Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 295 (5559): 1526-1528

Copyright © 2002 by the American Association for the Advancement of Science

Effect of p53 Status on Tumor Response to Antiangiogenic Therapy

Joanne L. Yu,12 Janusz W. Rak,3 Brenda L. Coomber,4 Daniel J. Hicklin,5 Robert S. Kerbel12*

The p53 tumor suppressor gene is inactivated in the majority of human cancers. Tumor cells deficient in p53 display a diminished rate of apoptosis under hypoxic conditions, a circumstance that might reduce their reliance on vascular supply, and hence their responsiveness to antiangiogenic therapy. Here, we report that mice bearing tumors derived from p53-/- HCT116 human colorectal cancer cells were less responsive to antiangiogenic combination therapy than mice bearing isogenic p53+/+ tumors. Thus, although antiangiogenic therapy targets genetically stable endothelial cells in the tumor vasculature, genetic alterations that decrease the vascular dependence of tumor cells can influence the therapeutic response of tumors to this therapy.

1 Sunnybrook and Women's College Health Sciences Centre, Molecular and Cellular Biology Research, Room S-218, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5.
2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5S 1A1.
3 Hamilton Civic Hospitals Research Centre, McMaster University, Hamilton, Ontario, Canada L8V 1C3.
4 Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
5 ImClone Systems, Inc., 180 Varick Street, 7th Floor, New York, NY 10014, USA.
*   To whom correspondence should be addressed. E-mail: robert.kerbel{at}swchsc.on.ca



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Treating hepatocellular carcinoma progression following first-line sorafenib: therapeutic options and clinical observations.
A. R. He and A. S. Goldenberg (2013)
Therapeutic Advances in Gastroenterology 6, 447-458
   Abstract »    PDF »
Resistance and Escape From Antiangiogenesis Therapy: Clinical Implications and Future Strategies.
J. N. Bottsford-Miller, R. L. Coleman, and A. K. Sood (2012)
J. Clin. Oncol. 30, 4026-4034
   Abstract »    Full Text »    PDF »
Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis.
T. Osawa, M. Muramatsu, F. Wang, R. Tsuchida, T. Kodama, T. Minami, and M. Shibuya (2011)
PNAS 108, 20725-20729
   Abstract »    Full Text »    PDF »
Selective Killing of Tumor Neovasculature Paradoxically Improves Chemotherapy Delivery to Tumors.
F. E. Escorcia, E. Henke, M. R. McDevitt, C. H. Villa, P. Smith-Jones, R. G. Blasberg, R. Benezra, and D. A. Scheinberg (2010)
Cancer Res. 70, 9277-9286
   Abstract »    Full Text »    PDF »
Renal Cancer Resistance to Antiangiogenic Therapy Is Delayed by Restoration of Angiostatic Signaling.
R. S. Bhatt, X. Wang, L. Zhang, M. P. Collins, S. Signoretti, D. C. Alsop, S. N. Goldberg, M. B. Atkins, and J. W. Mier (2010)
Mol. Cancer Ther. 9, 2793-2802
   Abstract »    Full Text »    PDF »
Defective p53 antiangiogenic signaling in glioblastoma.
B. Berger, D. Capper, D. Lemke, P.-N. Pfenning, M. Platten, M. Weller, A. von Deimling, W. Wick, and M. Weiler (2010)
Neuro Oncology 12, 894-907
   Abstract »    Full Text »    PDF »
P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis.
M. Yamakuchi, C. D. Lotterman, C. Bao, R. H. Hruban, B. Karim, J. T. Mendell, D. Huso, and C. J. Lowenstein (2010)
PNAS 107, 6334-6339
   Abstract »    Full Text »    PDF »
Roles for Growth Factors in Cancer Progression.
E. Witsch, M. Sela, and Y. Yarden (2010)
Physiology 25, 85-101
   Abstract »    Full Text »    PDF »
Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates..
S. Loges, T. Schmidt, and P. Carmeliet (2010)
Genes & Cancer 1, 12-25
   Abstract »    Full Text »    PDF »
Tumor and Host-Mediated Pathways of Resistance and Disease Progression in Response to Antiangiogenic Therapy.
J. M. L. Ebos, C. R. Lee, and R. S. Kerbel (2009)
Clin. Cancer Res. 15, 5020-5025
   Abstract »    Full Text »    PDF »
Refractoriness to Antivascular Endothelial Growth Factor Treatment: Role of Myeloid Cells.
F. Shojaei and N. Ferrara (2008)
Cancer Res. 68, 5501-5504
   Abstract »    Full Text »    PDF »
Pharmacodynamic and pharmacokinetic study of chronic low-dose metronomic cyclophosphamide therapy in mice.
U. Emmenegger, Y. Shaked, S. Man, G. Bocci, I. Spasojevic, G. Francia, A. Kouri, R. Coke, W. Cruz-Munoz, S. M. Ludeman, et al. (2007)
Mol. Cancer Ther. 6, 2280-2289
   Abstract »    Full Text »    PDF »
Design of Clinical Trials of Radiation Combined with Antiangiogenic Therapy.
S. Senan and E. F. Smit (2007)
Oncologist 12, 465-477
   Abstract »    Full Text »    PDF »
Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor signaling blockade.
W. Wu, A. Onn, T. Isobe, S. Itasaka, R. R. Langley, T. Shitani, K. Shibuya, R. Komaki, A. J. Ryan, I. J. Fidler, et al. (2007)
Mol. Cancer Ther. 6, 471-483
   Abstract »    Full Text »    PDF »
Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch.
S. Giuriato, S. Ryeom, A. C. Fan, P. Bachireddy, R. C. Lynch, M. J. Rioth, J. van Riggelen, A. M. Kopelman, E. Passegue, F. Tang, et al. (2006)
PNAS 103, 16266-16271
   Abstract »    Full Text »    PDF »
Inhibition of p53 Response in Tumor Stroma Improves Efficacy of Anticancer Treatment by Increasing Antiangiogenic Effects of Chemotherapy and Radiotherapy in Mice.
L. G. Burdelya, E. A. Komarova, J. E. Hill, T. Browder, N. D. Tararova, L. Mavrakis, P. E. DiCorleto, J. Folkman, and A. V. Gudkov (2006)
Cancer Res. 66, 9356-9361
   Abstract »    Full Text »    PDF »
The Met pathway: master switch and drug target in cancer progression.
M. Mazzone and P. M. Comoglio (2006)
FASEB J 20, 1611-1621
   Abstract »    Full Text »    PDF »
Dissociation of Angiogenesis and Tumorigenesis in Follistatin- and Activin-Expressing Tumors.
J. Krneta, J. Kroll, F. Alves, C. Prahst, F. Sananbenesi, C. Dullin, S. Kimmina, D. J. Phillips, and H. G. Augustin (2006)
Cancer Res. 66, 5686-5695
   Abstract »    Full Text »    PDF »
Antiangiogenic therapy: a universal chemosensitization strategy for cancer?.
R. S. Kerbel (2006)
Science 312, 1171-1175
   Abstract »    Full Text »    PDF »
Contribution of individual targets to the antitumor efficacy of the multitargeted receptor tyrosine kinase inhibitor SU11248.
O. Potapova, A. D. Laird, M. A. Nannini, A. Barone, G. Li, K. G. Moss, J. M. Cherrington, and D. B. Mendel (2006)
Mol. Cancer Ther. 5, 1280-1289
   Abstract »    Full Text »    PDF »
Targeted Anti-Vascular Endothelial Growth Factor Receptor-2 Therapy Leads to Short-term and Long-term Impairment of Vascular Function and Increase in Tumor Hypoxia.
M. Franco, S. Man, L. Chen, U. Emmenegger, Y. Shaked, A. M. Cheung, A. S. Brown, D. J. Hicklin, F. S. Foster, and R. S. Kerbel (2006)
Cancer Res. 66, 3639-3648
   Abstract »    Full Text »    PDF »
Differentially Regulated Micro-RNAs and Actively Translated Messenger RNA Transcripts by Tumor Suppressor p53 in Colon Cancer..
Y. Xi, R. Shalgi, O. Fodstad, Y. Pilpel, and J. Ju (2006)
Clin. Cancer Res. 12, 2014-2024
   Abstract »    Full Text »    PDF »
Inhibition of VEGFR-3 Activation with the Antagonistic Antibody More Potently Suppresses Lymph Node and Distant Metastases than Inactivation of VEGFR-2..
N. Roberts, B. Kloos, M. Cassella, S. Podgrabinska, K. Persaud, Y. Wu, B. Pytowski, and M. Skobe (2006)
Cancer Res. 66, 2650-2657
   Abstract »    Full Text »    PDF »
Low-Dose Metronomic Daily Cyclophosphamide and Weekly Tirapazamine: A Well-Tolerated Combination Regimen with Enhanced Efficacy That Exploits Tumor Hypoxia.
U. Emmenegger, G. C. Morton, G. Francia, Y. Shaked, M. Franco, A. Weinerman, S. Man, and R. S. Kerbel (2006)
Cancer Res. 66, 1664-1674
   Abstract »    Full Text »    PDF »
Morphologic Instability and Cancer Invasion.
V. Cristini, H. B. Frieboes, R. Gatenby, S. Caserta, M. Ferrari, and J. Sinek (2005)
Clin. Cancer Res. 11, 6772-6779
   Abstract »    Full Text »    PDF »
Recombinant human endostatin administered as a 28-day continuous intravenous infusion, followed by daily subcutaneous injections: a phase I and pharmacokinetic study in patients with advanced cancer.
A. H. G. Hansma, H. J. Broxterman, I. van der Horst, Y. Yuana, E. Boven, G. Giaccone, H. M. Pinedo, and K. Hoekman (2005)
Ann. Onc. 16, 1695-1701
   Abstract »    Full Text »    PDF »
Ischemia-Induced K-ras Mutations in Human Colorectal Cancer Cells: Role of Microenvironmental Regulation of MSH2 Expression.
S. Shahrzad, L. Quayle, C. Stone, C. Plumb, S. Shirasawa, J. W. Rak, and B. L. Coomber (2005)
Cancer Res. 65, 8134-8141
   Abstract »    Full Text »    PDF »
Low-dose Metronomic Combined with Intermittent Bolus-dose Cyclophosphamide Is an Effective Long-term Chemotherapy Treatment Strategy.
Y. Shaked, U. Emmenegger, G. Francia, L. Chen, C. R. Lee, S. Man, A. Paraghamian, Y. Ben-David, and R. S. Kerbel (2005)
Cancer Res. 65, 7045-7051
   Abstract »    Full Text »    PDF »
Association of k-ras, b-raf, and p53 Status With the Treatment Effect of Bevacizumab.
W. L. Ince, A. M. Jubb, S. N. Holden, E. B. Holmgren, P. Tobin, M. Sridhar, H. I. Hurwitz, F. Kabbinavar, W. F. Novotny, K. J. Hillan, et al. (2005)
J Natl Cancer Inst 97, 981-989
   Abstract »    Full Text »    PDF »
Vascular Targeting and Antiangiogenesis Agents Induce Drug Resistance Effector GRP78 within the Tumor Microenvironment.
D. Dong, B. Ko, P. Baumeister, S. Swenson, F. Costa, F. Markland, C. Stiles, J. B. Patterson, S. E. Bates, and A. S. Lee (2005)
Cancer Res. 65, 5785-5791
   Abstract »    Full Text »    PDF »
P53 Mutation Analysis of Colorectal Liver Metastases: Relation to Actual Survival, Angiogenic Status, and p53 Overexpression.
K. P. de Jong, A. S.H. Gouw, P. M.J.G. Peeters, M. Bulthuis, L. Menkema, R. J. Porte, M. J.H. Slooff, H. van Goor, and A. van den Berg (2005)
Clin. Cancer Res. 11, 4067-4073
   Abstract »    Full Text »    PDF »
Combination of Antiangiogenic Therapy With Other Anticancer Therapies: Results, Challenges, and Open Questions.
G. Gasparini, R. Longo, M. Fanelli, and B. A. Teicher (2005)
J. Clin. Oncol. 23, 1295-1311
   Abstract »    Full Text »    PDF »
Induction of Complete Regressions of Oncogene-induced Breast Tumors in Mice.
R. BENEZRA, E. HENKE, A. CIARROCCHI, M. RUZINOVA, D. SOLIT, N. ROSEN, D. NOLAN, V. MITTAL, and P. DE CANDIA (2005)
Cold Spring Harb Symp Quant Biol 70, 375-381
   Abstract »    PDF »
Structural Basis for the Functions of Endogenous Angiogenesis Inhibitors.
M.A. GRANT and R. KALLUR (2005)
Cold Spring Harb Symp Quant Biol 70, 399-417
   Abstract »    PDF »
HER-2/neu Overexpression Increases the Viable Hypoxic Cell Population within Solid Tumors without Causing Changes in Tumor Vascularization.
W. H. Dragowska, C. Warburton, D. T.T. Yapp, A. I. Minchinton, Y. Hu, D. N. Waterhouse, K. Gelmon, K. Skov, J. Woo, D. Masin, et al. (2004)
Mol. Cancer Res. 2, 606-619
   Abstract »    Full Text »    PDF »
Destructive cycles: the role of genomic instability and adaptation in carcinogenesis.
B. L. Schneider and M. Kulesz-Martin (2004)
Carcinogenesis 25, 2033-2044
   Abstract »    Full Text »    PDF »
Utilization of Bone Marrow-Derived Endothelial Cell Precursors in Spontaneous Prostate Tumors Varies with Tumor Grade.
H. Li, W. L. Gerald, and R. Benezra (2004)
Cancer Res. 64, 6137-6143
   Abstract »    Full Text »    PDF »
Vascular Endothelial Growth Factor as a Target for Anticancer Therapy.
N. Ferrara (2004)
Oncologist 9, 2-10
   Abstract »    Full Text »    PDF »
Depletion of CXCR2 Inhibits Tumor Growth and Angiogenesis in a Murine Model of Lung Cancer.
M. P. Keane, J. A. Belperio, Y. Y. Xue, M. D. Burdick, and R. M. Strieter (2004)
J. Immunol. 172, 2853-2860
   Abstract »    Full Text »    PDF »
Anoxic Fibroblasts Activate a Replication Checkpoint That Is Bypassed By E1a.
L. B. Gardner, F. Li, X. Yang, and C. V. Dang (2003)
Mol. Cell. Biol. 23, 9032-9045
   Abstract »    Full Text »    PDF »
Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts.
S. Williams, C. Pettaway, R. Song, C. Papandreou, C. Logothetis, and D. J. McConkey (2003)
Mol. Cancer Ther. 2, 835-843
   Abstract »    Full Text »    PDF »
The Oncogene Phosphatidylinositol 3'-Kinase Catalytic Subunit {alpha} Promotes Angiogenesis via Vascular Endothelial Growth Factor in Ovarian Carcinoma.
L. Zhang, N. Yang, D. Katsaros, W. Huang, J.-W. Park, S. Fracchioli, C. Vezzani, I. A. Rigault de la Longrais, W. Yao, S. C. Rubin, et al. (2003)
Cancer Res. 63, 4225-4231
   Abstract »    Full Text »    PDF »
{beta}-Catenin Regulates Vascular Endothelial Growth Factor Expression in Colon Cancer.
V. Easwaran, S. H. Lee, L. Inge, L. Guo, C. Goldbeck, E. Garrett, M. Wiesmann, P. D. Garcia, J. H. Fuller, V. Chan, et al. (2003)
Cancer Res. 63, 3145-3153
   Abstract »    Full Text »    PDF »
Efficacy and Toxicity of the Angiogenesis Inhibitor SU5416 As a Single Agent in Patients with Advanced Renal Cell Carcinoma, Melanoma, and Soft Tissue Sarcoma.
B. C. Kuenen, J. Tabernero, J. Baselga, F. Cavalli, E. Pfanner, P. F. Conte, S. Seeber, S. Madhusudan, G. Deplanque, H. Huisman, et al. (2003)
Clin. Cancer Res. 9, 1648-1655
   Abstract »    Full Text »    PDF »
Combined Vascular Endothelial Growth Factor and TP53 Status Predicts Poor Response to Tamoxifen Therapy in Estrogen Receptor-positive Advanced Breast Cancer.
E. M. J. J. Berns, J. G. M. Klijn, M. P. Look, N. Grebenchtchikov, R. Vossen, H. Peters, A. Geurts-Moespot, H. Portengen, I. L. van Staveren, M. E. Meijer-van Gelder, et al. (2003)
Clin. Cancer Res. 9, 1253-1258
   Abstract »    Full Text »    PDF »
Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis.
E. J. Gunther, S. E. Moody, G. K. Belka, K. T. Hahn, N. Innocent, K. D. Dugan, R. D. Cardiff, and L. A. Chodosh (2003)
Genes & Dev. 17, 488-501
   Abstract »    Full Text »    PDF »
Prediction of in Vivo Synergistic Activity of Antiangiogenic Compounds by Gene Expression Profiling.
E. I. Cline, S. Bicciato, C. DiBello, and M. W. Lingen (2002)
Cancer Res. 62, 7143-7148
   Abstract »    Full Text »    PDF »
Vascular Permeability Factor/Vascular Endothelial Growth Factor: A Critical Cytokine in Tumor Angiogenesis and a Potential Target for Diagnosis and Therapy.
H. F. Dvorak (2002)
J. Clin. Oncol. 20, 4368-4380
   Abstract »    Full Text »    PDF »
Targeting Multiple Biological Pathways as a Strategy to Improve the Treatment of Cancer.
M. S. O'Reilly (2002)
Clin. Cancer Res. 8, 3309-3310
   Full Text »    PDF »
Histidine-Proline-rich Glycoprotein Has Potent Antiangiogenic Activity Mediated through the Histidine-Proline-rich Domain.
J. C. Juarez, X. Guan, N. V. Shipulina, M. L. Plunkett, G. C. Parry, D. E. Shaw, J.-C. Zhang, S. A. Rabbani, K. R. McCrae, A. P. Mazar, et al. (2002)
Cancer Res. 62, 5344-5350
   Abstract »    Full Text »    PDF »
Mechanisms and Future Directions for Angiogenesis-Based Cancer Therapies.
F. A. Scappaticci (2002)
J. Clin. Oncol. 20, 3906-3927
   Abstract »    Full Text »    PDF »
Antiangiogenic Therapy and p53.
E. M. Hammond, A. J. Giaccia, T. Browder, J. Folkman, P. Hahnfeldt, J. Heymach, L. Hlatky, M. Kieran, M. S. Rogers, Robert. S. Kerbel, et al. (2002)
Science 297, 471a
   Abstract »    Full Text »    PDF »
Clinical Application of Antiangiogenic Therapy: Microvessel Density, What It Does and Doesn't Tell Us.
L. Hlatky, P. Hahnfeldt, and J. Folkman (2002)
J Natl Cancer Inst 94, 883-893
   Full Text »    PDF »
WHO and six publishers launch Access to Research, internet initiative for developing countries.
(2002)
Ann. Onc. 13, 641-645
   Full Text »    PDF »
Antitumor Effects in Mice of Low-dose (Metronomic) Cyclophosphamide Administered Continuously through the Drinking Water.
S. Man, G. Bocci, G. Francia, S. K. Green, S. Jothy, D. Hanahan, P. Bohlen, D. J. Hicklin, G. Bergers, and R. S. Kerbel (2002)
Cancer Res. 62, 2731-2735
   Abstract »    Full Text »    PDF »
A role for survivin in chemoresistance of endothelial cells mediated by VEGF.
J. Tran, Z. Master, J. L. Yu, J. Rak, D. J. Dumont, and R. S. Kerbel (2002)
PNAS 99, 4349-4354
   Abstract »    Full Text »    PDF »
What Do Oncogenic Mutations Have To Do with Angiogenesis/Vascular Dependence of Tumors?.
J. Rak, J. L. Yu, R. S. Kerbel, and B. L. Coomber (2002)
Cancer Res. 62, 1931-1934
   Full Text »    PDF »
A role for survivin in chemoresistance of endothelial cells mediated by VEGF.
J. Tran, Z. Master, J. L. Yu, J. Rak, D. J. Dumont, and R. S. Kerbel (2002)
PNAS 99, 4349-4354
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882