.-S. Yang, O. Sineshchekov, E. N. Spudich, and J. L. Spudich (2004)
J. Biol. Chem. 279, 42970-42976
   Abstract »    Full Text »    PDF »
Deformation of Helix C in the Low Temperature L-intermediate of Bacteriorhodopsin.
K. Edman, A. Royant, G. Larsson, F. Jacobson, T. Taylor, D. van der Spoel, E. M. Landau, E. Pebay-Peyroula, and R. Neutze (2004)
J. Biol. Chem. 279, 2147-2158
   Abstract »    Full Text »    PDF »
Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid-detergent matrices.
Y. Paas, J. Cartaud, M. Recouvreur, R. Grailhe, V. Dufresne, E. Pebay-Peyroula, E. M. Landau, and J.-P. Changeux (2003)
PNAS 100, 11309-11314
   Abstract »    Full Text »    PDF »
Conformational Changes Detected in a Sensory Rhodopsin II-Transducer Complex.
V. Bergo, E. N. Spudich, J. L. Spudich, and K. J. Rothschild (2003)
J. Biol. Chem. 278, 36556-36562
   Abstract »    Full Text »    PDF »
Membrane Topology of a Metabotropic Glutamate Receptor.
G. Bhave, B. M. Nadin, D. J. Brasier, K. S. Glauner, R. D. Shah, S. F. Heinemann, F. Karim, and R. W. Gereau IV (2003)
J. Biol. Chem. 278, 30294-30301
   Abstract »    Full Text »    PDF »
Importance of the Broad Regional Interaction for Spectral Tuning in Natronobacterium pharaonis Phoborhodopsin (Sensory Rhodopsin II).
K. Shimono, T. Hayashi, Y. Ikeura, Y. Sudo, M. Iwamoto, and N. Kamo (2003)
J. Biol. Chem. 278, 23882-23889
   Abstract »    Full Text »    PDF »
Is the olfactory receptor a metalloprotein?.
J. Wang, Z. A. Luthey-Schulten, and K. S. Suslick (2003)
PNAS 100, 3035-3039
   Abstract »    Full Text »    PDF »
Identification of Natural Ligands for the Orphan G Protein-coupled Receptors GPR7 and GPR8.
S. Brezillon, V. Lannoy, J.-D. Franssen, E. Le Poul, V. Dupriez, J. Lucchetti, M. Detheux, and M. Parmentier (2003)
J. Biol. Chem. 278, 776-783
   Abstract »    Full Text »    PDF »
Systems Approaches Applied to the Study of Saccharomyces cerevisiae and Halobacterium sp..
Cold Spring Harb Symp Quant Biol 68, 345-358
   Abstract »    PDF »
The molecular basis of the coloration mechanism in lobster shell: {beta}-Crustacyanin at 3.2-A resolution.
M. Cianci, P. J. Rizkallah, A. Olczak, J. Raftery, N. E. Chayen, P. F. Zagalsky, and J. R. Helliwell (2002)
PNAS 99, 9795-9800
   Abstract »    Full Text »    PDF »
Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii.
O. A. Sineshchekov, K.-H. Jung, and J. L. Spudich (2002)
PNAS 99, 8689-8694
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882