Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 293 (5539): 2449-2452

Copyright © 2001 by the American Association for the Advancement of Science

Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted Mice

Marek Drab,12 Paul Verkade,1 Marlies Elger,3 Michael Kasper,4 Matthias Lohn,23 Birgit Lauterbach,23 Jan Menne,3 Carsten Lindschau,23 Fanny Mende,1 Friedrich C. Luft,2 Andreas Schedl,5 Hermann Haller,3 Teymuras V. Kurzchalia1*

Caveolae are plasma membrane invaginations that may play an important role in numerous cellular processes including transport, signaling, and tumor suppression. By targeted disruption of caveolin-1, the main protein component of caveolae, we generated mice that lacked caveolae. The absence of this organelle impaired nitric oxide and calcium signaling in the cardiovascular system, causing aberrations in endothelium-dependent relaxation, contractility, and maintenance of myogenic tone. In addition, the lungs of knockout animals displayed thickening of alveolar septa caused by uncontrolled endothelial cell proliferation and fibrosis, resulting in severe physical limitations in caveolin-1-disrupted mice. Thus, caveolin-1 and caveolae play a fundamental role in organizing multiple signaling pathways in the cell.

1 Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauer-Strasse 108, D-01307 Dresden, Germany.
2 Franz Volhard Clinic and Max-Delbrück-Center for Molecular Medicine, Humboldt University Berlin, Wiltberg-Strasse 50, D-13125 Berlin, Germany.
3 Hannover Medical School, Karl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
4 Institute of Anatomy, Technical University of Dresden, Fetscher-Strasse 74, D-01307 Dresden, Germany.
5 Max-Delbrück-Center for Molecular Medicine, Robert-Roessle-Strasse 10, D-13125 Berlin, Germany.
*   To whom correspondence should be addressed. E-mail: kurzchalia{at}

Endothelial Cell-Specific Liver Kinase B1 Deletion Causes Endothelial Dysfunction and Hypertension in Mice In Vivo.
W. Zhang, Q. Wang, Y. Wu, C. Moriasi, Z. Liu, X. Dai, Q. Wang, W. Liu, Z.-Y. Yuan, and M.-H. Zou (2014)
Circulation 129, 1428-1439
   Abstract »    Full Text »    PDF »
Ginsenoside Rb1 ameliorates lipopolysaccharide-induced albumin leakage from rat mesenteric venules by intervening in both trans- and paracellular pathway.
Y. Zhang, K. Sun, Y.-Y. Liu, Y.-P. Zhang, B.-H. Hu, X. Chang, L. Yan, C.-S. Pan, Q. Li, J.-Y. Fan, et al. (2014)
Am J Physiol Gastrointest Liver Physiol 306, G289-G300
   Abstract »    Full Text »    PDF »
Dissociation of Hyperglycemia from Altered Vascular Contraction and Relaxation Mechanisms in Caveolin-1 Null Mice.
L. H. Pojoga, T. M. Yao, L. A. Opsasnick, A. E. Garza, O. M. Reslan, G. K. Adler, G. H. Williams, and R. A. Khalil (2014)
J. Pharmacol. Exp. Ther. 348, 260-270
   Abstract »    Full Text »    PDF »
Pathogenesis of pulmonary hypertension: a case for caveolin-1 and cell membrane integrity.
R. Mathew (2014)
Am J Physiol Heart Circ Physiol 306, H15-H25
   Abstract »    Full Text »    PDF »
Caveolin-1 Facilitates the Direct Coupling between Large Conductance Ca2+-activated K+ (BKCa) and Cav1.2 Ca2+ Channels and Their Clustering to Regulate Membrane Excitability in Vascular Myocytes.
Y. Suzuki, H. Yamamura, S. Ohya, and Y. Imaizumi (2013)
J. Biol. Chem. 288, 36750-36761
   Abstract »    Full Text »    PDF »
Oxidative stress augments pulmonary hypertension in chronically hypoxic mice overexpressing the oxidized LDL receptor.
S. Ogura, T. Shimosawa, S. Mu, T. Sonobe, F. Kawakami-Mori, H. Wang, Y. Uetake, K. Yoshida, Y. Yatomi, M. Shirai, et al. (2013)
Am J Physiol Heart Circ Physiol 305, H155-H162
   Abstract »    Full Text »    PDF »
Flow detection and calcium signalling in vascular endothelial cells.
J. Ando and K. Yamamoto (2013)
Cardiovasc Res 99, 260-268
   Abstract »    Full Text »    PDF »
AMP-dependent Kinase Inhibits Oxidative Stress-induced Caveolin-1 Phosphorylation and Endocytosis by Suppressing the Dissociation between c-Abl and Prdx1 Proteins in Endothelial Cells.
K. Takeuchi, Y. Morizane, C. Kamami-Levy, J. Suzuki, M. Kayama, W. Cai, J. W. Miller, and D. G. Vavvas (2013)
J. Biol. Chem. 288, 20581-20591
   Abstract »    Full Text »    PDF »
Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF.
K. Sward, M. K. Sadegh, M. Mori, J. S. Erjefalt, and C. Rippe (2013)
PHY2 1, e00008
   Abstract »    Full Text »    PDF »
A potential role for caveolin-1 in VEGF-induced fibronectin upregulation in mesangial cells: involvement of VEGFR2 and Src.
T. Wu, B. Zhang, F. Ye, and Z. Xiao (2013)
Am J Physiol Renal Physiol 304, F820-F830
   Abstract »    Full Text »    PDF »
Deletion of integrin linked kinase in endothelial cells results in defective RTK signaling caused by caveolin 1 mislocalization.
D. Malan, A. Elischer, M. Hesse, S. A. Wickstrom, B. K. Fleischmann, and W. Bloch (2013)
Development 140, 987-995
   Abstract »    Full Text »    PDF »
Cavin-3 dictates the balance between ERK and Akt signaling.
V. J. Hernandez, J. Weng, P. Ly, S. Pompey, H. Dong, L. Mishra, M. Schwarz, R. G. Anderson, and P. Michaely (2013)
eLife Sci 2, e00905
   Abstract »    Full Text »    PDF »
Caveolae internalization repairs wounded cells and muscle fibers.
M. Corrotte, P. E. Almeida, C. Tam, T. Castro-Gomes, M. C. Fernandes, B. A. Millis, M. Cortez, H. Miller, W. Song, T. K. Maugel, et al. (2013)
eLife Sci 2, e00926
   Abstract »    Full Text »    PDF »
Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells.
B. S. J. Davies, C. N. Goulbourne, R. H. Barnes II, K. A. Turlo, P. Gin, S. Vaughan, D. J. Vaux, A. Bensadoun, A. P. Beigneux, L. G. Fong, et al. (2012)
J. Lipid Res. 53, 2690-2697
   Abstract »    Full Text »    PDF »
CAVIN-3 regulates circadian period length and PER:CRY protein abundance and interactions.
K. Schneider, T. Kocher, T. Andersin, T. Kurzchalia, U. Schibler, and D. Gatfield (2012)
EMBO Rep. 13, 1138-1144
   Abstract »    Full Text »    PDF »
RhoA localization with caveolin-1 regulates vascular contractions to serotonin.
D. W. Nuno, S. K. England, and K. G. Lamping (2012)
Am J Physiol Regulatory Integrative Comp Physiol 303, R959-R967
   Abstract »    Full Text »    PDF »
Caveolin-1 knockout mice exhibit airway hyperreactivity.
B. Aravamudan, S. K. VanOosten, L. W. Meuchel, P. Vohra, M. Thompson, G. C. Sieck, Y. S. Prakash, and C. M. Pabelick (2012)
Am J Physiol Lung Cell Mol Physiol 303, L669-L681
   Abstract »    Full Text »    PDF »
Apolipoprotein E Enhances Endothelial-NO Production by Modulating Caveolin 1 Interaction With Endothelial NO Synthase * Novelty and Significance.
L. Yue, J.-T. Bian, I. Grizelj, A. Cavka, S. A. Phillips, A. Makino, and T. Mazzone (2012)
Hypertension 60, 1040-1046
   Abstract »    Full Text »    PDF »
Compartmentalizing Proximal FGFR1 Signaling in Ovine Placental Artery Endothelial Cell Caveolae.
L. Feng, H.-h. Zhang, W. Wang, J. Zheng, and D.-b. Chen (2012)
Biol Reprod 87, 40
   Abstract »    Full Text »    PDF »
Evidence for the Nitric Oxide Pathway as a Potential Mode of Action in Fenoldopam-induced Vascular Injury.
D. A. Brott, R. J. Richardson, and C. S. Louden (2012)
Toxicol Pathol 40, 874-886
   Abstract »    Full Text »    PDF »
Chronic hypoxia induces right heart failure in caveolin-1-/- mice.
J. A. Cruz, E. M. Bauer, A. I. Rodriguez, A. Gangopadhyay, N. S. Zeineh, Y. Wang, S. Shiva, H. C. Champion, and P. M. Bauer (2012)
Am J Physiol Heart Circ Physiol 302, H2518-H2527
   Abstract »    Full Text »    PDF »
Interaction with Caveolin-1 Modulates G Protein Coupling of Mouse {beta}3-Adrenoceptor.
M. Sato, D. S. Hutchinson, M. L. Halls, S. G. B. Furness, T. Bengtsson, B. A. Evans, and R. J. Summers (2012)
J. Biol. Chem. 287, 20674-20688
   Abstract »    Full Text »    PDF »
Whole Exome Sequencing to Identify a Novel Gene (Caveolin-1) Associated With Human Pulmonary Arterial Hypertension.
E. D. Austin, L. Ma, C. LeDuc, E. Berman Rosenzweig, A. Borczuk, J. A. Phillips III, T. Palomero, P. Sumazin, H. R. Kim, M. H. Talati, et al. (2012)
Circ Cardiovasc Genet 5, 336-343
   Abstract »    Full Text »    PDF »
Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin.
M. Stoeber, I. K. Stoeck, C. Hanni, C. K. E. Bleck, G. Balistreri, and A. Helenius (2012)
EMBO J. 31, 2350-2364
   Abstract »    Full Text »    PDF »
Loss of Caveolin-1 Impairs Retinal Function Due to Disturbance of Subretinal Microenvironment.
X. Li, M. E. McClellan, M. Tanito, P. Garteiser, R. Towner, D. Bissig, B. A. Berkowitz, S. J. Fliesler, M. L. Woodruff, G. L. Fain, et al. (2012)
J. Biol. Chem. 287, 16424-16434
   Abstract »    Full Text »    PDF »
A Membrane Microdomain-Associated Protein, Arabidopsis Flot1, Is Involved in a Clathrin-Independent Endocytic Pathway and Is Required for Seedling Development.
R. Li, P. Liu, Y. Wan, T. Chen, Q. Wang, U. Mettbach, F. Baluska, J. Samaj, X. Fang, W. J. Lucas, et al. (2012)
PLANT CELL 24, 2105-2122
   Abstract »    Full Text »    PDF »
Molecular assembly and dynamics of fluorescent protein-tagged single KCa1.1 channel in expression system and vascular smooth muscle cells.
H. Yamamura, C. Ikeda, Y. Suzuki, S. Ohya, and Y. Imaizumi (2012)
Am J Physiol Cell Physiol 302, C1257-C1268
   Abstract »    Full Text »    PDF »
Nitric oxide synthases: regulation and function.
U. Forstermann and W. C. Sessa (2012)
Eur. Heart J. 33, 829-837
   Abstract »    Full Text »    PDF »
Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition.
Z. Chen, F. R. Bakhshi, A. N. Shajahan, T. Sharma, M. Mao, A. Trane, P. Bernatchez, G. P. van Nieuw Amerongen, M. G. Bonini, R. A. Skidgel, et al. (2012)
Mol. Biol. Cell 23, 1388-1398
   Abstract »    Full Text »    PDF »
Activated CD47 promotes pulmonary arterial hypertension through targeting caveolin-1.
P. M. Bauer, E. M. Bauer, N. M. Rogers, M. Yao, M. Feijoo-Cuaresma, J. M. Pilewski, H. C. Champion, B. S. Zuckerbraun, M. J. Calzada, and J. S. Isenberg (2012)
Cardiovasc Res 93, 682-693
   Abstract »    Full Text »    PDF »
Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content.
D. I. Mundy, W. P. Li, K. Luby-Phelps, and R. G. W. Anderson (2012)
Mol. Biol. Cell 23, 864-880
   Abstract »    Full Text »    PDF »
Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells.
J. Grosse, M. Wehland, J. Pietsch, X. Ma, C. Ulbrich, H. Schulz, K. Saar, N. Hubner, J. Hauslage, R. Hemmersbach, et al. (2012)
FASEB J 26, 639-655
   Abstract »    Full Text »    PDF »
Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in non-small-cell lung cancer cells.
B. Salani, S. Maffioli, M. Hamoudane, A. Parodi, S. Ravera, M. Passalacqua, A. Alama, M. Nhiri, R. Cordera, and D. Maggi (2012)
FASEB J 26, 788-798
   Abstract »    Full Text »    PDF »
Endocytosis and Signaling: Cell Logistics Shape the Eukaryotic Cell Plan.
S. Sigismund, S. Confalonieri, A. Ciliberto, S. Polo, G. Scita, and P. P. Di Fiore (2012)
Physiol Rev 92, 273-366
   Abstract »    Full Text »    PDF »
Regulation of endothelial connexin40 expression by shear stress.
B. J. Vorderwulbecke, J. Maroski, K. Fiedorowicz, L. Da Silva-Azevedo, A. Marki, A. R. Pries, and A. Zakrzewicz (2012)
Am J Physiol Heart Circ Physiol 302, H143-H152
   Abstract »    Full Text »    PDF »
Caveolin-1 opens endothelial cell junctions by targeting catenins.
R. Kronstein, J. Seebach, S. Grossklaus, C. Minten, B. Engelhardt, M. Drab, S. Liebner, Y. Arsenijevic, A. A. Taha, T. Afanasieva, et al. (2012)
Cardiovasc Res 93, 130-140
   Abstract »    Full Text »    PDF »
Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway.
W. Chen, B. Gassner, S. Borner, V. O. Nikolaev, N. Schlegel, J. Waschke, N. Steinbronn, R. Strasser, and M. Kuhn (2012)
Cardiovasc Res 93, 141-151
   Abstract »    Full Text »    PDF »
Role of caveolin-1 in endothelial BKCa channel regulation of vasoreactivity.
M. A. Riddle, J. M. Hughes, and B. R. Walker (2011)
Am J Physiol Cell Physiol 301, C1404-C1414
   Abstract »    Full Text »    PDF »
Caveolin-1 deficiency decreases atherosclerosis by hampering leukocyte influx into the arterial wall and generating a regulatory T-cell response.
D. Engel, L. Beckers, E. Wijnands, T. Seijkens, D. Lievens, M. Drechsler, N. Gerdes, O. Soehnlein, M. J. A. P. Daemen, R. V. Stan, et al. (2011)
FASEB J 25, 3838-3848
   Abstract »    Full Text »    PDF »
Caveolin-2 is a negative regulator of anti-proliferative function and signaling of transforming growth factor-{beta} in endothelial cells.
L. Xie, C. Vo-Ransdell, B. Abel, C. Willoughby, S. Jang, and G. Sowa (2011)
Am J Physiol Cell Physiol 301, C1161-C1174
   Abstract »    Full Text »    PDF »
Reducing Plasma Membrane Sphingomyelin Increases Insulin Sensitivity.
Z. Li, H. Zhang, J. Liu, C.-P. Liang, Y. Li, Y. Li, G. Teitelman, T. Beyer, H. H. Bui, D. A. Peake, et al. (2011)
Mol. Cell. Biol. 31, 4205-4218
   Abstract »    Full Text »    PDF »
Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis.
A. M. Astudillo, G. Perez-Chacon, C. Meana, D. Balgoma, A. Pol, M. A. del Pozo, M. A. Balboa, and J. Balsinde (2011)
J. Biol. Chem. 286, 35299-35307
   Abstract »    Full Text »    PDF »
Shear stress increases endothelial hyaluronan synthase 2 and hyaluronan synthesis especially in regard to an atheroprotective flow profile.
J. Maroski, B. J. Vorderwulbecke, K. Fiedorowicz, L. Da Silva-Azevedo, G. Siegel, A. Marki, A. R. Pries, and A. Zakrzewicz (2011)
Exp Physiol 96, 977-986
   Abstract »    Full Text »    PDF »
Caveolin-1 Upregulation Mediates Suppression of Primary Breast Tumor Growth and Brain Metastases by Stat3 Inhibition.
W.-T. Chiu, H.-T. Lee, F.-J. Huang, K. D. Aldape, J. Yao, P. S. Steeg, C.-Y. Chou, Z. Lu, K. Xie, and S. Huang (2011)
Cancer Res. 71, 4932-4943
   Abstract »    Full Text »    PDF »
Elevated Inflammatory Response in Caveolin-1-deficient Mice with Pseudomonas aeruginosa Infection Is Mediated by STAT3 Protein and Nuclear Factor {kappa}B (NF-{kappa}B).
K. Yuan, C. Huang, J. Fox, M. Gaid, A. Weaver, G. Li, B. B. Singh, H. Gao, and M. Wu (2011)
J. Biol. Chem. 286, 21814-21825
   Abstract »    Full Text »    PDF »
Caveolin-1 and force regulation in porcine airway smooth muscle.
V. Sathish, B. Yang, L. W. Meuchel, S. K. VanOosten, A. J. Ryu, M. A. Thompson, Y. S. Prakash, and C. M. Pabelick (2011)
Am J Physiol Lung Cell Mol Physiol 300, L920-L929
   Abstract »    Full Text »    PDF »
Role of Endosomes in Simian Virus 40 Entry and Infection.
S. Engel, T. Heger, R. Mancini, F. Herzog, J. Kartenbeck, A. Hayer, and A. Helenius (2011)
J. Virol. 85, 4198-4211
   Abstract »    Full Text »    PDF »
Involvement of Caveolin in Probucol-Induced Reduction in hERG Plasma-Membrane Expression.
J. Guo, X. Li, H. Shallow, J. Xu, T. Yang, H. Massaeli, W. Li, T. Sun, G. N. Pierce, and S. Zhang (2011)
Mol. Pharmacol. 79, 806-813
   Abstract »    Full Text »    PDF »
Inhibition of renal caveolin-1 reduces natriuresis and produces hypertension in sodium-loaded rats.
J. J. Gildea, B. A. Kemp, N. L. Howell, R. E. Van Sciver, R. M. Carey, and R. A. Felder (2011)
Am J Physiol Renal Physiol 300, F914-F920
   Abstract »    Full Text »    PDF »
Endogenous adipocyte apolipoprotein E is colocalized with caveolin at the adipocyte plasma membrane.
L. Yue and T. Mazzone (2011)
J. Lipid Res. 52, 489-498
   Abstract »    Full Text »    PDF »
Polymerase I and Transcript Release Factor Regulates Lipolysis via a Phosphorylation-Dependent Mechanism.
N. Aboulaich, P. C. Chui, J. M. Asara, J. S. Flier, and E. Maratos-Flier (2011)
Diabetes 60, 757-765
   Abstract »    Full Text »    PDF »
Caveolin-1 Assembles Type 1 Inositol 1,4,5-Trisphosphate Receptors and Canonical Transient Receptor Potential 3 Channels into a Functional Signaling Complex in Arterial Smooth Muscle Cells.
A. Adebiyi, D. Narayanan, and J. H. Jaggar (2011)
J. Biol. Chem. 286, 4341-4348
   Abstract »    Full Text »    PDF »
Distinct Roles of Endothelial and Adipocyte Caveolin-1 in Macrophage Infiltration and Adipose Tissue Metabolic Activity.
N. Briand, S. Le Lay, W. C. Sessa, P. Ferre, and I. Dugail (2011)
Diabetes 60, 448-453
   Abstract »    Full Text »    PDF »
The effects of a high-fat, high-cholesterol diet on markers of uterine contractility during parturition in the rat.
M. J. Elmes, D. S.-Y. Tan, Z. Cheng, D. C. Wathes, and S. McMullen (2011)
Reproduction 141, 283-290
   Abstract »    Full Text »    PDF »
Caveolin-1: a critical regulator of lung injury.
Y. Jin, S.-J. Lee, R. D. Minshall, and A. M. K. Choi (2011)
Am J Physiol Lung Cell Mol Physiol 300, L151-L160
   Abstract »    Full Text »    PDF »
Caveolin-1 is required for vascular endothelial insulin uptake.
H. Wang, A. X. Wang, and E. J. Barrett (2011)
Am J Physiol Endocrinol Metab 300, E134-E144
   Abstract »    Full Text »    PDF »
Caveolin limits membrane microdomain mobility and integrin-mediated uptake of fibronectin-binding pathogens.
C. Hoffmann, A. Berking, F. Agerer, A. Buntru, F. Neske, G. S. Chhatwal, K. Ohlsen, and C. R. Hauck (2010)
J. Cell Sci. 123, 4280-4291
   Abstract »    Full Text »    PDF »
Caveolin-1 knockout mice exhibit impaired induction of mGluR-dependent long-term depression at CA3-CA1 synapses.
Y. Takayasu, K. Takeuchi, R. Kumari, M. V. L. Bennett, R. S. Zukin, and A. Francesconi (2010)
PNAS 107, 21778-21783
   Abstract »    Full Text »    PDF »
Caveolae at a glance.
M. Bastiani and R. G. Parton (2010)
J. Cell Sci. 123, 3831-3836
   Full Text »    PDF »
High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness.
P. A. Singleton, T. Mirzapoiazova, Y. Guo, S. Sammani, N. Mambetsariev, F. E. Lennon, L. Moreno-Vinasco, and J. G. N. Garcia (2010)
Am J Physiol Lung Cell Mol Physiol 299, L639-L651
   Abstract »    Full Text »    PDF »
The Role of Proline in the Membrane Re-entrant Helix of Caveolin-1.
S. Aoki, A. Thomas, M. Decaffmeyer, R. Brasseur, and R. M. Epand (2010)
J. Biol. Chem. 285, 33371-33380
   Abstract »    Full Text »    PDF »
A. Davalos, C. Fernandez-Hernando, G. Sowa, B. Derakhshan, M. I. Lin, J. Y. Lee, H. Zhao, R. Luo, C. Colangelo, and W. C. Sessa (2010)
Mol. Cell. Proteomics 9, 2109-2124
   Abstract »    Full Text »    PDF »
Caveolin-1-ablated mice survive in cold by nonshivering thermogenesis despite desensitized adrenergic responsiveness.
C. L. Mattsson, R. I. Csikasz, I. G. Shabalina, J. Nedergaard, and B. Cannon (2010)
Am J Physiol Endocrinol Metab 299, E374-E383
   Abstract »    Full Text »    PDF »
Caveolin-1 Protects against Sepsis by Modulating Inflammatory Response, Alleviating Bacterial Burden, and Suppressing Thymocyte Apoptosis.
H. Feng, L. Guo, Z. Song, H. Gao, D. Wang, W. Fu, J. Han, Z. Li, B. Huang, and X.-A. Li (2010)
J. Biol. Chem. 285, 25154-25160
   Abstract »    Full Text »    PDF »
Sensitivity of NOS-dependent vascular relaxation pathway to mineralocorticoid receptor blockade in caveolin-1-deficient mice.
L. H. Pojoga, Z. Adamova, A. Kumar, A. K. Stennett, J. R. Romero, G. K. Adler, G. H. Williams, and R. A. Khalil (2010)
Am J Physiol Heart Circ Physiol 298, H1776-H1788
   Abstract »    Full Text »    PDF »
Co-regulation of Caveolar and Cdc42-dependent Fluid Phase Endocytosis by Phosphocaveolin-1.
Z. J. Cheng, R. D. Singh, E. L. Holicky, C. L. Wheatley, D. L. Marks, and R. E. Pagano (2010)
J. Biol. Chem. 285, 15119-15125
   Abstract »    Full Text »    PDF »
Stromal regulation of vessel stability by MMP14 and TGF{beta}.
N. E. Sounni, K. Dehne, L. van Kempen, M. Egeblad, N. I. Affara, I. Cuevas, J. Wiesen, S. Junankar, L. Korets, J. Lee, et al. (2010)
Dis. Model. Mech. 3, 317-332
   Abstract »    Full Text »    PDF »
Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation.
J. H. Chidlow Jr and W. C. Sessa (2010)
Cardiovasc Res 86, 219-225
   Abstract »    Full Text »    PDF »
Gene expression profiling of genetically determined growth variation in bivalve larvae (Crassostrea gigas).
E. Meyer and D. T. Manahan (2010)
J. Exp. Biol. 213, 749-758
   Abstract »    Full Text »    PDF »
Endothelial cells isolated from caveolin-2 knockout mice display higher proliferation rate and cell cycle progression relative to their wild-type counterparts.
L. Xie, P. G. Frank, M. P. Lisanti, and G. Sowa (2010)
Am J Physiol Cell Physiol 298, C693-C701
   Abstract »    Full Text »    PDF »
Caveolin-1 Modifies the Immunity to Pseudomonas aeruginosa.
M. Gadjeva, C. Paradis-Bleau, G. P. Priebe, R. Fichorova, and G. B. Pier (2010)
J. Immunol. 184, 296-302
   Abstract »    Full Text »    PDF »
Caveolin-1 and Lipid Microdomains Regulate Gs Trafficking and Attenuate Gs/Adenylyl Cyclase Signaling.
J. A. Allen, J. Z. Yu, R. H. Dave, A. Bhatnagar, B. L. Roth, and M. M. Rasenick (2009)
Mol. Pharmacol. 76, 1082-1093
   Abstract »    Full Text »    PDF »
Contributions of quantitative proteomics to understanding membrane microdomains.
Y. Z. Zheng and L. J. Foster (2009)
J. Lipid Res. 50, 1976-1985
   Abstract »    Full Text »    PDF »
Phosphorylation of Caveolin-1 Regulates Oxidant-Induced Pulmonary Vascular Permeability via Paracellular and Transcellular Pathways.
Y. Sun, G. Hu, X. Zhang, and R. D. Minshall (2009)
Circ. Res. 105, 676-685
   Abstract »    Full Text »    PDF »
The Absence of Caveolin-1 Increases Proliferation and Anchorage- Independent Growth by a Rac-Dependent, Erk-Independent Mechanism.
A. Cerezo, M. C. Guadamillas, J. G. Goetz, S. Sanchez-Perales, E. Klein, R. K. Assoian, and M. A. del Pozo (2009)
Mol. Cell. Biol. 29, 5046-5059
   Abstract »    Full Text »    PDF »
Caveolin-1-dependent and -independent membrane domains.
S. Le Lay, Q. Li, N. Proschogo, M. Rodriguez, K. Gunaratnam, S. Cartland, C. Rentero, W. Jessup, T. Mitchell, and K. Gaus (2009)
J. Lipid Res. 50, 1609-1620
   Abstract »    Full Text »    PDF »
Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa.
M. Bajmoczi, M. Gadjeva, S. L. Alper, G. B. Pier, and D. E. Golan (2009)
Am J Physiol Cell Physiol 297, C263-C277
   Abstract »    Full Text »    PDF »
Role of caveolin-1 in thyroid phenotype, cell homeostasis, and hormone synthesis: in vivo study of caveolin-1 knockout mice.
M. Senou, M. J. Costa, C. Massart, M. Thimmesch, C. Khalifa, S. Poncin, M. Boucquey, A.-C. Gerard, J.-N. Audinot, C. Dessy, et al. (2009)
Am J Physiol Endocrinol Metab 297, E438-E451
   Abstract »    Full Text »    PDF »
Unaltered size selectivity of the glomerular filtration barrier in caveolin-1 knockout mice.
G. Grande, C. Rippe, A. Rippe, A. Rahman, K. Sward, and B. Rippe (2009)
Am J Physiol Renal Physiol 297, F257-F262
   Abstract »    Full Text »    PDF »
Macrophage Sphingomyelin Synthase 2 Deficiency Decreases Atherosclerosis in Mice.
J. Liu, C. Huan, M. Chakraborty, H. Zhang, D. Lu, M.-S. Kuo, G. Cao, and X.-C. Jiang (2009)
Circ. Res. 105, 295-303
   Abstract »    Full Text »    PDF »
Vascular Caveolin Deficiency Supports the Angiogenic Effects of Nitrite, a Major End Product of Nitric Oxide Metabolism in Tumors.
F. Frerart, I. Lobysheva, B. Gallez, C. Dessy, and O. Feron (2009)
Mol. Cancer Res. 7, 1056-1063
   Abstract »    Full Text »    PDF »
MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes.
M. Bastiani, L. Liu, M. M. Hill, M. P. Jedrychowski, S. J. Nixon, H. P. Lo, D. Abankwa, R. Luetterforst, M. Fernandez-Rojo, M. R. Breen, et al. (2009)
J. Cell Biol. 185, 1259-1273
   Abstract »    Full Text »    PDF »
Molecular mechanisms of clathrin-independent endocytosis.
C. G. Hansen and B. J. Nichols (2009)
J. Cell Sci. 122, 1713-1721
   Abstract »    Full Text »    PDF »
Binding of IFITM1 enhances the inhibiting effect of caveolin-1 on ERK activation.
Y. Xu, G. Yang, and G. Hu (2009)
Acta Biochim Biophys Sin 41, 488-494
   Abstract »    Full Text »    PDF »
Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains.
S.-R. Ji, L. Ma, C.-J. Bai, J.-M. Shi, H.-Y. Li, L. A. Potempa, J. G. Filep, J. Zhao, and Y. Wu (2009)
FASEB J 23, 1806-1816
   Abstract »    Full Text »    PDF »
Akt-Mediated Transactivation of the S1P1 Receptor in Caveolin-Enriched Microdomains Regulates Endothelial Barrier Enhancement by Oxidized Phospholipids.
P. A. Singleton, S. Chatchavalvanich, P. Fu, J. Xing, A. A. Birukova, J. A. Fortune, A. M. Klibanov, J. G. N. Garcia, and K. G. Birukov (2009)
Circ. Res. 104, 978-986
   Abstract »    Full Text »    PDF »
eNOS Activation by Physical Forces: From Short-Term Regulation of Contraction to Chronic Remodeling of Cardiovascular Tissues.
J.-L. Balligand, O. Feron, and C. Dessy (2009)
Physiol Rev 89, 481-534
   Abstract »    Full Text »    PDF »
The Heme Oxygenase-1/Carbon Monoxide Pathway Suppresses TLR4 Signaling by Regulating the Interaction of TLR4 with Caveolin-1.
X. M. Wang, H. P. Kim, K. Nakahira, S. W. Ryter, and A. M. K. Choi (2009)
J. Immunol. 182, 3809-3818
   Abstract »    Full Text »    PDF »
Caveolin-2 Is Required for Apical Lipid Trafficking and Suppresses Basolateral Recycling Defects in the Intestine of Caenorhabditis elegans.
S. Parker, D. S. Walker, S. Ly, and H. A. Baylis (2009)
Mol. Biol. Cell 20, 1763-1771
   Abstract »    Full Text »    PDF »
Enhanced myogenic constriction of mesenteric artery in heart failure relates to decreased smooth muscle cell caveolae numbers and altered AT1- and epidermal growth factor-receptor function.
Y. Xu, R. H. Henning, M. Sandovici, J. J. van der Want, W. H. van Gilst, and H. Buikema (2009)
Eur J Heart Fail 11, 246-255
   Abstract »    Full Text »    PDF »
Dysfunctional Microvasculature as a Consequence of Shb Gene Inactivation Causes Impaired Tumor Growth.
N. S. Funa, V. Kriz, G. Zang, G. Calounova, B. Akerblom, J. Mares, E. Larsson, Y. Sun, C. Betsholtz, and M. Welsh (2009)
Cancer Res. 69, 2141-2148
   Abstract »    Full Text »    PDF »
Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity.
P. M. Haram, O. J. Kemi, S. J. Lee, M. O. Bendheim, Q. Y. Al-Share, H. L. Waldum, L. J. Gilligan, L. G. Koch, S. L. Britton, S. M. Najjar, et al. (2009)
Cardiovasc Res 81, 723-732
   Abstract »    Full Text »    PDF »
Cell Entry of Arginine-rich Peptides Is Independent of Endocytosis.
G. Ter-Avetisyan, G. Tunnemann, D. Nowak, M. Nitschke, A. Herrmann, M. Drab, and M. C. Cardoso (2009)
J. Biol. Chem. 284, 3370-3378
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882