Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 293 (5535): 1670-1673

Copyright © 2001 by the American Association for the Advancement of Science

UDP-Glucose Dehydrogenase Required for Cardiac Valve Formation in Zebrafish

Emily C. Walsh, Didier Y. R. Stainier*

Cardiac valve formation is a complex process that involves cell signaling events between the myocardial and endocardial layers of the heart across an elaborate extracellular matrix. These signals lead to marked morphogenetic movements and transdifferentiation of the endocardial cells at chamber boundaries. Here we identify the genetic defect in zebrafish jekyll mutants, which are deficient in the initiation of heart valve formation. The jekyll mutation disrupts a homolog of Drosophila Sugarless, a uridine 5'-diphosphate (UDP)-glucose dehydrogenase required for heparan sulfate, chondroitin sulfate, and hyaluronic acid production. The atrioventricular border cells do not differentiate from their neighbors in jekyll mutants, suggesting that Jekyll is required in a cell signaling event that establishes a boundary between the atrium and ventricle.

Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, CA 94143-0448, USA.
*   To whom correspondence should be addressed. E-mail: didier_stainier{at}biochem.ucsf.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
UDP-glucose Dehydrogenase Activity and Optimal Downstream Cellular Function Require Dynamic Reorganization at the Dimer-Dimer Subunit Interfaces.
A. S. Hyde, A. M. Thelen, J. J. Barycki, and M. A. Simpson (2013)
J. Biol. Chem. 288, 35049-35057
   Abstract »    Full Text »    PDF »
Cardiotoxicity of Mycotoxin Citrinin and Involvement of MicroRNA-138 in Zebrafish Embryos.
T.-S. Wu, J.-J. Yang, F.-Y. Yu, and B.-H. Liu (2013)
Toxicol. Sci. 136, 402-412
   Abstract »    Full Text »    PDF »
miR-21 represses Pdcd4 during cardiac valvulogenesis.
H. J. Kolpa, D. S. Peal, S. N. Lynch, A. C. Giokas, S. Ghatak, S. Misra, R. A. Norris, C. A. MacRae, R. R. Markwald, P. Ellinor, et al. (2013)
Development 140, 2172-2180
   Abstract »    Full Text »    PDF »
Genetic interaction between pku300 and fbn2b controls endocardial cell proliferation and valve development in zebrafish.
X. Wang, Q. Yu, Q. Wu, Y. Bu, N.-N. Chang, S. Yan, X.-H. Zhou, X. Zhu, and J.-W. Xiong (2013)
J. Cell Sci. 126, 1381-1391
   Abstract »    Full Text »    PDF »
PRSS23 is essential for the Snail-dependent endothelial-to-mesenchymal transition during valvulogenesis in zebrafish.
I.-H. Chen, H.-H. Wang, Y.-S. Hsieh, W.-C. Huang, H.-I. Yeh, and Y.-J. Chuang (2013)
Cardiovasc Res 97, 443-453
   Abstract »    Full Text »    PDF »
Genetic Basis of Familial Valvular Heart Disease.
R. Padang, R. D. Bagnall, and C. Semsarian (2012)
Circ Cardiovasc Genet 5, 569-580
   Full Text »    PDF »
On the Roles and Regulation of Chondroitin Sulfate and Heparan Sulfate in Zebrafish Pharyngeal Cartilage Morphogenesis.
K. Holmborn, J. Habicher, Z. Kasza, A. S. Eriksson, B. Filipek-Gorniok, S. Gopal, J. R. Couchman, P. E. Ahlberg, M. Wiweger, D. Spillmann, et al. (2012)
J. Biol. Chem. 287, 33905-33916
   Abstract »    Full Text »    PDF »
UDP-glucose Dehydrogenase Polymorphisms from Patients with Congenital Heart Valve Defects Disrupt Enzyme Stability and Quaternary Assembly.
A. S. Hyde, E. L. Farmer, K. E. Easley, K. van Lammeren, V. M. Christoffels, J. J. Barycki, J. Bakkers, and M. A. Simpson (2012)
J. Biol. Chem. 287, 32708-32716
   Abstract »    Full Text »    PDF »
The W-Loop of Alpha-Cardiac Actin Is Critical for Heart Function and Endocardial Cushion Morphogenesis in Zebrafish.
N. O. Glenn, M. McKane, V. Kohli, K.-K. Wen, P. A. Rubenstein, T. Bartman, and S. Sumanas (2012)
Mol. Cell. Biol. 32, 3527-3540
   Abstract »    Full Text »    PDF »
Progesterone and AdipoQ Receptor 11 Links Ras Signaling to Cardiac Development in Zebrafish.
H. Huang, T. Jin, J. He, Q. Ding, D. Xu, L. Wang, Y. Zhang, Y. Pan, Z. Wang, and Y. Chen (2012)
Arterioscler Thromb Vasc Biol 32, 2158-2170
   Abstract »    Full Text »    PDF »
2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly.
E. L. Cadwalader, M. L. Condic, and H. J. Yost (2012)
Development 139, 1296-1305
   Abstract »    Full Text »    PDF »
Nephronectin regulates atrioventricular canal differentiation via Bmp4-Has2 signaling in zebrafish.
C. Patra, F. Diehl, F. Ferrazzi, M. J. van Amerongen, T. Novoyatleva, L. Schaefer, C. Muhlfeld, B. Jungblut, and F. B. Engel (2011)
Development 138, 4499-4509
   Abstract »    Full Text »    PDF »
Transmembrane protein 2 (Tmem2) is required to regionally restrict atrioventricular canal boundary and endocardial cushion development.
K. A. Smith, A. K. Lagendijk, A. D. Courtney, H. Chen, S. Paterson, B. M. Hogan, C. Wicking, and J. Bakkers (2011)
Development 138, 4193-4198
   Abstract »    Full Text »    PDF »
The novel transmembrane protein Tmem2 is essential for coordination of myocardial and endocardial morphogenesis.
R. Totong, T. Schell, F. Lescroart, L. Ryckebusch, Y.-F. Lin, T. Zygmunt, L. Herwig, A. Krudewig, D. Gershoony, H.-G. Belting, et al. (2011)
Development 138, 4199-4205
   Abstract »    Full Text »    PDF »
Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish.
J. D. Wythe, M. J. Jurynec, L. D. Urness, C. A. Jones, M. K. Sabeh, A. A. Werdich, M. Sato, H. J. Yost, D. J. Grunwald, C. A. MacRae, et al. (2011)
Dis. Model. Mech. 4, 607-621
   Abstract »    Full Text »    PDF »
Zebrafish as a model to study cardiac development and human cardiac disease.
J. Bakkers (2011)
Cardiovasc Res 91, 279-288
   Abstract »    Full Text »    PDF »
Divergent Sp1 Protein Levels May Underlie Differential Expression of UDP-Glucose Dehydrogenase by Fibroblasts: ROLE IN SUSCEPTIBILITY TO ORBITAL GRAVES DISEASE.
S. Tsui, R. Fernando, B. Chen, and T. J. Smith (2011)
J. Biol. Chem. 286, 24487-24499
   Abstract »    Full Text »    PDF »
Cardiac conduction is required to preserve cardiac chamber morphology.
N. C. Chi, M. Bussen, K. Brand-Arzamendi, C. Ding, J. E. Olgin, R. M. Shaw, G. R. Martin, and D. Y. R. Stainier (2010)
PNAS 107, 14662-14667
   Abstract »    Full Text »    PDF »
Heart Valve Development: Regulatory Networks in Development and Disease.
M. D. Combs and K. E. Yutzey (2009)
Circ. Res. 105, 408-421
   Abstract »    Full Text »    PDF »
Androgen-Stimulated UDP-Glucose Dehydrogenase Expression Limits Prostate Androgen Availability without Impacting Hyaluronan Levels.
Q. Wei, R. Galbenus, A. Raza, R. L. Cerny, and M. A. Simpson (2009)
Cancer Res. 69, 2332-2339
   Abstract »    Full Text »    PDF »
microRNA-138 modulates cardiac patterning during embryonic development.
S. U. Morton, P. J. Scherz, K. R. Cordes, K. N. Ivey, D. Y. R. Stainier, and D. Srivastava (2008)
PNAS 105, 17830-17835
   Abstract »    Full Text »    PDF »
Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development.
A. K. Townley, Y. Feng, K. Schmidt, D. A. Carter, R. Porter, P. Verkade, and D. J. Stephens (2008)
J. Cell Sci. 121, 3025-3034
   Abstract »    Full Text »    PDF »
2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposure Prevents Cardiac Valve Formation in Developing Zebrafish.
V. Mehta, R. E. Peterson, and W. Heideman (2008)
Toxicol. Sci. 104, 303-311
   Abstract »    Full Text »    PDF »
Foxn4 directly regulates tbx2b expression and atrioventricular canal formation.
N. C. Chi, R. M. Shaw, S. De Val, G. Kang, L. Y. Jan, B. L. Black, and D. Y.R. Stainier (2008)
Genes & Dev. 22, 734-739
   Abstract »    Full Text »    PDF »
High-speed imaging of developing heart valves reveals interplay of morphogenesis and function.
P. J. Scherz, J. Huisken, P. Sahai-Hernandez, and D. Y. R. Stainier (2008)
Development 135, 1179-1187
   Abstract »    Full Text »    PDF »
The protein tyrosine phosphatase Pez regulates TGF{beta}, epithelial mesenchymal transition, and organ development.
L. Wyatt, C. Wadham, L. A. Crocker, M. Lardelli, and Y. Khew-Goodall (2007)
J. Cell Biol. 178, 1223-1235
   Abstract »    Full Text »    PDF »
Valvulogenesis: the moving target.
J. T Butcher and R. R Markwald (2007)
Phil Trans R Soc B 362, 1489-1503
   Abstract »    Full Text »    PDF »
Cardiac Myosin Light Chain-2: A Novel Essential Component of Thick-Myofilament Assembly and Contractility of the Heart.
W. Rottbauer, G. Wessels, T. Dahme, S. Just, N. Trano, D. Hassel, C. G. Burns, H. A. Katus, and M. C. Fishman (2006)
Circ. Res. 99, 323-331
   Abstract »    Full Text »    PDF »
Molecular Cloning and Characterization of UDP-glucose Dehydrogenase from the Amphibian Xenopus laevis and Its Involvement in Hyaluronan Synthesis.
D. Vigetti, M. Ori, M. Viola, A. Genasetti, E. Karousou, M. Rizzi, F. Pallotti, I. Nardi, V. C. Hascall, G. De Luca, et al. (2006)
J. Biol. Chem. 281, 8254-8263
   Abstract »    Full Text »    PDF »
Notch1b and neuregulin are required for specification of central cardiac conduction tissue.
D. J. Milan, A. C. Giokas, F. C. Serluca, R. T. Peterson, and C. A. MacRae (2006)
Development 133, 1125-1132
   Abstract »    Full Text »    PDF »
Cellular and molecular analyses of vascular tube and lumen formation in zebrafish.
S.-W. Jin, D. Beis, T. Mitchell, J.-N. Chen, and D. Y. R. Stainier (2005)
Development 132, 5199-5209
   Abstract »    Full Text »    PDF »
Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development.
D. Beis, T. Bartman, S.-W. Jin, I. C. Scott, L. A. D'Amico, E. A. Ober, H. Verkade, J. Frantsve, H. A. Field, A. Wehman, et al. (2005)
Development 132, 4193-4204
   Abstract »    Full Text »    PDF »
Analysis of Human UDP-Glucose Dehydrogenase Gene Promoter: Identification of an Sp1 Binding Site Crucial for the Expression of the Large Transcript.
J. Vatsyayan, H.-L. Peng, and H.-Y. Chang (2005)
J. Biochem. 137, 703-709
   Abstract »    Full Text »    PDF »
Analysis of mouse embryonic patterning and morphogenesis by forward genetics.
M. J. Garcia-Garcia, J. T. Eggenschwiler, T. Caspary, H. L. Alcorn, M. R. Wyler, D. Huangfu, A. S. Rakeman, J. D. Lee, E. H. Feinberg, J. R. Timmer, et al. (2005)
PNAS 102, 5913-5919
   Abstract »    Full Text »    PDF »
Selective Activation of the MEK-ERK Pathway Is Regulated by Mechanical Stimuli in Forming Joints and Promotes Pericellular Matrix Formation.
E. R. Bastow, K. J. Lamb, J. C. Lewthwaite, A. C. Osborne, E. Kavanagh, C. P. D. Wheeler-Jones, and A. A. Pitsillides (2005)
J. Biol. Chem. 280, 11749-11758
   Abstract »    Full Text »    PDF »
Heart Valve Development: Endothelial Cell Signaling and Differentiation.
E. J. Armstrong and J. Bischoff (2004)
Circ. Res. 95, 459-470
   Abstract »    Full Text »    PDF »
Importance of Gly-13 for the Coenzyme Binding of Human UDP-glucose Dehydrogenase.
J.-W. Huh, H.-Y. Yoon, H.-J. Lee, W.-B. Choi, S.-J. Yang, and S.-W. Cho (2004)
J. Biol. Chem. 279, 37491-37498
   Abstract »    Full Text »    PDF »
Characterization of Human UDP-glucose Dehydrogenase: CYS-276 IS REQUIRED FOR THE SECOND OF TWO SUCCESSIVE OXIDATIONS.
B. J. Sommer, J. J. Barycki, and M. A. Simpson (2004)
J. Biol. Chem. 279, 23590-23596
   Abstract »    Full Text »    PDF »
In Vivo Hyaluronan Synthesis upon Expression of the Mammalian Hyaluronan Synthase Gene in Drosophila.
S. Takeo, M. Fujise, T. Akiyama, H. Habuchi, N. Itano, T. Matsuo, T. Aigaki, K. Kimata, and H. Nakato (2004)
J. Biol. Chem. 279, 18920-18925
   Abstract »    Full Text »    PDF »
The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish.
E. Busch-Nentwich, C. Sollner, H. Roehl, and T. Nicolson (2004)
Development 131, 943-951
   Abstract »    Full Text »    PDF »
Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation.
L. A. Timmerman, J. Grego-Bessa, A. Raya, E. Bertran, J. M. Perez-Pomares, J. Diez, S. Aranda, S. Palomo, F. McCormick, J. C. Izpisua-Belmonte, et al. (2004)
Genes & Dev. 18, 99-115
   Abstract »    Full Text »    PDF »
Na,K-ATPase is essential for embryonic heart development in the zebrafish.
X. Shu, K. Cheng, N. Patel, F. Chen, E. Joseph, H.-J. Tsai, and J.-N. Chen (2003)
Development 130, 6165-6173
   Abstract »    Full Text »    PDF »
Spatial and temporal expression of heparan sulfate in mouse development regulates FGF and FGF receptor assembly.
B. L. Allen and A. C. Rapraeger (2003)
J. Cell Biol. 163, 637-648
   Abstract »    Full Text »    PDF »
Identification of Genes That Regulate a Left-Right Asymmetric Neuronal Migration in Caenorhabditis elegans.
Q. Ch'ng, L. Williams, Y. S. Lie, M. Sym, J. Whangbo, and C. Kenyon (2003)
Genetics 164, 1355-1367
   Abstract »    Full Text »    PDF »
Specific Protein-1 Is a Universal Regulator of UDP-glucose Dehydrogenase Expression: ITS POSITIVE INVOLVEMENT IN TRANSFORMING GROWTH FACTOR-{beta} SIGNALING AND INHIBITION IN HYPOXIA.
Y. Bontemps, B. Vuillermoz, F. Antonicelli, C. Perreau, J.-L. Danan, F.-X. Maquart, and Y. Wegrowski (2003)
J. Biol. Chem. 278, 21566-21575
   Abstract »    Full Text »    PDF »
The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development.
H.-Y. Hwang and H. R. Horvitz (2002)
PNAS 99, 14218-14223
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated.
H.-Y. Hwang and H. R. Horvitz (2002)
PNAS 99, 14224-14229
   Abstract »    Full Text »    PDF »
Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions.
C. Liu, W. Liu, J. Palie, M. F. Lu, N. A. Brown, and J. F. Martin (2002)
Development 129, 5081-5091
   Abstract »    Full Text »    PDF »
The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.
D. M. Garrity, S. Childs, and M. C. Fishman (2002)
Development 129, 4635-4645
   Abstract »    Full Text »    PDF »
Endocardial Cushion Formation in Zebrafish.
D.Y.R. STAINIER, D. BEIS, B. JUNGBLUT, and T. BARTMAN (2002)
Cold Spring Harb Symp Quant Biol 67, 49-56
   Abstract »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882