Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 294 (5540): 154-158

Copyright © 2001 by the American Association for the Advancement of Science

Direct Interaction of Arabidopsis Cryptochromes with COP1 in Light Control Development

Haiyang Wang,1 Li-Geng Ma,12 Jin-Ming Li,3 Hong-Yu Zhao,3 Xing Wang Deng12*

Arabidopsis seedling photomorphogenesis involves two antagonistically acting components, COP1 and HY5. COP1 specifically targets HY5 for degradation via the 26S proteasome in the dark through their direct physical interaction. Little is known regarding how light signals perceived by photoreceptors are transduced to regulate COP1. Arabidopsis has two related cryptochromes (cry1 and cry2) mediating various blue/ultraviolet-A light responses. Here we show that both photoactivated cryptochromes repress COP1 activity through a direct protein-protein contact and that this direct regulation is primarily responsible for the cryptochrome-mediated blue light regulation of seedling photomorphogenic development and genome expression profile.

1 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
2 Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
3 Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, USA.
*   To whom correspondence should be addressed. E-mail: xingwang.deng{at}yale.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Nucleolus-tethering system (NoTS) reveals that assembly of photobodies follows a self-organization model.
Y. Liu, Q. Liu, Q. Yan, L. Shi, and Y. Fang (2014)
Mol. Biol. Cell 25, 1366-1373
   Abstract »    Full Text »    PDF »
Strigolactone-Regulated Hypocotyl Elongation Is Dependent on Cryptochrome and Phytochrome Signaling Pathways in Arabidopsis.
K.-P. Jia, Q. Luo, S.-B. He, X.-D. Lu, and H.-Q. Yang (2014)
Mol Plant 7, 528-540
   Abstract »    Full Text »    PDF »
The UV-B Photoreceptor UVR8: From Structure to Physiology.
G. I. Jenkins (2014)
PLANT CELL 26, 21-37
   Abstract »    Full Text »    PDF »
Arabidopsis Casein Kinase1 Proteins CK1.3 and CK1.4 Phosphorylate Cryptochrome2 to Regulate Blue Light Signaling.
S.-T. Tan, C. Dai, H.-T. Liu, and H.-W. Xue (2013)
PLANT CELL 25, 2618-2632
   Abstract »    Full Text »    PDF »
Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology.
X. Sun, E. H. A. Rikkerink, W. T. Jones, and V. N. Uversky (2013)
PLANT CELL 25, 38-55
   Abstract »    Full Text »    PDF »
Arabidopsis Phytochrome B Promotes SPA1 Nuclear Accumulation to Repress Photomorphogenesis under Far-Red Light.
X. Zheng, S. Wu, H. Zhai, P. Zhou, M. Song, L. Su, Y. Xi, Z. Li, Y. Cai, F. Meng, et al. (2013)
PLANT CELL 25, 115-133
   Abstract »    Full Text »    PDF »
Arabidopsis FHY3 and HY5 Positively Mediate Induction of COP1 Transcription in Response to Photomorphogenic UV-B Light.
X. Huang, X. Ouyang, P. Yang, O. S. Lau, G. Li, J. Li, H. Chen, and X. W. Deng (2012)
PLANT CELL 24, 4590-4606
   Abstract »    Full Text »    PDF »
The {gamma}-Carbonic Anhydrase Subcomplex of Mitochondrial Complex I Is Essential for Development and Important for Photomorphogenesis of Arabidopsis.
Q. Wang, R. Fristedt, X. Yu, Z. Chen, H. Liu, Y. Lee, H. Guo, S. S. Merchant, and C. Lin (2012)
Plant Physiology 160, 1373-1383
   Abstract »    Full Text »    PDF »
The CRYPTOCHROME1-Dependent Response to Excess Light Is Mediated through the Transcriptional Activators ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 and ZML2 in Arabidopsis.
J. Shaikhali, J. de Dios Barajas-Lopez, K. Otvos, D. Kremnev, A. S. Garcia, V. Srivastava, G. Wingsle, L. Bako, and A. Strand (2012)
PLANT CELL 24, 3009-3025
   Abstract »    Full Text »    PDF »
Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A.
G. Weidler, S. zur Oven-Krockhaus, M. Heunemann, C. Orth, F. Schleifenbaum, K. Harter, U. Hoecker, and A. Batschauer (2012)
PLANT CELL 24, 2610-2623
   Abstract »    Full Text »    PDF »
FKF1 Conveys Timing Information for CONSTANS Stabilization in Photoperiodic Flowering.
Y. H. Song, R. W. Smith, B. J. To, A. J. Millar, and T. Imaizumi (2012)
Science 336, 1045-1049
   Abstract »    Full Text »    PDF »
Shedding Light on Large-Scale Chromatin Reorganization in Arabidopsis thaliana.
M. van Zanten, F. Tessadori, A. J. M. Peeters, and P. Fransz (2012)
Mol Plant 5, 583-590
   Abstract »    Full Text »    PDF »
Light-Regulated Stomatal Aperture in Arabidopsis.
C. Chen, Y.-G. Xiao, X. Li, and M. Ni (2012)
Mol Plant 5, 566-572
   Abstract »    Full Text »    PDF »
A Short Amino-Terminal Part of Arabidopsis Phytochrome A Induces Constitutive Photomorphogenic Response.
A. Viczian, E. Adam, I. Wolf, J. Bindics, S. Kircher, M. Heijde, R. Ulm, E. Schafer, and F. Nagy (2012)
Mol Plant 5, 629-641
   Abstract »    Full Text »    PDF »
Substitution of a Conserved Glycine in the PHR Domain of Arabidopsis CRYPTOCHROME 1 Confers a Constitutive Light Response.
N.-N. Gu, Y.-C. Zhang, and H.-Q. Yang (2012)
Mol Plant 5, 85-97
   Abstract »    Full Text »    PDF »
Photobodies in Light Signaling.
E. K. Van Buskirk, P. V. Decker, and M. Chen (2012)
Plant Physiology 158, 52-60
   Full Text »    PDF »
Color Recovery after Photoconversion of H2B::mEosFP Allows Detection of Increased Nuclear DNA Content in Developing Plant Cells.
M. Wozny, M. H. Schattat, N. Mathur, K. Barton, and J. Mathur (2012)
Plant Physiology 158, 95-106
   Abstract »    Full Text »    PDF »
Expression of Enzymes Involved in Chlorophyll Catabolism in Arabidopsis Is Light Controlled.
A. K. Banas, J. Labuz, O. Sztatelman, H. Gabrys, and L. Fiedor (2011)
Plant Physiology 157, 1497-1504
   Abstract »    Full Text »    PDF »
SCAR Mediates Light-Induced Root Elongation in Arabidopsis through Photoreceptors and Proteasomes.
J. Dyachok, L. Zhu, F. Liao, J. He, E. Huq, and E. B. Blancaflor (2011)
PLANT CELL 23, 3610-3626
   Abstract »    Full Text »    PDF »
FAR-RED INSENSITIVE219 Modulates CONSTITUTIVE PHOTOMORPHOGENIC1 Activity via Physical Interaction to Regulate Hypocotyl Elongation in Arabidopsis.
J.-G. Wang, C.-H. Chen, C.-T. Chien, and H.-L. Hsieh (2011)
Plant Physiology 156, 631-646
   Abstract »    Full Text »    PDF »
Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression.
C. Fankhauser and R. Ulm (2011)
Genes & Dev. 25, 1004-1009
   Abstract »    Full Text »    PDF »
Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism.
H.-L. Lian, S.-B. He, Y.-C. Zhang, D.-M. Zhu, J.-Y. Zhang, K.-P. Jia, S.-X. Sun, L. Li, and H.-Q. Yang (2011)
Genes & Dev. 25, 1023-1028
   Abstract »    Full Text »    PDF »
Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light.
B. Liu, Z. Zuo, H. Liu, X. Liu, and C. Lin (2011)
Genes & Dev. 25, 1029-1034
   Abstract »    Full Text »    PDF »
Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
R. Nefissi, Y. Natsui, K. Miyata, A. Oda, Y. Hase, M. Nakagawa, A. Ghorbel, and T. Mizoguchi (2011)
J. Exp. Bot. 62, 2731-2744
   Abstract »    Full Text »    PDF »
HYPOSENSITIVE TO LIGHT, an Alpha/Beta Fold Protein, Acts Downstream of ELONGATED HYPOCOTYL 5 to Regulate Seedling De-Etiolation.
X.-D. Sun and M. Ni (2011)
Mol Plant 4, 116-126
   Abstract »    Full Text »    PDF »
Photoreceptors CRYTOCHROME2 and Phytochrome B Control Chromatin Compaction in Arabidopsis.
M. van Zanten, F. Tessadori, F. McLoughlin, R. Smith, F. F. Millenaar, R. van Driel, L. A. C. J. Voesenek, A. J. M. Peeters, and P. Fransz (2010)
Plant Physiology 154, 1686-1696
   Abstract »    Full Text »    PDF »
A Gain-of-Function Mutation of Arabidopsis CRYPTOCHROME1 Promotes Flowering.
V. Exner, C. Alexandre, G. Rosenfeldt, P. Alfarano, M. Nater, A. Caflisch, W. Gruissem, A. Batschauer, and L. Hennig (2010)
Plant Physiology 154, 1633-1645
   Abstract »    Full Text »    PDF »
Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase.
R.-D. Jeong, A. C. Chandra-Shekara, S. R. Barman, D. Navarre, D. F. Klessig, A. Kachroo, and P. Kachroo (2010)
PNAS 107, 13538-13543
   Abstract »    Full Text »    PDF »
CRYPTOCHROME 1 Is Implicated in Promoting R Protein-Mediated Plant Resistance to Pseudomonas syringae in Arabidopsis.
L. Wu and H.-Q. Yang (2010)
Mol Plant 3, 539-548
   Abstract »    Full Text »    PDF »
Cryptochromes, Phytochromes, and COP1 Regulate Light-Controlled Stomatal Development in Arabidopsis.
C.-Y. Kang, H.-L. Lian, F.-F. Wang, J.-R. Huang, and H.-Q. Yang (2009)
PLANT CELL 21, 2624-2641
   Abstract »    Full Text »    PDF »
Wheat Cryptochromes: Subcellular Localization and Involvement in Photomorphogenesis and Osmotic Stress Responses.
P. Xu, Y. Xiang, H. Zhu, H. Xu, Z. Zhang, C. Zhang, L. Zhang, and Z. Ma (2009)
Plant Physiology 149, 760-774
   Abstract »    Full Text »    PDF »
Formation of Nuclear Bodies of Arabidopsis CRY2 in Response to Blue Light Is Associated with Its Blue Light-Dependent Degradation.
X. Yu, R. Sayegh, M. Maymon, K. Warpeha, J. Klejnot, H. Yang, J. Huang, J. Lee, L. Kaufman, and C. Lin (2009)
PLANT CELL 21, 118-130
   Abstract »    Full Text »    PDF »
Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis.
H. Liu, X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, and C. Lin (2008)
Science 322, 1535-1539
   Abstract »    Full Text »    PDF »
Biochemical Characterization of Arabidopsis Complexes Containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA Proteins in Light Control of Plant Development.
D. Zhu, A. Maier, J.-H. Lee, S. Laubinger, Y. Saijo, H. Wang, L.-J. Qu, U. Hoecker, and X. W. Deng (2008)
PLANT CELL 20, 2307-2323
   Abstract »    Full Text »    PDF »
LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-Box Protein Involved in Light-Dependent Development and Gene Expression, Undergoes COP1-Mediated Ubiquitination.
S. Datta, H. Johansson, C. Hettiarachchi, M. L. Irigoyen, M. Desai, V. Rubio, and M. Holm (2008)
PLANT CELL 20, 2324-2338
   Abstract »    Full Text »    PDF »
Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response.
S. Jang, V. Marchal, K. C. S. Panigrahi, S. Wenkel, W. Soppe, X.-W. Deng, F. Valverde, and G. Coupland (2008)
EMBO J. 27, 1277-1288
   Abstract »    Full Text »    PDF »
COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis.
L.-J. Liu, Y.-C. Zhang, Q.-H. Li, Y. Sang, J. Mao, H.-L. Lian, L. Wang, and H.-Q. Yang (2008)
PLANT CELL 20, 292-306
   Abstract »    Full Text »    PDF »
Chemically Induced and Light-Independent Cryptochrome Photoreceptor Activation.
G. Rosenfeldt, R. M. Viana, H. D. Mootz, A. G. von Arnim, and A. Batschauer (2008)
Mol Plant 1, 4-14
   Abstract »    Full Text »    PDF »
Blue-Light-Independent Activity of Arabidopsis Cryptochromes in the Regulation of Steady-State Levels of Protein and mRNA Expression.
Y.-J. Yang, Z.-C. Zuo, X.-Y. Zhao, X. Li, J. Klejnot, Y. Li, P. Chen, S.-P. Liang, X.-H. Yu, X.-M. Liu, et al. (2008)
Mol Plant 1, 167-177
   Abstract »    Full Text »    PDF »
Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings.
G. Wu and E. P. Spalding (2007)
PNAS 104, 18813-18818
   Abstract »    Full Text »    PDF »
SALT TOLERANCE HOMOLOG2, a B-Box Protein in Arabidopsis That Activates Transcription and Positively Regulates Light-Mediated Development.
S. Datta, C. Hettiarachchi, H. Johansson, and M. Holm (2007)
PLANT CELL 19, 3242-3255
   Abstract »    Full Text »    PDF »
Blue Light Induces Radical Formation and Autophosphorylation in the Light-sensitive Domain of Chlamydomonas Cryptochrome.
D. Immeln, R. Schlesinger, J. Heberle, and T. Kottke (2007)
J. Biol. Chem. 282, 21720-21728
   Abstract »    Full Text »    PDF »
Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2.
X. Yu, D. Shalitin, X. Liu, M. Maymon, J. Klejnot, H. Yang, J. Lopez, X. Zhao, K. T. Bendehakkalu, and C. Lin (2007)
PNAS 104, 7289-7294
   Abstract »    Full Text »    PDF »
Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States.
J.-P. Bouly, E. Schleicher, M. Dionisio-Sese, F. Vandenbussche, D. Van Der Straeten, N. Bakrim, S. Meier, A. Batschauer, P. Galland, R. Bittl, et al. (2007)
J. Biol. Chem. 282, 9383-9391
   Abstract »    Full Text »    PDF »
Structure and Function of Animal Cryptochromes.
N. Ozturk, S.-H. Song, S. Ozgur, C. P. Selby, L. Morrison, C. Partch, D. Zhong, and A. Sancar (2007)
Cold Spring Harb Symp Quant Biol 72, 119-131
   Abstract »    PDF »
Structure Function Analysis of Mammalian Cryptochromes.
F. Tamanini, I. Chaves, M. I. Bajek, and G. T. J. van der Horst (2007)
Cold Spring Harb Symp Quant Biol 72, 133-139
   Abstract »    PDF »
CRYPTOCHROME2 in Vascular Bundles Regulates Flowering in Arabidopsis.
M. Endo, N. Mochizuki, T. Suzuki, and A. Nagatani (2007)
PLANT CELL 19, 84-93
   Abstract »    Full Text »    PDF »
Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development.
H. Chen, Y. Shen, X. Tang, L. Yu, J. Wang, L. Guo, Y. Zhang, H. Zhang, S. Feng, E. Strickland, et al. (2006)
PLANT CELL 18, 1991-2004
   Abstract »    Full Text »    PDF »
CONSTITUTIVELY PHOTOMORPHOGENIC1 Is Required for the UV-B Response in Arabidopsis.
A. Oravecz, A. Baumann, Z. Mate, A. Brzezinska, J. Molinier, E. J. Oakeley, E. Adam, E. Schafer, F. Nagy, and R. Ulm (2006)
PLANT CELL 18, 1975-1990
   Abstract »    Full Text »    PDF »
Involvement of Rice Cryptochromes in De-etiolation Responses and Flowering.
F. Hirose, T. Shinomura, T. Tanabata, H. Shimada, and M. Takano (2006)
Plant Cell Physiol. 47, 915-925
   Abstract »    Full Text »    PDF »
Cryptochrome 1 from Brassica napus Is Up-Regulated by Blue Light and Controls Hypocotyl/Stem Growth and Anthocyanin Accumulation.
M. Chatterjee, P. Sharma, and J. P. Khurana (2006)
Plant Physiology 141, 61-74
   Abstract »    Full Text »    PDF »
Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 Contains SPX and EXS Domains and Acts in Cryptochrome Signaling.
X. Kang and M. Ni (2006)
PLANT CELL 18, 921-934
   Abstract »    Full Text »    PDF »
Arabidopsis CONSTANS-LIKE3 Is a Positive Regulator of Red Light Signaling and Root Growth.
S. Datta, G.H.C.M. Hettiarachchi, X.-W. Deng, and M. Holm (2006)
PLANT CELL 18, 70-84
   Abstract »    Full Text »    PDF »
Cryptochrome 1 Contributes to Blue-Light Sensing in Pea.
J. D. Platten, E. Foo, R. C. Elliott, V. Hecht, J. B. Reid, and J. L. Weller (2005)
Plant Physiology 139, 1472-1482
   Abstract »    Full Text »    PDF »
From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening.
J. Mao, Y.-C. Zhang, Y. Sang, Q.-H. Li, and H.-Q. Yang (2005)
PNAS 102, 12270-12275
   Abstract »    Full Text »    PDF »
RAC GTPases in Tobacco and Arabidopsis Mediate Auxin-Induced Formation of Proteolytically Active Nuclear Protein Bodies That Contain AUX/IAA Proteins.
L.-z. Tao, A. Y. Cheung, C. Nibau, and H.-m. Wu (2005)
PLANT CELL 17, 2369-2383
   Abstract »    Full Text »    PDF »
N-Terminal Domain-Mediated Homodimerization Is Required for Photoreceptor Activity of Arabidopsis CRYPTOCHROME 1.
Y. Sang, Q.-H. Li, V. Rubio, Y.-C. Zhang, J. Mao, X.-W. Deng, and H.-Q. Yang (2005)
PLANT CELL 17, 1569-1584
   Abstract »    Full Text »    PDF »
Light Regulates COP1-Mediated Degradation of HFR1, a Transcription Factor Essential for Light Signaling in Arabidopsis.
J. Yang, R. Lin, J. Sullivan, U. Hoecker, B. Liu, L. Xu, X. W. Deng, and H. Wang (2005)
PLANT CELL 17, 804-821
   Abstract »    Full Text »    PDF »
HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-Type Zinc Finger Protein, Regulates Phytochrome B-Mediated Red and Cryptochrome-Mediated Blue Light Responses.
X. Kang, J. Chong, and M. Ni (2005)
PLANT CELL 17, 822-835
   Abstract »    Full Text »    PDF »
Manipulation of the Blue Light Photoreceptor Cryptochrome 2 in Tomato Affects Vegetative Development, Flowering Time, and Fruit Antioxidant Content.
L. Giliberto, G. Perrotta, P. Pallara, J. L. Weller, P. D. Fraser, P. M. Bramley, A. Fiore, M. Tavazza, and G. Giuliano (2005)
Plant Physiology 137, 199-208
   Abstract »    Full Text »    PDF »
Cryptochromes and Phytochromes Synergistically Regulate Arabidopsis Root Greening under Blue Light.
T. Usami, N. Mochizuki, M. Kondo, M. Nishimura, and A. Nagatani (2004)
Plant Cell Physiol. 45, 1798-1808
   Abstract »    Full Text »    PDF »
The SPA Quartet: A Family of WD-Repeat Proteins with a Central Role in Suppression of Photomorphogenesis in Arabidopsis.
S. Laubinger, K. Fittinghoff, and U. Hoecker (2004)
PLANT CELL 16, 2293-2306
   Abstract »    Full Text »    PDF »
Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.
C. A. Brautigam, B. S. Smith, Z. Ma, M. Palnitkar, D. R. Tomchick, M. Machius, and J. Deisenhofer (2004)
PNAS 101, 12142-12147
   Abstract »    Full Text »    PDF »
The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: Mutational analysis by bioluminescence resonance energy transfer.
C. Subramanian, B.-H. Kim, N. N. Lyssenko, X. Xu, C. H. Johnson, and A. G. von Arnim (2004)
PNAS 101, 6798-6802
   Abstract »    Full Text »    PDF »
Flowering of Arabidopsis cop1 Mutants in Darkness.
M. Nakagawa and Y. Komeda (2004)
Plant Cell Physiol. 45, 398-406
   Abstract »    Full Text »    PDF »
Abscisic Acid Induces Rapid Subnuclear Reorganization in Guard Cells.
C. K.-Y. Ng, T. Kinoshita, S. Pandey, K.-i. Shimazaki, and S. M. Assmann (2004)
Plant Physiology 134, 1327-1331
   Full Text »    PDF »
Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling.
H. S. Seo, E. Watanabe, S. Tokutomi, A. Nagatani, and N.-H. Chua (2004)
Genes & Dev. 18, 617-622
   Abstract »    Full Text »    PDF »
Blue Light Signaling through the Cryptochromes and Phototropins. So That's What the Blues Is All About.
E. Liscum, D. W. Hodgson, and T. J. Campbell (2003)
Plant Physiology 133, 1429-1436
   Full Text »
Phytochrome Modulation of Blue Light-Induced Chloroplast Movements in Arabidopsis.
S. L. DeBlasio, J. L. Mullen, D. R. Luesse, and R. P. Hangarter (2003)
Plant Physiology 133, 1471-1479
   Abstract »    Full Text »
Characterization of a Novel Non-Constitutive Photomorphogenic cop1 Allele.
M. Dieterle, C. Buche, E. Schafer, and T. Kretsch (2003)
Plant Physiology 133, 1557-1564
   Abstract »    Full Text »
Functional Analysis and Intracellular Localization of Rice Cryptochromes.
N. Matsumoto, T. Hirano, T. Iwasaki, and N. Yamamoto (2003)
Plant Physiology 133, 1494-1503
   Abstract »    Full Text »
The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity.
Y. Saijo, J. A. Sullivan, H. Wang, J. Yang, Y. Shen, V. Rubio, L. Ma, U. Hoecker, and X. W. Deng (2003)
Genes & Dev. 17, 2642-2647
   Abstract »    Full Text »    PDF »
Blue Light-Dependent in Vivo and in Vitro Phosphorylation of Arabidopsis Cryptochrome 1.
D. Shalitin, X. Yu, M. Maymon, T. Mockler, and C. Lin (2003)
PLANT CELL 15, 2421-2429
   Abstract »    Full Text »    PDF »
AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation.
L. Lopez-Molina, S. Mongrand, N. Kinoshita, and N.-H. Chua (2003)
Genes & Dev. 17, 410-418
   Abstract »    Full Text »    PDF »
A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control in Arabidopsis.
D.-H. Kim, J.-G. Kang, S.-S. Yang, K.-S. Chung, P.-S. Song, and C.-M. Park (2002)
PLANT CELL 14, 3043-3056
   Abstract »    Full Text »    PDF »
Phytochrome-mediated photoperception and signal transduction in higher plants.
E. Schafer and C. Bowler (2002)
EMBO Rep. 3, 1042-1048
   Abstract »    Full Text »    PDF »
Genomic Evidence for COP1 as a Repressor of Light-Regulated Gene Expression and Development in Arabidopsis.
L. Ma, Y. Gao, L. Qu, Z. Chen, J. Li, H. Zhao, and X. W. Deng (2002)
PLANT CELL 14, 2383-2398
   Abstract »    Full Text »    PDF »
Plant Development: Regulation by Protein Degradation.
H. Hellmann and M. Estelle (2002)
Science 297, 793-797
   Abstract »    Full Text »    PDF »
Nucleocytoplasmic Partitioning of the Plant Photoreceptors Phytochrome A, B, C, D, and E Is Regulated Differentially by Light and Exhibits a Diurnal Rhythm.
S. Kircher, P. Gil, L. Kozma-Bognar, E. Fejes, V. Speth, T. Husselstein-Muller, D. Bauer, E. Adam, E. Schafer, and F. Nagy (2002)
PLANT CELL 14, 1541-1555
   Abstract »    Full Text »    PDF »
Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis.
M. Holm, L.-G. Ma, L.-J. Qu, and X.-W. Deng (2002)
Genes & Dev. 16, 1247-1259
   Abstract »    Full Text »    PDF »
Blue Light Receptors and Signal Transduction.
C. Lin (2002)
PLANT CELL 14, S207-S225
   Full Text »    PDF »
Tales from the Crypt(ochromes).
R. N. Van Gelder (2002)
J Biol Rhythms 17, 110-120
   Abstract »    PDF »
Cryptochrome Light Signals Control Development to Suppress Auxin Sensitivity in the Moss Physcomitrella patens.
T. Imaizumi, A. Kadota, M. Hasebe, and M. Wada (2002)
PLANT CELL 14, 373-386
   Abstract »    Full Text »    PDF »
The Signaling Mechanism of Arabidopsis CRY1 Involves Direct Interaction with COP1.
H.-Q. Yang, R.-H. Tang, and A. R. Cashmore (2001)
PLANT CELL 13, 2573-2587
   Abstract »    Full Text »    PDF »
Light Control of Arabidopsis Development Entails Coordinated Regulation of Genome Expression and Cellular Pathways.
L. Ma, J. Li, L. Qu, J. Hager, Z. Chen, H. Zhao, and X. W. Deng (2001)
PLANT CELL 13, 2589-2607
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882