Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 295 (5557): 1079-1082

Copyright © 2002 by the American Association for the Advancement of Science

Methyltransferase Recruitment and DNA Hypermethylation of Target Promoters by an Oncogenic Transcription Factor

Luciano Di Croce,1* Veronica A. Raker,1 Massimo Corsaro,1 Francesco Fazi,2 Mirco Fanelli,15 Mario Faretta,1 Francois Fuks,4 Francesco Lo Coco,3 Tony Kouzarides,4 Clara Nervi,2 Saverio Minucci,1 Pier Giuseppe Pelicci16*

DNA methylation of tumor suppressor genes is a frequent mechanism of transcriptional silencing in cancer. The molecular mechanisms underlying the specificity of methylation are unknown. We report here that the leukemia-promoting PML-RAR fusion protein induces gene hypermethylation and silencing by recruiting DNA methyltransferases to target promoters and that hypermethylation contributes to its leukemogenic potential. Retinoic acid treatment induces promoter demethylation, gene reexpression, and reversion of the transformed phenotype. These results establish a mechanistic link between genetic and epigenetic changes during transformation and suggest that hypermethylation contributes to the early steps of carcinogenesis.

1 Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
2 Department of Histology and Medical Embryology,
3 Department of Cellular Biotechnology and Hematology, University of Rome, "La Sapienza," Rome, Italy.
4 Wellcome/CRC Institute and Department of Pathology, Cambridge University, Cambridge, UK.
5 Department of Morphological Science, University of Camerino, Italy.
6 Italian Foundation for Cancer Research (FIRC) Institute for Molecular Oncology, Milan, Italy.
*   To whom correspondence should be addressed. E-mail: ldicroce{at}lar.ieo.it (L.D.C.); pgpelicci{at}ieo.it (P.G.P.)



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Loss of imprinting at the 14q32 domain is associated with microRNA overexpression in acute promyelocytic leukemia.
F. Manodoro, J. Marzec, T. Chaplin, F. Miraki-Moud, E. Moravcsik, J. V. Jovanovic, J. Wang, S. Iqbal, D. Taussig, D. Grimwade, et al. (2014)
Blood 123, 2066-2074
   Abstract »    Full Text »    PDF »
miR-9 targets CXCR4 and functions as a potential tumor suppressor in nasopharyngeal carcinoma.
J. Lu, H. Luo, X. Liu, Y. Peng, B. Zhang, L. Wang, X. Xu, X. Peng, G. Li, W. Tian, et al. (2014)
Carcinogenesis 35, 554-563
   Abstract »    Full Text »    PDF »
Disclosing the crosstalk among DNA methylation, transcription factors, and histone marks in human pluripotent cells through discovery of DNA methylation motifs.
P.-L. Luu, H. R. Scholer, and M. J. Arauzo-Bravo (2013)
Genome Res. 23, 2013-2029
   Abstract »    Full Text »    PDF »
Cross-talk between Site-specific Transcription Factors and DNA Methylation States.
A. Blattler and P. J. Farnham (2013)
J. Biol. Chem. 288, 34287-34294
   Abstract »    Full Text »    PDF »
Early Phosphoproteomic Changes in the Mouse Spleen During Deoxynivalenol-Induced Ribotoxic Stress.
X. Pan, D. A. Whitten, M. Wu, C. Chan, C. G. Wilkerson, and J. J. Pestka (2013)
Toxicol. Sci. 135, 129-143
   Abstract »    Full Text »    PDF »
The proto-oncoprotein FBI-1 interacts with MBD3 to recruit the Mi-2/NuRD-HDAC complex and BCoR and to silence p21WAF/CDKN1A by DNA methylation.
W.-I. Choi, B.-N. Jeon, J.-H. Yoon, D.-I. Koh, M.-H. Kim, M.-Y. Yu, K.-M. Lee, Y. Kim, K. Kim, S. S. Hur, et al. (2013)
Nucleic Acids Res. 41, 6403-6420
   Abstract »    Full Text »    PDF »
Genomic insights into cancer-associated aberrant CpG island hypermethylation.
D. Sproul and R. R. Meehan (2013)
Briefings in Functional Genomics 12, 174-190
   Abstract »    Full Text »    PDF »
DNA methylation changes are a late event in acute promyelocytic leukemia and coincide with loss of transcription factor binding.
T. Schoofs, C. Rohde, K. Hebestreit, H.-U. Klein, S. Gollner, I. Schulze, M. Lerdrup, N. Dietrich, S. Agrawal-Singh, A. Witten, et al. (2013)
Blood 121, 178-187
   Abstract »    Full Text »    PDF »
Cancer Epigenetics: A Brief Review.
S. Virani, J. A. Colacino, J. H. Kim, and L. S. Rozek (2012)
ILAR J 53, 359-369
   Abstract »    Full Text »    PDF »
Integrative Epigenomic Analysis Identifies Biomarkers and Therapeutic Targets in Adult B-Acute Lymphoblastic Leukemia.
H. Geng, S. Brennan, T. A. Milne, W.-Y. Chen, Y. Li, C. Hurtz, S.-M. Kweon, L. Zickl, S. Shojaee, D. Neuberg, et al. (2012)
Cancer Discovery 2, 1004-1023
   Abstract »    Full Text »    PDF »
DNA Demethylating Agent Decitabine Increases AQP5 Expression and Restores Salivary Function.
Y. Yamamura, K. Aota, T. Yamanoi, K. Kani, H. Takano, Y. Momota, K. Motegi, and M. Azuma (2012)
Journal of Dental Research 91, 612-617
   Abstract »    PDF »
Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP.
Y. Zhang, G. K. Andrews, and L. Wang (2012)
Nucleic Acids Res. 40, 4850-4860
   Abstract »    Full Text »    PDF »
Nuclear Hormone Receptors Enable Macrophages and Dendritic Cells to Sense Their Lipid Environment and Shape Their Immune Response.
L. Nagy, A. Szanto, I. Szatmari, and L. Szeles (2012)
Physiol Rev 92, 739-789
   Abstract »    Full Text »    PDF »
Epigenetic regulation by RAR{alpha} maintains ligand-independent transcriptional activity.
K. B. Laursen, P.-M. Wong, and L. J. Gudas (2012)
Nucleic Acids Res. 40, 102-115
   Abstract »    Full Text »    PDF »
Analysis of Promoter CpG Island Hypermethylation in Cancer: Location, Location, Location!.
I. J. H. van Vlodrop, H. E. C. Niessen, S. Derks, M. M. L. L. Baldewijns, W. van Criekinge, J. G. Herman, and M. van Engeland (2011)
Clin. Cancer Res. 17, 4225-4231
   Abstract »    Full Text »    PDF »
Revisiting the differentiation paradigm in acute promyelocytic leukemia.
J. Ablain and H. de The (2011)
Blood 117, 5795-5802
   Abstract »    Full Text »    PDF »
Differentiation of NUT Midline Carcinoma by Epigenomic Reprogramming.
B. E. Schwartz, M. D. Hofer, M. E. Lemieux, D. E. Bauer, M. J. Cameron, N. H. West, E. S. Agoston, N. Reynoird, S. Khochbin, T. A. Ince, et al. (2011)
Cancer Res. 71, 2686-2696
   Abstract »    Full Text »    PDF »
The CEBPA gene is down-regulated in acute promyelocytic leukemia and its upstream promoter, but not the core promoter, is highly methylated.
B. A. Santana-Lemos, A. P. A. de Lima Lange, M. T. de Lira Benicio, T. D. d. S. Jose, A. R. Lucena-Araujo, A. Krause, C. H. Thome, and E. M. Rego (2011)
Haematologica 96, 617-620
   Abstract »    Full Text »    PDF »
Treatment with 5-Azacytidine Accelerates Acute Promyelocytic Leukemia Leukemogenesis in a Transgenic Mouse Model.
P. P. Scaglioni, L. F. Cai, S. M. Majid, T. M. Yung, N. D. Socci, S. C. Kogan, L. Kopelovich, and P. P. Pandolfi (2011)
Genes & Cancer 2, 160-165
   Abstract »    Full Text »    PDF »
Dynamics of epigenetic modifications in leukemia.
I. Uribesalgo and L. Di Croce (2011)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
EV(I1)olution of AML DNA methylation.
G. D. Ginder (2011)
Blood 117, 4-5
   Full Text »    PDF »
Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1.
S. Lugthart, M. E. Figueroa, E. Bindels, L. Skrabanek, P. J. M. Valk, Y. Li, S. Meyer, C. Erpelinck-Verschueren, J. Greally, B. Lowenberg, et al. (2011)
Blood 117, 234-241
   Abstract »    Full Text »    PDF »
PML-RAR{alpha} and Dnmt3a1 Cooperate in vivo to Promote Acute Promyelocytic Leukemia.
D. Subramanyam, C. D. Belair, K. Q. Barry-Holson, H. Lin, S. C. Kogan, E. Passegue, and R. Blelloch (2010)
Cancer Res. 70, 8792-8801
   Abstract »    Full Text »    PDF »
The role of EZH2 and DNA methylation in the silencing of the tumour suppressor RUNX3 in colorectal cancer.
L. L. Kodach, R. J. Jacobs, J. Heijmans, C. J. M. van Noesel, A. M. J. Langers, H. W. Verspaget, D. W. Hommes, G. J. A. Offerhaus, G. R. van den Brink, and J. C. H. Hardwick (2010)
Carcinogenesis 31, 1567-1575
   Abstract »    Full Text »    PDF »
Epigenetics in cancer.
S. Sharma, T. K. Kelly, and P. A. Jones (2010)
Carcinogenesis 31, 27-36
   Abstract »    Full Text »    PDF »
Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia.
F. C. Guibal, M. Alberich-Jorda, H. Hirai, A. Ebralidze, E. Levantini, A. Di Ruscio, P. Zhang, B. A. Santana-Lemos, D. Neuberg, A. J. Wagers, et al. (2009)
Blood 114, 5415-5425
   Abstract »    Full Text »    PDF »
Valproic Acid at Therapeutic Plasma Levels May Increase 5-Azacytidine Efficacy in Higher Risk Myelodysplastic Syndromes.
M. T. Voso, V. Santini, C. Finelli, P. Musto, E. Pogliani, E. Angelucci, G. Fioritoni, G. Alimena, L. Maurillo, A. Cortelezzi, et al. (2009)
Clin. Cancer Res. 15, 5002-5007
   Abstract »    Full Text »    PDF »
A Label-free Quantitative Proteomics Strategy to Identify E3 Ubiquitin Ligase Substrates Targeted to Proteasome Degradation.
C. F. Burande, M. L. Heuze, I. Lamsoul, B. Monsarrat, S. Uttenweiler-Joseph, and P. G. Lutz (2009)
Mol. Cell. Proteomics 8, 1719-1727
   Abstract »    Full Text »    PDF »
Cancer DNA Methylation: Molecular Mechanisms and Clinical Implications.
M. T. McCabe, J. C. Brandes, and P. M. Vertino (2009)
Clin. Cancer Res. 15, 3927-3937
   Abstract »    Full Text »    PDF »
The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation.
H. Boukarabila, A. J. Saurin, E. Batsche, N. Mossadegh, M. van Lohuizen, A. P. Otte, J. Pradel, C. Muchardt, M. Sieweke, and E. Duprez (2009)
Genes & Dev. 23, 1195-1206
   Abstract »    Full Text »    PDF »
Differentiation therapy of leukemia: 3 decades of development.
D. Nowak, D. Stewart, and H. P. Koeffler (2009)
Blood 113, 3655-3665
   Abstract »    Full Text »    PDF »
SALL3 Interacts with DNMT3A and Shows the Ability To Inhibit CpG Island Methylation in Hepatocellular Carcinoma.
Y. Shikauchi, A. Saiura, T. Kubo, Y. Niwa, J. Yamamoto, Y. Murase, and H. Yoshikawa (2009)
Mol. Cell. Biol. 29, 1944-1958
   Abstract »    Full Text »    PDF »
Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells.
P.-O. Esteve, H. G. Chin, J. Benner, G. R. Feehery, M. Samaranayake, G. A. Horwitz, S. E. Jacobsen, and S. Pradhan (2009)
PNAS 106, 5076-5081
   Abstract »    Full Text »    PDF »
Genome-wide epigenetic analysis delineates a biologically distinct immature acute leukemia with myeloid/T-lymphoid features.
M. E. Figueroa, B. J. Wouters, L. Skrabanek, J. Glass, Y. Li, C. A. J. Erpelinck-Verschueren, A. W. Langerak, B. Lowenberg, M. Fazzari, J. M. Greally, et al. (2009)
Blood 113, 2795-2804
   Abstract »    Full Text »    PDF »
A Multifactorial Signature of DNA Sequence and Polycomb Binding Predicts Aberrant CpG Island Methylation.
M. T. McCabe, E. K. Lee, and P. M. Vertino (2009)
Cancer Res. 69, 282-291
   Abstract »    Full Text »    PDF »
MBD3, a Component of the NuRD Complex, Facilitates Chromatin Alteration and Deposition of Epigenetic Marks.
L. Morey, C. Brenner, F. Fazi, R. Villa, A. Gutierrez, M. Buschbeck, C. Nervi, S. Minucci, F. Fuks, and L. Di Croce (2008)
Mol. Cell. Biol. 28, 5912-5923
   Abstract »    Full Text »    PDF »
Expanding the Use of Retinoids in Acute Myeloid Leukemia: Spotlight on Bexarotene.
S. McNamara and W. H. Miller Jr. (2008)
Clin. Cancer Res. 14, 5311-5313
   Full Text »    PDF »
Signaling silence--breaking ground and spreading out.
H. R. Woo and E. J. Richards (2008)
Genes & Dev. 22, 1719-1723
   Abstract »    Full Text »    PDF »
Epigenetic Modification of CCAAT/Enhancer Binding Protein {alpha} Expression in Acute Myeloid Leukemia.
B. Hackanson, K. L. Bennett, R. M. Brena, J. Jiang, R. Claus, S.-S. Chen, N. Blagitko-Dorfs, K. Maharry, S. P. Whitman, T. D. Schmittgen, et al. (2008)
Cancer Res. 68, 3142-3151
   Abstract »    Full Text »    PDF »
Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation.
L. A. Puto and J. C. Reed (2008)
Genes & Dev. 22, 998-1010
   Abstract »    Full Text »    PDF »
Silent Assassin: Oncogenic Ras Directs Epigenetic Inactivation of Target Genes.
X. Cheng (2008)
Science Signaling 1, pe14
   Abstract »    Full Text »    PDF »
Epigenomic repression by APL oncoprotein.
F. Pettersson and W. H. Miller Jr (2008)
Blood 111, 2498
   Full Text »    PDF »
Chromatin modifications induced by PML-RAR{alpha} repress critical targets in leukemogenesis as analyzed by ChIP-Chip.
C. Hoemme, A. Peerzada, G. Behre, Y. Wang, M. McClelland, K. Nieselt, M. Zschunke, C. Disselhoff, S. Agrawal, F. Isken, et al. (2008)
Blood 111, 2887-2895
   Abstract »    Full Text »    PDF »
DNA methylation-independent loss of RARA gene expression in acute myeloid leukemia.
A. Glasow, A. Barrett, K. Petrie, R. Gupta, M. Boix-Chornet, D.-C. Zhou, D. Grimwade, R. Gallagher, M. von Lindern, S. Waxman, et al. (2008)
Blood 111, 2374-2377
   Abstract »    Full Text »    PDF »
The Dynamic Epigenome and its Implications in Toxicology.
M. Szyf (2007)
Toxicol. Sci. 100, 7-23
   Abstract »    Full Text »    PDF »
Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome.
A. O. Soriano, H. Yang, S. Faderl, Z. Estrov, F. Giles, F. Ravandi, J. Cortes, W. G. Wierda, S. Ouzounian, A. Quezada, et al. (2007)
Blood 110, 2302-2308
   Abstract »    Full Text »    PDF »
Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia.
F. Fazi, G. Zardo, V. Gelmetti, L. Travaglini, A. Ciolfi, L. Di Croce, A. Rosa, I. Bozzoni, F. Grignani, F. Lo-Coco, et al. (2007)
Blood 109, 4432-4440
   Abstract »    Full Text »    PDF »
Epigenetic gene silencing in cancer: the DNA hypermethylome.
M. Esteller (2007)
Hum. Mol. Genet. 16, R50-R59
   Abstract »    Full Text »    PDF »
Genome-epigenome interactions in cancer.
R. M. Brena and J. F. Costello (2007)
Hum. Mol. Genet. 16, R96-R105
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Transactivation and Doxorubicin-mediated Repression of survivin Gene in Cancer Cells.
P.-O. Esteve, H. G. Chin, and S. Pradhan (2007)
J. Biol. Chem. 282, 2615-2625
   Abstract »    Full Text »    PDF »
Differential Recruitment of Methylated CpG Binding Domains by the Orphan Receptor GCNF Initiates the Repression and Silencing of Oct4 Expression.
P. Gu, D. Le Menuet, A. C.-K. Chung, and A. J. Cooney (2006)
Mol. Cell. Biol. 26, 9471-9483
   Abstract »    Full Text »    PDF »
The cancer epigenome--components and functional correlates.
A. H. Ting, K. M. McGarvey, and S. B. Baylin (2006)
Genes & Dev. 20, 3215-3231
   Abstract »    Full Text »    PDF »
Inhibitors of DNA methylation and histone deacetylation independently relieve AML1/ETO-mediated lysozyme repression.
R. Claus, M. Fliegauf, M. Stock, J. A. Duque, M. Kolanczyk, and M. Lubbert (2006)
J. Leukoc. Biol. 80, 1462-1472
   Abstract »    Full Text »    PDF »
Identifying gene regulatory elements by genomic microarray mapping of DNaseI hypersensitive sites.
G. A. Follows, P. Dhami, B. Gottgens, A. W. Bruce, P. J. Campbell, S. C. Dillon, A. M. Smith, C. Koch, I. J. Donaldson, M. A. Scott, et al. (2006)
Genome Res. 16, 1310-1319
   Abstract »    Full Text »    PDF »
Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi's sarcoma-associated herpesvirus LANA.
M. Shamay, A. Krithivas, J. Zhang, and S. D. Hayward (2006)
PNAS 103, 14554-14559
   Abstract »    Full Text »    PDF »
Sequential Valproic Acid/All-trans Retinoic Acid Treatment Reprograms Differentiation in Refractory and High-Risk Acute Myeloid Leukemia..
G. Cimino, F. Lo-Coco, S. Fenu, L. Travaglini, E. Finolezzi, M. Mancini, M. Nanni, A. Careddu, F. Fazi, F. Padula, et al. (2006)
Cancer Res. 66, 8903-8911
   Abstract »    Full Text »    PDF »
DNA Damage-induced Down-regulation of Human Cdc25C and Cdc2 Is Mediated by Cooperation between p53 and Maintenance DNA (Cytosine-5) Methyltransferase 1.
G. L. Gac, P.-O. Esteve, C. Ferec, and S. Pradhan (2006)
J. Biol. Chem. 281, 24161-24170
   Abstract »    Full Text »    PDF »
Cytoplasmic Function of Mutant Promyelocytic Leukemia (PML) and PML-Retinoic Acid Receptor-{alpha}.
C. Bellodi, K. Kindle, F. Bernassola, D. Dinsdale, A. Cossarizza, G. Melino, D. Heery, and P. Salomoni (2006)
J. Biol. Chem. 281, 14465-14473
   Abstract »    Full Text »    PDF »
In vivo analysis of the role of aberrant histone deacetylase recruitment and RAR{alpha} blockade in the pathogenesis of acute promyelocytic leukemia.
H. Matsushita, P. P. Scaglioni, M. Bhaumik, E. M. Rego, L. F. Cai, S. M. Majid, H. Miyachi, A. Kakizuka, W. H. Miller Jr., and P. P. Pandolfi (2006)
J. Exp. Med. 203, 821-828
   Abstract »    Full Text »    PDF »
CpG Sites Preferentially Methylated by Dnmt3a in Vivo.
M. Oka, N. Rodic, J. Graddy, L.-J. Chang, and N. Terada (2006)
J. Biol. Chem. 281, 9901-9908
   Abstract »    Full Text »    PDF »
Recruitment of the Histone Methyltransferase SUV39H1 and Its Role in the Oncogenic Properties of the Leukemia-Associated PML-Retinoic Acid Receptor Fusion Protein.
R. Carbone, O. A. Botrugno, S. Ronzoni, A. Insinga, L. Di Croce, P. G. Pelicci, and S. Minucci (2006)
Mol. Cell. Biol. 26, 1288-1296
   Abstract »    Full Text »    PDF »
The methyl-CpG binding protein MBD1 is required for PML-RAR{alpha} function.
R. Villa, L. Morey, V. A. Raker, M. Buschbeck, A. Gutierrez, F. De Santis, M. Corsaro, F. Varas, D. Bossi, S. Minucci, et al. (2006)
PNAS 103, 1400-1405
   Abstract »    Full Text »    PDF »
De novo CpG Island Methylation in Human Cancer Cells.
K.-W. Jair, K. E. Bachman, H. Suzuki, A. H. Ting, I. Rhee, R.-W. C. Yen, S. B. Baylin, and K. E. Schuebel (2006)
Cancer Res. 66, 682-692
   Abstract »    Full Text »    PDF »
The Biology of Acute Promyelocytic Leukemia and Its Impact on Diagnosis and Treatment.
F. Lo-Coco and E. Ammatuna (2006)
Hematology 2006, 156-161
   Abstract »    Full Text »    PDF »
Methylation of estrogen receptor {beta} promoter correlates with loss of ER-{beta} expression in mammary carcinoma and is an early indication marker in premalignant lesions.
A Rody, U Holtrich, C Solbach, K Kourtis, G von Minckwitz, K Engels, S Kissler, R Gatje, T Karn, and M Kaufmann (2005)
Endocr. Relat. Cancer 12, 903-916
   Abstract »    Full Text »    PDF »
Impaired Retinoic Acid (RA) Signal Leads to RAR{beta}2 Epigenetic Silencing and RA Resistance.
M. Ren, S. Pozzi, G. Bistulfi, G. Somenzi, S. Rossetti, and N. Sacchi (2005)
Mol. Cell. Biol. 25, 10591-10603
   Abstract »    Full Text »    PDF »
DNA Methyltransferase Inhibitors and the Development of Epigenetic Cancer Therapies.
F. Lyko and R. Brown (2005)
J Natl Cancer Inst 97, 1498-1506
   Abstract »    Full Text »    PDF »
Platelet-Derived Growth Factor-AA Is an Essential and Autocrine Regulator of Vascular Endothelial Growth Factor Expression in Non-Small Cell Lung Carcinomas.
Y. Shikada, Y. Yonemitsu, T. Koga, M. Onimaru, T. Nakano, S. Okano, S. Sata, K. Nakagawa, I. Yoshino, Y. Maehara, et al. (2005)
Cancer Res. 65, 7241-7248
   Abstract »    Full Text »    PDF »
The Theoretical Basis of Transcriptional Therapy of Cancer: Can It Be Put Into Practice?.
A. M. Melnick, K. Adelson, and J. D. Licht (2005)
J. Clin. Oncol. 23, 3957-3970
   Abstract »    Full Text »    PDF »
Epigenetic and Chromatin Modifiers As Targeted Therapy of Hematologic Malignancies.
K. N. Bhalla (2005)
J. Clin. Oncol. 23, 3971-3993
   Abstract »    Full Text »    PDF »
Methylation Silencing of the Apaf-1 Gene in Acute Leukemia.
Y. Furukawa, K. Sutheesophon, T. Wada, M. Nishimura, Y. Saito, H. Ishii, and Y. Furukawa (2005)
Mol. Cancer Res. 3, 325-334
   Abstract »    Full Text »    PDF »
STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes.
Q. Zhang, H. Y. Wang, M. Marzec, P. N. Raghunath, T. Nagasawa, and M. A. Wasik (2005)
PNAS 102, 6948-6953
   Abstract »    Full Text »    PDF »
Chromatin modifying activity of leukaemia associated fusion proteins.
L. Di Croce (2005)
Hum. Mol. Genet. 14, R77-R84
   Abstract »    Full Text »    PDF »
Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells.
S. Racanicchi, C. Maccherani, C. Liberatore, M. Billi, V. Gelmetti, M. Panigada, G. Rizzo, C. Nervi, and F. Grignani (2005)
EMBO J. 24, 1232-1242
   Abstract »    Full Text »    PDF »
Valproic acid, in combination with all-trans retinoic acid and 5-aza-2'-deoxycytidine, restores expression of silenced RAR{beta}2 in breast cancer cells.
N. P. Mongan and L. J. Gudas (2005)
Mol. Cancer Ther. 4, 477-486
   Abstract »    Full Text »    PDF »
FLT3/ITD Mutation Signaling Includes Suppression of SHP-1.
P. Chen, M. Levis, P. Brown, K.-T. Kim, J. Allebach, and D. Small (2005)
J. Biol. Chem. 280, 5361-5369
   Abstract »    Full Text »    PDF »
Interplay of RUNX1/MTG8 and DNA Methyltransferase 1 in Acute Myeloid Leukemia.
S. Liu, T. Shen, L. Huynh, M. I. Klisovic, L. J. Rush, J. L. Ford, J. Yu, B. Becknell, Y. Li, C. Liu, et al. (2005)
Cancer Res. 65, 1277-1284
   Abstract »    Full Text »    PDF »
Myc represses transcription through recruitment of DNA methyltransferase corepressor.
C. Brenner, R. Deplus, C. Didelot, A. Loriot, E. Vire, C. De Smet, A. Gutierrez, D. Danovi, D. Bernard, T. Boon, et al. (2005)
EMBO J. 24, 336-346
   Abstract »    Full Text »    PDF »
The Molecular Pathology of Acute Myeloid Leukemia.
J. D. Licht and D. W. Sternberg (2005)
Hematology 2005, 137-142
   Abstract »    Full Text »    PDF »
Epigenomic Changes during Leukemia Cell Differentiation: Analysis of Histone Acetylation and Cytosine Methylation Using CpG Island Microarrays.
M. Nouzova, N. Holtan, M. M. Oshiro, R. B. Isett, J. L. Munoz-Rodriguez, A. F. List, M. L. Narro, S. J. Miller, N. C. Merchant, and B. W. Futscher (2004)
J. Pharmacol. Exp. Ther. 311, 968-981
   Abstract »    Full Text »    PDF »
Promoter Hypermethylation and Quantitative mRNA Expression of the Retinoic Acid Receptor {beta}2 Gene in Patients with Acute Myeloid Leukemia..
A. Rethmeier, P. Hokland, and A. Aggerholm (2004)
Blood (ASH Annual Meeting Abstracts) 104, 1065
   Abstract »
Relapse of Acute Promyelocytic Leukemia (APL) Is Associated with Increased Methylation of the Retinoic Acid Receptor-Beta2 (RAR{beta}2) Gene Promoter..
D.-C. Zhou, H. Kim, M. S. Tallman4, and R. E. Gallagher (2004)
Blood (ASH Annual Meeting Abstracts) 104, 1124
   Abstract »
DNA Methylation and Cancer.
P. M. Das and R. Singal (2004)
J. Clin. Oncol. 22, 4632-4642
   Abstract »    Full Text »    PDF »
Epigenetics and cancer.
A. H. Lund and M. van Lohuizen (2004)
Genes & Dev. 18, 2315-2335
   Abstract »    Full Text »    PDF »
Reprogramming of a melanoma genome by nuclear transplantation.
K. Hochedlinger, R. Blelloch, C. Brennan, Y. Yamada, M. Kim, L. Chin, and R. Jaenisch (2004)
Genes & Dev. 18, 1875-1885
   Abstract »    Full Text »    PDF »
Parent-of-Origin-Specific Binding of Nuclear Hormone Receptor Complexes in the H19-Igf2 Imprinting Control Region.
P. E. Szabo, G. P. Pfeifer, and J. R. Mann (2004)
Mol. Cell. Biol. 24, 4858-4868
   Abstract »    Full Text »    PDF »
The Fusion Oncoprotein PML-RAR{alpha} Induces Endoplasmic Reticulum (ER)-associated Degradation of N-CoR and ER Stress.
M. M. Khan, T. Nomura, T. Chiba, K. Tanaka, H. Yoshida, K. Mori, and S. Ishii (2004)
J. Biol. Chem. 279, 11814-11824
   Abstract »    Full Text »    PDF »
Impairment of p53 acetylation, stability and function by an oncogenic transcription factor.
A. Insinga, S. Monestiroli, S. Ronzoni, R. Carbone, M. Pearson, G. Pruneri, G. Viale, E. Appella, P. Pelicci, and S. Minucci (2004)
EMBO J. 23, 1144-1154
   Abstract »    Full Text »    PDF »
The Present State of Antineoplaston Research (1).
S. R. Burzynski (2004)
Integr Cancer Ther 3, 47-58
   Abstract »    PDF »
The Coiled-coil Domain Is the Structural Determinant for Mammalian Homologues of Drosophila Sina-mediated Degradation of Promyelocytic Leukemia Protein and Other Tripartite Motif Proteins by the Proteasome.
M. Fanelli, A. Fantozzi, P. De Luca, S. Caprodossi, S.-i. Matsuzawa, M. A. Lazar, P. G. Pelicci, and S. Minucci (2004)
J. Biol. Chem. 279, 5374-5379
   Abstract »    Full Text »    PDF »
Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes.
M. T. Voso, A. Scardocci, F. Guidi, G. Zini, A. Di Mario, L. Pagano, S. Hohaus, and G. Leone (2004)
Blood 103, 698-700
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882