Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 294 (5543): 867-870

Copyright © 2001 by the American Association for the Advancement of Science

Recruitment of Mec1 and Ddc1 Checkpoint Proteins to Double-Strand Breaks Through Distinct Mechanisms

Tae Kondo,1* Tatsushi Wakayama,1* Takahiro Naiki,1* Kunihiro Matsumoto,12 Katsunori Sugimoto1dagger

In response to DNA damage, eukaryotic cells activate checkpoint pathways that arrest cell cycle progression and induce the expression of genes required for DNA repair. In budding yeast, the homothallic switching (HO) endonuclease creates a site-specific double-strand break at the mating type (MAT) locus. Continuous HO expression results in the phosphorylation of Rad53, which is dependent on products of the ataxia telangiectasia mutated-related MEC1 gene and other checkpoint genes, including DDC1, RAD9, and RAD24. Chromatin immunoprecipitation experiments revealed that the Ddc1 protein associates with a region near the MAT locus after HO expression. Ddc1 association required Rad24 but not Mec1 or Rad9. Mec1 also associated with a region near the cleavage site after HO expression, but this association is independent of Ddc1, Rad9, and Rad24. Thus, Mec1 and Ddc1 are recruited independently to sites of DNA damage, suggesting the existence of two separate mechanisms involved in recognition of DNA damage.

1 Division of Biological Science, Graduate School of Science, Nagoya University,
2 CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-0814, Japan.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: j46036a{at}

The Saccharomyces cerevisiae F-Box Protein Dia2 Is a Mediator of S-Phase Checkpoint Recovery from DNA Damage.
C. M. Fong, A. Arumugam, and D. M. Koepp (2013)
Genetics 193, 483-499
   Abstract »    Full Text »    PDF »
Role of replication protein A as sensor in activation of the S-phase checkpoint in Xenopus egg extracts.
B. Recolin, S. Van Der Laan, and D. Maiorano (2012)
Nucleic Acids Res. 40, 3431-3442
   Abstract »    Full Text »    PDF »
The Ddc2/ATRIP checkpoint protein monitors meiotic recombination intermediates.
E. Refolio, S. Cavero, E. Marcon, R. Freire, and P. A. San-Segundo (2011)
J. Cell Sci. 124, 2488-2500
   Abstract »    Full Text »    PDF »
Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress.
V. M. Vassin, R. W. Anantha, E. Sokolova, S. Kanner, and J. A. Borowiec (2009)
J. Cell Sci. 122, 4070-4080
   Abstract »    Full Text »    PDF »
TopBP1 and DNA polymerase-{alpha} directly recruit the 9-1-1 complex to stalled DNA replication forks.
S. Yan and W. M. Michael (2009)
J. Cell Biol. 184, 793-804
   Abstract »    Full Text »    PDF »
ATR signaling at a glance.
B. Shiotani and L. Zou (2009)
J. Cell Sci. 122, 301-304
   Full Text »    PDF »
Dpb11 activates the Mec1-Ddc2 complex.
D. A. Mordes, E. A. Nam, and D. Cortez (2008)
PNAS 105, 18730-18734
   Abstract »    Full Text »    PDF »
ATR and Rad17 collaborate in modulating Rad9 localisation at sites of DNA damage.
A. L. Medhurst, D. O. Warmerdam, I. Akerman, E. H. Verwayen, R. Kanaar, V. A. J. Smits, and N. D. Lakin (2008)
J. Cell Sci. 121, 3933-3940
   Abstract »    Full Text »    PDF »
Dif1 Controls Subcellular Localization of Ribonucleotide Reductase by Mediating Nuclear Import of the R2 Subunit.
X. Wu and M. Huang (2008)
Mol. Cell. Biol. 28, 7156-7167
   Abstract »    Full Text »    PDF »
Dominant TEL1-hy Mutations Compensate for Mec1 Lack of Functions in the DNA Damage Response.
V. Baldo, V. Testoni, G. Lucchini, and M. P. Longhese (2008)
Mol. Cell. Biol. 28, 358-375
   Abstract »    Full Text »    PDF »
S-Phase Checkpoint Pathways Stimulate the Mobility of the Retrovirus-Like Transposon Ty1.
M. J. Curcio, A. E. Kenny, S. Moore, D. J. Garfinkel, M. Weintraub, E. R. Gamache, and D. T. Scholes (2007)
Mol. Cell. Biol. 27, 8874-8885
   Abstract »    Full Text »    PDF »
The processing of double-strand breaks and binding of single-strand-binding proteins RPA and Rad51 modulate the formation of ATR-kinase foci in yeast.
K. Dubrana, H. van Attikum, F. Hediger, and S. M. Gasser (2007)
J. Cell Sci. 120, 4209-4220
   Abstract »    Full Text »    PDF »
The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage.
F. Dotiwala, J. Haase, A. Arbel-Eden, K. Bloom, and J. E. Haber (2007)
PNAS 104, 11358-11363
   Abstract »    Full Text »    PDF »
Mechanisms of Checkpoint Kinase Rad53 Inactivation after a Double-Strand Break in Saccharomyces cerevisiae.
G. Guillemain, E. Ma, S. Mauger, S. Miron, R. Thai, R. Guerois, F. Ochsenbein, and M.-C. Marsolier-Kergoat (2007)
Mol. Cell. Biol. 27, 3378-3389
   Abstract »    Full Text »    PDF »
The checkpoint clamp, Rad9-Rad1-Hus1 complex, preferentially stimulates the activity of apurinic/apyrimidinic endonuclease 1 and DNA polymerase {beta} in long patch base excision repair.
A. Gembka, M. Toueille, E. Smirnova, R. Poltz, E. Ferrari, G. Villani, and U. Hubscher (2007)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA.
N. Grandin and M. Charbonneau (2007)
Nucleic Acids Res. 35, 822-838
   Abstract »    Full Text »    PDF »
DNA Damage Checkpoints Are Involved in Postreplication Repair.
L. Barbour, L. G. Ball, K. Zhang, and W. Xiao (2006)
Genetics 174, 1789-1800
   Abstract »    Full Text »    PDF »
Limiting amounts of budding yeast Rad53 S-phase checkpoint activity results in increased resistance to DNA alkylation damage.
V. Cordon-Preciado, S. Ufano, and A. Bueno (2006)
Nucleic Acids Res. 34, 5852-5862
   Abstract »    Full Text »    PDF »
Dpb11, the budding yeast homolog of TopBP1, functions with the checkpoint clamp in recombination repair.
H. Ogiwara, A. Ui, F. Onoda, S. Tada, T. Enomoto, and M. Seki (2006)
Nucleic Acids Res. 34, 3389-3398
   Abstract »    Full Text »    PDF »
Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase {eta} on ATR checkpoint signaling.
R. D. Bomgarden, P. J. Lupardus, D. V. Soni, M.-C. Yee, J. M. Ford, and K. A. Cimprich (2006)
EMBO J. 25, 2605-2614
   Abstract »    Full Text »    PDF »
Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast.
Y.-j. Xu, M. Davenport, and T. J. Kelly (2006)
Genes & Dev. 20, 990-1003
   Abstract »    Full Text »    PDF »
Activation of the Checkpoint Kinase Rad53 by the Phosphatidyl Inositol Kinase-like Kinase Mec1.
J.-L. Ma, S.-J. Lee, J. K. Duong, and D. F. Stern (2006)
J. Biol. Chem. 281, 3954-3963
   Abstract »    Full Text »    PDF »
Recruitment of DNA Damage Checkpoint Proteins to Damage in Transcribed and Nontranscribed Sequences.
G. Jiang and A. Sancar (2006)
Mol. Cell. Biol. 26, 39-49
   Abstract »    Full Text »    PDF »
DNA damage checkpoints in mammals.
H. Niida and M. Nakanishi (2006)
Mutagenesis 21, 3-9
   Abstract »    Full Text »    PDF »
DNA Damage Regulates Chk2 Association with Chromatin.
J. Li and D. F. Stern (2005)
J. Biol. Chem. 280, 37948-37956
   Abstract »    Full Text »    PDF »
Disruption of Mechanisms That Prevent Rereplication Triggers a DNA Damage Response.
V. Archambault, A. E. Ikui, B. J. Drapkin, and F. R. Cross (2005)
Mol. Cell. Biol. 25, 6707-6721
   Abstract »    Full Text »    PDF »
Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint.
T. S. Byun, M. Pacek, M.-c. Yee, J. C. Walter, and K. A. Cimprich (2005)
Genes & Dev. 19, 1040-1052
   Abstract »    Full Text »    PDF »
The DNA Damage Checkpoint Response Requires Histone H2B Ubiquitination by Rad6-Bre1 and H3 Methylation by Dot1.
M. Giannattasio, F. Lazzaro, P. Plevani, and M. Muzi-Falconi (2005)
J. Biol. Chem. 280, 9879-9886
   Abstract »    Full Text »    PDF »
NFBD1/Mdc1 Mediates ATR-Dependent DNA Damage Response.
A. Peng and P.-L. Chen (2005)
Cancer Res. 65, 1158-1163
   Abstract »    Full Text »    PDF »
G2 damage checkpoints: what is the turn-on?.
M. J. O'Connell and K. A. Cimprich (2005)
J. Cell Sci. 118, 1-6
   Abstract »    Full Text »    PDF »
Ccr4-Not Complex mRNA Deadenylase Activity Contributes to DNA Damage Responses in Saccharomyces cerevisiae.
A. Traven, A. Hammet, N. Tenis, C. L. Denis, and J. Heierhorst (2005)
Genetics 169, 65-75
   Abstract »    Full Text »    PDF »
Loss of Rereplication Control in Saccharomyces cerevisiae Results in Extensive DNA Damage.
B. M. Green and J. J. Li (2005)
Mol. Biol. Cell 16, 421-432
   Abstract »    Full Text »    PDF »
A Tel1/MRX-Dependent Checkpoint Inhibits the Metaphase-to-Anaphase Transition after UV Irradiation in the Absence of Mec1.
M. Clerici, V. Baldo, D. Mantiero, F. Lottersberger, G. Lucchini, and M. P. Longhese (2004)
Mol. Cell. Biol. 24, 10126-10144
   Abstract »    Full Text »    PDF »
Activation of the DNA Damage Checkpoint in Yeast Lacking the Histone Chaperone Anti-Silencing Function 1.
C. J. Ramey, S. Howar, M. Adkins, J. Linger, J. Spicer, and J. K. Tyler (2004)
Mol. Cell. Biol. 24, 10313-10327
   Abstract »    Full Text »    PDF »
A Ddc2-Rad53 Fusion Protein Can Bypass the Requirements for RAD9 and MRC1 in Rad53 Activation.
S.-J. Lee, J. K. Duong, and D. F. Stern (2004)
Mol. Biol. Cell 15, 5443-5455
   Abstract »    Full Text »    PDF »
Interaction between human MCM7 and Rad17 proteins is required for replication checkpoint signaling.
C.-C. Tsao, C. Geisen, and R. T. Abraham (2004)
EMBO J. 23, 4660-4669
   Abstract »    Full Text »    PDF »
Exo1 and Rad24 Differentially Regulate Generation of ssDNA at Telomeres of Saccharomyces cerevisiae cdc13-1 Mutants.
M. K. Zubko, S. Guillard, and D. Lydall (2004)
Genetics 168, 103-115
   Abstract »    Full Text »    PDF »
The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase {beta} and increases its DNA substrate utilisation efficiency: implications for DNA repair.
M. Toueille, N. El-Andaloussi, I. Frouin, R. Freire, D. Funk, I. Shevelev, E. Friedrich-Heineken, G. Villani, M. O. Hottiger, and U. Hubscher (2004)
Nucleic Acids Res. 32, 3316-3324
   Abstract »    Full Text »    PDF »
Recruitment of the Cell Cycle Checkpoint Kinase ATR to Chromatin during S-phase.
D. A. Dart, K. E. Adams, I. Akerman, and N. D. Lakin (2004)
J. Biol. Chem. 279, 16433-16440
   Abstract »    Full Text »    PDF »
TopBP1 and ATR Colocalization at Meiotic Chromosomes: Role of TopBP1/Cut5 in the Meiotic Recombination Checkpoint.
D. Perera, L. Perez-Hidalgo, P. B. Moens, K. Reini, N. Lakin, J. E. Syvaoja, P. A. San-Segundo, and R. Freire (2004)
Mol. Biol. Cell 15, 1568-1579
   Abstract »    Full Text »    PDF »
Quaternary Structure of ATR and Effects of ATRIP and Replication Protein A on Its DNA Binding and Kinase Activities.
K. Unsal-Kacmaz and A. Sancar (2004)
Mol. Cell. Biol. 24, 1292-1300
   Abstract »    Full Text »    PDF »
Mec1 and Rad53 Inhibit Formation of Single-Stranded DNA at Telomeres of Saccharomyces cerevisiae cdc13-1 Mutants.
X. Jia, T. Weinert, and D. Lydall (2004)
Genetics 166, 753-764
   Abstract »    Full Text »    PDF »
A domain of Rad9 specifically required for activation of Chk1 in budding yeast.
R. T. Blankley and D. Lydall (2004)
J. Cell Sci. 117, 601-608
   Abstract »    Full Text »    PDF »
Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint.
M. Giannattasio, F. Lazzaro, M. P. Longhese, P. Plevani, and M. Muzi-Falconi (2004)
EMBO J. 23, 429-438
   Abstract »    Full Text »    PDF »
Coordination of DNA Damage Responses via the Smc5/Smc6 Complex.
S. H. Harvey, D. M. Sheedy, A. R. Cuddihy, and M. J. O'Connell (2004)
Mol. Cell. Biol. 24, 662-674
   Abstract »    Full Text »    PDF »
SCMD: Saccharomyces cerevisiae Morphological Database.
T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita (2004)
Nucleic Acids Res. 32, D319-322
   Abstract »    Full Text »    PDF »
Yeast Rad52 and Rad51 Recombination Proteins Define a Second Pathway of DNA Damage Assessment in Response to a Single Double-Strand Break.
S. E. Lee, A. Pellicioli, M. B. Vaze, N. Sugawara, A. Malkova, M. Foiani, and J. E. Haber (2003)
Mol. Cell. Biol. 23, 8913-8923
   Abstract »    Full Text »    PDF »
Replication protein A-mediated recruitment and activation of Rad17 complexes.
L. Zou, D. Liu, and S. J. Elledge (2003)
PNAS 100, 13827-13832
   Abstract »    Full Text »    PDF »
Hiding at the ends of yeast chromosomes: telomeres, nucleases and checkpoint pathways.
D. Lydall (2003)
J. Cell Sci. 116, 4057-4065
   Abstract »    Full Text »    PDF »
The Checkpoint Protein Rad24 of Saccharomyces cerevisiae Is Involved in Processing Double-Strand Break Ends and in Recombination Partner Choice.
Y. Aylon and M. Kupiec (2003)
Mol. Cell. Biol. 23, 6585-6596
   Abstract »    Full Text »    PDF »
Retention but Not Recruitment of Crb2 at Double-Strand Breaks Requires Rad1 and Rad3 Complexes.
L.-L. Du, T. M. Nakamura, B. A. Moser, and P. Russell (2003)
Mol. Cell. Biol. 23, 6150-6158
   Abstract »    Full Text »    PDF »
Rad53 Phosphorylation Site Clusters Are Important for Rad53 Regulation and Signaling.
S.-J. Lee, M. F. Schwartz, J. K. Duong, and D. F. Stern (2003)
Mol. Cell. Biol. 23, 6300-6314
   Abstract »    Full Text »    PDF »
Nuclear factories for signalling and repairing DNA double strand breaks in living fission yeast.
P. Meister, M. Poidevin, S. Francesconi, I. Tratner, P. Zarzov, and G. Baldacci (2003)
Nucleic Acids Res. 31, 5064-5073
   Abstract »    Full Text »    PDF »
Delineating the position of rad4+/cut5+ within the DNA-structure checkpoint pathways in Schizosaccharomyces pombe.
S. Harris, C. Kemplen, T. Caspari, C. Chan, H. D. Lindsay, M. Poitelea, A. M. Carr, and C. Price (2003)
J. Cell Sci. 116, 3519-3529
   Abstract »    Full Text »    PDF »
XRad17 Is Required for the Activation of XChk1 But Not XCds1 during Checkpoint Signaling in Xenopus.
R. E. Jones, J. R. Chapman, C. Puligilla, J. M. Murray, A. M. Car, C. C. Ford, and H. D. Lindsay (2003)
Mol. Biol. Cell 14, 3898-3910
   Abstract »    Full Text »    PDF »
hRad9 Rapidly Binds DNA Containing Double-Strand Breaks and Is Required for Damage-dependent Topoisomerase II{beta} Binding Protein 1 Focus Formation.
D. A. Greer, B. D. A. Besley, K. B. Kennedy, and S. Davey (2003)
Cancer Res. 63, 4829-4835
   Abstract »    Full Text »    PDF »
DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1.
J. A. Cobb, L. Bjergbaek, K. Shimada, C. Frei, and S. M. Gasser (2003)
EMBO J. 22, 4325-4336
   Abstract »    Full Text »    PDF »
ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism.
D. Nakada, K. Matsumoto, and K. Sugimoto (2003)
Genes & Dev. 17, 1957-1962
   Abstract »    Full Text »    PDF »
Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53.
A. J. Osborn and S. J. Elledge (2003)
Genes & Dev. 17, 1755-1767
   Abstract »    Full Text »    PDF »
Loss of Sin3/Rpd3 Histone Deacetylase Restores the DNA Damage Response in Checkpoint-Deficient Strains of Saccharomyces cerevisiae.
K. L. Scott and S. E. Plon (2003)
Mol. Cell. Biol. 23, 4522-4531
   Abstract »    Full Text »    PDF »
The Mitotic DNA Damage Checkpoint Proteins Rad17 and Rad24 Are Required for Repair of Double-Strand Breaks During Meiosis in Yeast.
M. Shinohara, K. Sakai, T. Ogawa, and A. Shinohara (2003)
Genetics 164, 855-865
   Abstract »    Full Text »    PDF »
Phosphorylation of Human Rad9 Is Required for Genotoxin-activated Checkpoint Signaling.
P. Roos-Mattjus, K. M. Hopkins, A. J. Oestreich, B. T. Vroman, K. L. Johnson, S. Naylor, H. B. Lieberman, and L. M. Karnitz (2003)
J. Biol. Chem. 278, 24428-24437
   Abstract »    Full Text »    PDF »
Correlation between Checkpoint Activation and in Vivo Assembly of the Yeast Checkpoint Complex Rad17-Mec3-Ddc1.
M. Giannattasio, S. Sabbioneda, M. Minuzzo, P. Plevani, and M. Muzi-Falconi (2003)
J. Biol. Chem. 278, 22303-22308
   Abstract »    Full Text »    PDF »
Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA Complexes.
L. Zou and S. J. Elledge (2003)
Science 300, 1542-1548
   Abstract »    Full Text »    PDF »
Genomic instability and endoreduplication triggered by RAD17 deletion.
X. Wang, L. Zou, H. Zheng, Q. Wei, S. J. Elledge, and L. Li (2003)
Genes & Dev. 17, 965-970
   Abstract »    Full Text »    PDF »
Checkpoint Arrest Signaling in Response to UV Damage Is Independent of Nucleotide Excision Repair in Saccharomyces cerevisiae.
H. Zhang, J. Taylor, and W. Siede (2003)
J. Biol. Chem. 278, 9382-9387
   Abstract »    Full Text »    PDF »
Yeast Rad17/Mec3/Ddc1: A sliding clamp for the DNA damage checkpoint.
J. Majka and P. M. J. Burgers (2003)
PNAS 100, 2249-2254
   Abstract »    Full Text »    PDF »
Short Telomeres Induce a DNA Damage Response in Saccharomyces cerevisiae.
A. S. IJpma and C. W. Greider (2003)
Mol. Biol. Cell 14, 987-1001
   Abstract »    Full Text »    PDF »
NFBD1/KIAA0170 Is a Chromatin-associated Protein Involved in DNA Damage Signaling Pathways.
X. Xu and D. F. Stern (2003)
J. Biol. Chem. 278, 8795-8803
   Abstract »    Full Text »    PDF »
Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro.
V. P. Bermudez, L. A. Lindsey-Boltz, A. J. Cesare, Y. Maniwa, J. D. Griffith, J. Hurwitz, and A. Sancar (2003)
PNAS 100, 1633-1638
   Abstract »    Full Text »    PDF »
Molecular Dissection of Mitotic Recombination in the Yeast Saccharomyces cerevisiae.
Y. Aylon, B. Liefshitz, G. Bitan-Banin, and M. Kupiec (2003)
Mol. Cell. Biol. 23, 1403-1417
   Abstract »    Full Text »    PDF »
Regulation of meiotic progression by the meiosis-specific checkpoint kinase Mek1 in fission yeast.
L. Perez-Hidalgo, S. Moreno, and P. A. San-Segundo (2003)
J. Cell Sci. 116, 259-271
   Abstract »    Full Text »    PDF »
Checkpoint activation regulates mutagenic translesion synthesis.
M. Kai and T. S.-F. Wang (2003)
Genes & Dev. 17, 64-76
   Abstract »    Full Text »    PDF »
A dominant-negative MEC3 mutant uncovers new functions for the Rad17 complex and Tel1.
M. Giannattasio, E. Sommariva, R. Vercillo, F. Lippi-Boncambi, G. Liberi, M. Foiani, P. Plevani, and M. Muzi-Falconi (2002)
PNAS 99, 12997-13002
   Abstract »    Full Text »    PDF »
DNA replication is required for the checkpoint response to damaged DNA in Xenopus egg extracts.
M. P. Stokes, R. Van Hatten, H. D. Lindsay, and W. M. Michael (2002)
J. Cell Biol. 158, 863-872
   Abstract »    Full Text »    PDF »
Telomere Binding of Checkpoint Sensor and DNA Repair Proteins Contributes to Maintenance of Functional Fission Yeast Telomeres.
T. M. Nakamura, B. A. Moser, and P. Russell (2002)
Genetics 161, 1437-1452
   Abstract »    Full Text »    PDF »
MEC3, MEC1, and DDC2 Are Essential Components of a Telomere Checkpoint Pathway Required for Cell Cycle Arrest during Senescence in Saccharomyces cerevisiae.
S. Enomoto, L. Glowczewski, and J. Berman (2002)
Mol. Biol. Cell 13, 2626-2638
   Abstract »    Full Text »    PDF »
Interfaces Between the Detection, Signaling, and Repair of DNA Damage.
J. Rouse and S. P. Jackson (2002)
Science 297, 547-551
   Abstract »    Full Text »    PDF »
The Role of Single-stranded DNA and Polymerase alpha in Establishing the ATR, Hus1 DNA Replication Checkpoint.
Z. You, L. Kong, and J. Newport (2002)
J. Biol. Chem. 277, 27088-27093
   Abstract »    Full Text »    PDF »
A Role of the C-terminal Region of Human Rad9 (hRad9) in Nuclear Transport of the hRad9 Checkpoint Complex.
I. Hirai and H.-G. Wang (2002)
J. Biol. Chem. 277, 25722-25727
   Abstract »    Full Text »    PDF »
Chk2 Activation and Phosphorylation-Dependent Oligomerization.
X. Xu, L. M. Tsvetkov, and D. F. Stern (2002)
Mol. Cell. Biol. 22, 4419-4432
   Abstract »    Full Text »    PDF »
Preferential binding of ATR protein to UV-damaged DNA.
K. Unsal-Kacmaz, A. M. Makhov, J. D. Griffith, and A. Sancar (2002)
PNAS 99, 6673-6678
   Abstract »    Full Text »    PDF »
Structures of the Human Rad17-Replication Factor C and Checkpoint Rad 9-1-1 Complexes Visualized by Glycerol Spray/Low Voltage Microscopy.
J. D. Griffith, L. A. Lindsey-Boltz, and A. Sancar (2002)
J. Biol. Chem. 277, 15233-15236
   Abstract »    Full Text »    PDF »
Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae.
K. Myung and R. D. Kolodner (2002)
PNAS 99, 4500-4507
   Abstract »    Full Text »    PDF »
A role for Ddc1 in signaling meiotic double-strand breaks at the pachytene checkpoint.
E.-J. E. Hong and G. S. Roeder (2002)
Genes & Dev. 16, 363-376
   Abstract »    Full Text »    PDF »
Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin.
L. Zou, D. Cortez, and S. J. Elledge (2002)
Genes & Dev. 16, 198-208
   Abstract »    Full Text »    PDF »
Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae.
K. Myung and R. D. Kolodner (2002)
PNAS 99, 4500-4507
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882