Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 296 (5566): 359-362

Copyright © 2002 by the American Association for the Advancement of Science

Requirement for a Peptidoglycan Recognition Protein (PGRP) in Relish Activation and Antibacterial Immune Responses in Drosophila

Kwang-Min Choe,12 Thomas Werner,3 Svenja Stöven,3 Dan Hultmark,3 Kathryn V. Anderson12*

Components of microbial cell walls are potent activators of innate immune responses in animals. For example, the mammalian TLR4 signaling pathway is activated by bacterial lipopolysaccharide and is required for resistance to infection by Gram-negative bacteria. Other components of microbial surfaces, such as peptidoglycan, are also potent activators of innate immune responses, but less is known about how those components activate host defense. Here we show that a peptidoglycan recognition protein, PGRP-LC, is absolutely required for the induction of antibacterial peptide genes in response to infection in Drosophila and acts by controlling activation of the NF-kappa B family transcription factor Relish.

1 Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
2 Molecular and Cell Biology Program, Weill Graduate School of Medical Sciences, Cornell University, 445 East 69th Street, New York, NY 10021, USA.
3 Umeå Centre for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden.
*   To whom correspondence should be addressed. E-mail: k-anderson{at}

The Drosophila Imd Signaling Pathway.
H. Myllymaki, S. Valanne, and M. Ramet (2014)
J. Immunol. 192, 3455-3462
   Abstract »    Full Text »    PDF »
Calpain A modulates Toll responses by limited Cactus/I{kappa}B proteolysis.
M. Fontenele, B. Lim, D. Oliveira, M. Buffolo, D. H. Perlman, T. Schupbach, and H. Araujo (2013)
Mol. Biol. Cell 24, 2966-2980
   Abstract »    Full Text »    PDF »
Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity.
F. Rus, T. Flatt, M. Tong, K. Aggarwal, K. Okuda, A. Kleino, E. Yates, M. Tatar, and N. Silverman (2013)
EMBO J. 32, 1626-1638
   Abstract »    Full Text »    PDF »
Whole-genome expression profile analysis of Drosophila melanogaster immune responses.
L. Teixeira (2012)
Briefings in Functional Genomics 11, 375-386
   Abstract »    Full Text »    PDF »
Tissue- and Ligand-Specific Sensing of Gram-Negative Infection in Drosophila by PGRP-LC Isoforms and PGRP-LE.
C. Neyen, M. Poidevin, A. Roussel, and B. Lemaitre (2012)
J. Immunol. 189, 1886-1897
   Abstract »    Full Text »    PDF »
Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling.
A. Meinander, C. Runchel, T. Tenev, L. Chen, C.-H. Kim, P. S. Ribeiro, M. Broemer, F. Leulier, M. Zvelebil, N. Silverman, et al. (2012)
EMBO J. 31, 2770-2783
   Abstract »    Full Text »    PDF »
The 2012 Thomas Hunt Morgan Medal: Kathryn V. Anderson.
M. F. Wolfner and T. Schedl (2012)
Genetics 191, 293-295
   Abstract »    Full Text »    PDF »
The Protein Dredd Is an Essential Component of the c-Jun N-terminal Kinase Pathway in the Drosophila Immune Response.
S. Guntermann and E. Foley (2011)
J. Biol. Chem. 286, 30284-30294
   Abstract »    Full Text »    PDF »
Spn1 Regulates the GNBP3-Dependent Toll Signaling Pathway in Drosophila melanogaster.
A. Fullaondo, S. Garcia-Sanchez, A. Sanz-Parra, E. Recio, S. Y. Lee, and D. Gubb (2011)
Mol. Cell. Biol. 31, 2960-2972
   Abstract »    Full Text »    PDF »
The Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-recognition protein LC to downregulate the Imd pathway.
N. Basbous, F. Coste, P. Leone, R. Vincentelli, J. Royet, C. Kellenberger, and A. Roussel (2011)
EMBO Rep. 12, 327-333
   Abstract »    Full Text »    PDF »
Drosophila Ras/MAPK signalling regulates innate immune responses in immune and intestinal stem cells.
A. Ragab, T. Buechling, V. Gesellchen, K. Spirohn, A.-L. Boettcher, and M. Boutros (2011)
EMBO J. 30, 1123-1136
   Abstract »    Full Text »    PDF »
Mouse Peptidoglycan Recognition Protein PGLYRP-1 Plays a Role in the Host Innate Immune Response against Listeria monocytogenes Infection.
A. Osanai, H. Sashinami, K. Asano, S.-J. Li, D.-L. Hu, and A. Nakane (2011)
Infect. Immun. 79, 858-866
   Abstract »    Full Text »    PDF »
Identification of putative innate immune related genes from a cell line of the mosquito Aedes albopictus following bacterial challenge.
R. Dixit, M. S. Patole, and Y. S. Shouche (2011)
Innate Immunity 17, 106-117
   Abstract »    PDF »
The Drosophila Toll Signaling Pathway.
S. Valanne, J.-H. Wang, and M. Ramet (2011)
J. Immunol. 186, 649-656
   Abstract »    Full Text »    PDF »
Genome-Wide RNA Interference in Drosophila Cells Identifies G Protein-Coupled Receptor Kinase 2 as a Conserved Regulator of NF-{kappa}B Signaling.
S. Valanne, H. Myllymaki, J. Kallio, M. R. Schmid, A. Kleino, A. Murumagi, L. Airaksinen, T. Kotipelto, M. Kaustio, J. Ulvila, et al. (2010)
J. Immunol. 184, 6188-6198
   Abstract »    Full Text »    PDF »
Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC.
S. Kurata (2010)
Int. Immunol. 22, 143-148
   Abstract »    Full Text »    PDF »
The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling.
J. R. DiAngelo, M. L. Bland, S. Bambina, S. Cherry, and M. J. Birnbaum (2009)
PNAS 106, 20853-20858
   Abstract »    Full Text »    PDF »
NF-{kappa}B in the Immune Response of Drosophila.
C. Hetru and J. A. Hoffmann (2009)
Cold Spring Harb Perspect Biol 1, a000232
   Abstract »    Full Text »    PDF »
Pirk Is a Negative Regulator of the Drosophila Imd Pathway.
A. Kleino, H. Myllymaki, J. Kallio, L.-M. Vanha-aho, K. Oksanen, J. Ulvila, D. Hultmark, S. Valanne, and M. Ramet (2008)
J. Immunol. 180, 5413-5422
   Abstract »    Full Text »    PDF »
Infection-induced proteolysis of PGRP-LC controls the IMD activation and melanization cascades in Drosophila.
R. L. Schmidt, T. R. Trejo, T. B. Plummer, J. L. Platt, and A. H. Tang (2008)
FASEB J 22, 918-929
   Abstract »    Full Text »    PDF »
Toll and IMD Pathways Synergistically Activate an Innate Immune Response in Drosophila melanogaster.
T. Tanji, X. Hu, A. N. R. Weber, and Y. T. Ip (2007)
Mol. Cell. Biol. 27, 4578-4588
   Abstract »    Full Text »    PDF »
Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects.
J.-W. Park, C.-H. Kim, J.-H. Kim, B.-R. Je, K.-B. Roh, S.-J. Kim, H.-H. Lee, J.-H. Ryu, J.-H. Lim, B.-H. Oh, et al. (2007)
PNAS 104, 6602-6607
   Abstract »    Full Text »    PDF »
Fungal Peptide Destruxin A Plays a Specific Role in Suppressing the Innate Immune Response in Drosophila melanogaster.
S. Pal, R. J. St. Leger, and L. P. Wu (2007)
J. Biol. Chem. 282, 8969-8977
   Abstract »    Full Text »    PDF »
The Drosophila Inhibitor of Apoptosis (IAP) DIAP2 Is Dispensable for Cell Survival, Required for the Innate Immune Response to Gram-negative Bacterial Infection, and Can Be Negatively Regulated by the Reaper/Hid/Grim Family of IAP-binding Apoptosis Inducers.
J. R. Huh, I. Foe, I. Muro, C. H. Chen, J. H. Seol, S. J. Yoo, M. Guo, J. M. Park, and B. A. Hay (2007)
J. Biol. Chem. 282, 2056-2068
   Abstract »    Full Text »    PDF »
Rel/NF-{kappa}B double mutants reveal that cellular immunity is central to Drosophila host defense.
N. Matova and K. V. Anderson (2006)
PNAS 103, 16424-16429
   Abstract »    Full Text »    PDF »
Caspar, a suppressor of antibacterial immunity in Drosophila.
M. Kim, J. H. Lee, S. Y. Lee, E. Kim, and J. Chung (2006)
PNAS 103, 16358-16363
   Abstract »    Full Text »    PDF »
Host PGRP Gene Expression and Bacterial Release in Endosymbiosis of the Weevil Sitophilus zeamais.
C. Anselme, A. Vallier, S. Balmand, M.-O. Fauvarque, and A. Heddi (2006)
Appl. Envir. Microbiol. 72, 6766-6772
   Abstract »    Full Text »    PDF »
Structural Basis for Preferential Recognition of Diaminopimelic Acid-type Peptidoglycan by a Subset of Peptidoglycan Recognition Proteins.
J.-H. Lim, M.-S. Kim, H.-E. Kim, T. Yano, Y. Oshima, K. Aggarwal, W. E. Goldman, N. Silverman, S. Kurata, and B.-H. Oh (2006)
J. Biol. Chem. 281, 8286-8295
   Abstract »    Full Text »    PDF »
Peptidoglycan Recognition Proteins Are a New Class of Human Bactericidal Proteins.
X. Lu, M. Wang, J. Qi, H. Wang, X. Li, D. Gupta, and R. Dziarski (2006)
J. Biol. Chem. 281, 5895-5907
   Abstract »    Full Text »    PDF »
The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila.
L. S. Garver, J. Wu, and L. P. Wu (2006)
PNAS 103, 660-665
   Abstract »    Full Text »    PDF »
Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs).
C. P. Swaminathan, P. H. Brown, A. Roychowdhury, Q. Wang, R. Guan, N. Silverman, W. E. Goldman, G.-J. Boons, and R. A. Mariuzza (2006)
PNAS 103, 684-689
   Abstract »    Full Text »    PDF »
Bovine Peptidoglycan Recognition Protein-S: Antimicrobial Activity, Localization, Secretion, and Binding Properties.
C. C. Tydell, J. Yuan, P. Tran, and M. E. Selsted (2006)
J. Immunol. 176, 1154-1162
   Abstract »    Full Text »    PDF »
Peptidoglycan recognition by the Drosophila Imd pathway.
T. Kaneko, D. Golenbock, and N. Silverman (2005)
Innate Immunity 11, 383-389
   Abstract »    PDF »
Selective Recognition of Synthetic Lysine and meso-Diaminopimelic Acid-type Peptidoglycan Fragments by Human Peptidoglycan Recognition Proteins I{alpha} and S.
S. Kumar, A. Roychowdhury, B. Ember, Q. Wang, R. Guan, R. A. Mariuzza, and G.-J. Boons (2005)
J. Biol. Chem. 280, 37005-37012
   Abstract »    Full Text »    PDF »
Gene Silencing and Overexpression of Porcine Peptidoglycan Recognition Protein Long Isoforms: Involvement in {beta}-Defensin-1 Expression.
Y. Sang, B. Ramanathan, C. R. Ross, and F. Blecha (2005)
Infect. Immun. 73, 7133-7141
   Abstract »    Full Text »    PDF »
Helicase89B is a Mot1p/BTAF1 homologue that mediates an antimicrobial response in Drosophila.
Y. Yagi and Y. T. Ip (2005)
EMBO Rep. 6, 1088-1094
   Abstract »    Full Text »    PDF »
The Role of Ubiquitination in Drosophila Innate Immunity.
R. Zhou, N. Silverman, M. Hong, D. S. Liao, Y. Chung, Z. J. Chen, and T. Maniatis (2005)
J. Biol. Chem. 280, 34048-34055
   Abstract »    Full Text »    PDF »
Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway.
A. Kleino, S. Valanne, J. Ulvila, J. Kallio, H. Myllymaki, H. Enwald, S. Stoven, M. Poidevin, R. Ueda, D. Hultmark, et al. (2005)
EMBO J. 24, 3423-3434
   Abstract »    Full Text »    PDF »
Peptidoglycan recognition in innate immunity.
R. Dziarski and D. Gupta (2005)
Innate Immunity 11, 304-310
   Abstract »    PDF »
Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity.
J. H. Cho, I. P. Fraser, K. Fukase, S. Kusumoto, Y. Fujimoto, G. L. Stahl, and R. A. B. Ezekowitz (2005)
Blood 106, 2551-2558
   Abstract »    Full Text »    PDF »
Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae.
S. Meister, S. M. Kanzok, X.-l. Zheng, C. Luna, T.-R. Li, N. T. Hoa, J. R. Clayton, K. P. White, F. C. Kafatos, G. K. Christophides, et al. (2005)
PNAS 102, 11420-11425
   Abstract »    Full Text »    PDF »
Evolution and integration of innate immune systems from fruit flies to man: lessons and questions.
C. Martinelli and J.-M. Reichhart (2005)
Innate Immunity 11, 243-248
   Abstract »    PDF »
Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition.
C.-I Chang, K. Ihara, Y. Chelliah, D. Mengin-Lecreulx, S. Wakatsuki, and J. Deisenhofer (2005)
PNAS 102, 10279-10284
   Abstract »    Full Text »    PDF »
Worms and Flies as Genetically Tractable Animal Models To Study Host-Pathogen Interactions.
E. Mylonakis and A. Aballay (2005)
Infect. Immun. 73, 3833-3841
   Full Text »    PDF »
Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro.
P. Mellroth, J. Karlsson, J. Hakansson, N. Schultz, W. E. Goldman, and H. Steiner (2005)
PNAS 102, 6455-6460
   Abstract »    Full Text »    PDF »
Biography of Kathryn V. Anderson.
B. Trivedi (2005)
PNAS 102, 5910-5912
   Full Text »    PDF »
Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway.
S. R. Filipe, A. Tomasz, and P. Ligoxygakis (2005)
EMBO Rep. 6, 327-333
   Abstract »    Full Text »    PDF »
Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system.
D. Mengin-Lecreulx and B. Lemaitre (2005)
Innate Immunity 11, 105-111
   Abstract »    PDF »
Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression.
Y. Apidianakis, M. N. Mindrinos, W. Xiao, G. W. Lau, R. L. Baldini, R. W. Davis, and L. G. Rahme (2005)
PNAS 102, 2573-2578
   Abstract »    Full Text »    PDF »
Crystal structure of a peptidoglycan recognition protein (PGRP) in complex with a muramyl tripeptide from Gram-positive bacteria.
R. Guan, A. Roychowdury, B. Ember, S. Kumar, G.-J. Boons, and R. A. Mariuzza (2005)
Innate Immunity 11, 41-46
   Abstract »    PDF »
Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor.
K.-M. Choe, H. Lee, and K. V. Anderson (2005)
PNAS 102, 1122-1126
   Abstract »    Full Text »    PDF »
Toll-like receptors in innate immunity.
K. Takeda and S. Akira (2005)
Int. Immunol. 17, 1-14
   Abstract »    Full Text »    PDF »
Peptidoglycan Molecular Requirements Allowing Detection by the Drosophila Immune Deficiency Pathway.
C. R. Stenbak, J.-H. Ryu, F. Leulier, S. Pili-Floury, C. Parquet, M. Herve, C. Chaput, I. G. Boneca, W.-J. Lee, B. Lemaitre, et al. (2004)
J. Immunol. 173, 7339-7348
   Abstract »    Full Text »    PDF »
Structural basis for peptidoglycan binding by peptidoglycan recognition proteins.
R. Guan, A. Roychowdhury, B. Ember, S. Kumar, G.-J. Boons, and R. A. Mariuzza (2004)
PNAS 101, 17168-17173
   Abstract »    Full Text »    PDF »
Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity.
A. Takehana, T. Yano, S. Mita, A. Kotani, Y. Oshima, and S. Kurata (2004)
EMBO J. 23, 4690-4700
   Abstract »    Full Text »    PDF »
Innate Immune Responses in Peptidoglycan Recognition Protein L-Deficient Mice.
M. Xu, Z. Wang, and R. M. Locksley (2004)
Mol. Cell. Biol. 24, 7949-7957
   Abstract »    Full Text »    PDF »
Toll-dependent and Toll-independent immune responses in Drosophila.
J.-L. Imler, D. Ferrandon, J. Royet, J.-M. Reichhart, C. Hetru, and J. A. Hoffmann (2004)
Innate Immunity 10, 241-246
   Abstract »    PDF »
Crystal Structure of the C-terminal Peptidoglycan-binding Domain of Human Peptidoglycan Recognition Protein I{alpha}.
R. Guan, E. L. Malchiodi, Q. Wang, P. Schuck, and R. A. Mariuzza (2004)
J. Biol. Chem. 279, 31873-31882
   Abstract »    Full Text »    PDF »
Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics.
M. A. Osta, G. K. Christophides, D. Vlachou, and F. C. Kafatos (2004)
J. Exp. Biol. 207, 2551-2563
   Abstract »    Full Text »    PDF »
Mycobacterium tuberculosis Inhibits Macrophage Responses to IFN-{gamma} through Myeloid Differentiation Factor 88-Dependent and -Independent Mechanisms.
S. M. Fortune, A. Solache, A. Jaeger, P. J. Hill, J. T. Belisle, B. R. Bloom, E. J. Rubin, and J. D. Ernst (2004)
J. Immunol. 172, 6272-6280
   Abstract »    Full Text »    PDF »
Differential Activation of the NF-{kappa}B-like Factors Relish and Dif in Drosophila melanogaster by Fungi and Gram-positive Bacteria.
M. Hedengren-Olcott, M. C. Olcott, D. T. Mooney, S. Ekengren, B. L. Geller, and B. J. Taylor (2004)
J. Biol. Chem. 279, 21121-21127
   Abstract »    Full Text »    PDF »
In Vivo RNA Interference Analysis Reveals an Unexpected Role for GNBP1 in the Defense against Gram-positive Bacterial Infection in Drosophila Adults.
S. Pili-Floury, F. Leulier, K. Takahashi, K. Saigo, E. Samain, R. Ueda, and B. Lemaitre (2004)
J. Biol. Chem. 279, 12848-12853
   Abstract »    Full Text »    PDF »
Targeting of TAK1 by the NF-{kappa}B protein Relish regulates the JNK-mediated immune response in Drosophila.
J. M. Park, H. Brady, M. G. Ruocco, H. Sun, D. Williams, S. J. Lee, T. Kato Jr., N. Richards, K. Chan, F. Mercurio, et al. (2004)
Genes & Dev. 18, 584-594
   Abstract »    Full Text »    PDF »
Peptidoglycan Recognition Proteins Involved in 1,3-{beta}-D-Glucan-dependent Prophenoloxidase Activation System of Insect.
M. H. Lee, T. Osaki, J. Y. Lee, M. J. Baek, R. Zhang, J. W. Park, S.-i. Kawabata, K. Soderhall, and B. L. Lee (2004)
J. Biol. Chem. 279, 3218-3227
   Abstract »    Full Text »    PDF »
Peptidoglycan Recognition Protein Tag7 Forms a Cytotoxic Complex with Heat Shock Protein 70 in Solution and in Lymphocytes.
L. P. Sashchenko, E. A. Dukhanina, D. V. Yashin, Y. V. Shatalov, E. A. Romanova, E. V. Korobko, A. V. Demin, T. I. Lukyanova, O. D. Kabanova, S. V. Khaidukov, et al. (2004)
J. Biol. Chem. 279, 2117-2124
   Abstract »    Full Text »    PDF »
The Homeobox Gene Caudal Regulates Constitutive Local Expression of Antimicrobial Peptide Genes in Drosophila Epithelia.
J.-H. Ryu, K.-B. Nam, C.-T. Oh, H.-J. Nam, S.-H. Kim, J.-H. Yoon, J.-K. Seong, M.-A. Yoo, I.-H. Jang, P. T. Brey, et al. (2004)
Mol. Cell. Biol. 24, 172-185
   Abstract »    Full Text »    PDF »
Immune Activation of NF-{kappa}B and JNK Requires Drosophila TAK1.
N. Silverman, R. Zhou, R. L. Erlich, M. Hunter, E. Bernstein, D. Schneider, and T. Maniatis (2003)
J. Biol. Chem. 278, 48928-48934
   Abstract »    Full Text »    PDF »
Human Peptidoglycan Recognition Protein-L Is an N-Acetylmuramoyl-L-alanine Amidase.
Z.-M. Wang, X. Li, R. R. Cocklin, M. Wang, M. Wang, K. Fukase, S. Inamura, S. Kusumoto, D. Gupta, and R. Dziarski (2003)
J. Biol. Chem. 278, 49044-49052
   Abstract »    Full Text »    PDF »
Characterization and Properties of a 1,3-{beta}-D-Glucan Pattern Recognition Protein of Tenebrio molitor Larvae That Is Specifically Degraded by Serine Protease during Prophenoloxidase Activation.
R. Zhang, H. Y. Cho, H. S. Kim, Y. G. Ma, T. Osaki, S.-i. Kawabata, K. Soderhall, and B. L. Lee (2003)
J. Biol. Chem. 278, 42072-42079
   Abstract »    Full Text »    PDF »
A caspaselike activity is triggered by LPS and is required for survival of human dendritic cells.
L. Franchi, I. Condo, B. Tomassini, C. Nicolo, and R. Testi (2003)
Blood 102, 2910-2915
   Abstract »    Full Text »    PDF »
Role of Toll-Like Receptors in Pathogen Recognition.
S. Janssens and R. Beyaert (2003)
Clin. Microbiol. Rev. 16, 637-646
   Abstract »    Full Text »    PDF »
Sensing microbes by diverse hosts: Workshop on Pattern Recognition Proteins and Receptors.
S. E. Girardin, D. J. Philpott, and B. Lemaitre (2003)
EMBO Rep. 4, 932-936
   Full Text »    PDF »
Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice.
R. Dziarski, K. A. Platt, E. Gelius, H. Steiner, and D. Gupta (2003)
Blood 102, 689-697
   Abstract »    Full Text »    PDF »
Functional Diversity of the Drosophila PGRP-LC Gene Cluster in the Response to Lipopolysaccharide and Peptidoglycan.
T. Werner, K. Borge-Renberg, P. Mellroth, H. Steiner, and D. Hultmark (2003)
J. Biol. Chem. 278, 26319-26322
   Abstract »    Full Text »    PDF »
Drosophila melanogaster Antimicrobial Defense.
C. Hetru, L. Troxler, and J. A. Hoffmann (2003)
The Journal of Infectious Disease 187, S327-S334
   Abstract »    Full Text »    PDF »
Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan.
S. E. Girardin, I. G. Boneca, L. A. M. Carneiro, A. Antignac, M. Jehanno, J. Viala, K. Tedin, M.-K. Taha, A. Labigne, U. Zathringer, et al. (2003)
Science 300, 1584-1587
   Abstract »    Full Text »    PDF »
Caspase-mediated processing of the Drosophila NF-{kappa}B factor Relish.
S. Stoven, N. Silverman, A. Junell, M. Hedengren-Olcott, D. Erturk, Y. Engstrom, T. Maniatis, and D. Hultmark (2003)
PNAS 100, 5991-5996
   Abstract »    Full Text »    PDF »
Increased inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its peptidoglycan.
T. Ganz, V. Gabayan, H.-I Liao, L. Liu, A. Oren, T. Graf, and A. M. Cole (2003)
Blood 101, 2388-2392
   Abstract »    Full Text »    PDF »
Relish-mediated immune deficiency in the transgenic mosquito Aedes aegypti.
S. W. Shin, V. Kokoza, I. Lobkov, and A. S. Raikhel (2003)
PNAS 100, 2616-2621
   Abstract »    Full Text »    PDF »
A Scavenger Function for a Drosophila Peptidoglycan Recognition Protein.
P. Mellroth, J. Karlsson, and H. Steiner (2003)
J. Biol. Chem. 278, 7059-7064
   Abstract »    Full Text »    PDF »
Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila.
E. Foley and P. H. O'Farrell (2003)
Genes & Dev. 17, 115-125
   Abstract »    Full Text »    PDF »
Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae.
A. Takehana, T. Katsuyama, T. Yano, Y. Oshima, H. Takada, T. Aigaki, and S. Kurata (2002)
PNAS 99, 13705-13710
   Abstract »    Full Text »    PDF »
Immunity-Related Genes and Gene Families in Anopheles gambiae.
G. K. Christophides, E. Zdobnov, C. Barillas-Mury, E. Birney, S. Blandin, C. Blass, P. T. Brey, F. H. Collins, A. Danielli, G. Dimopoulos, et al. (2002)
Science 298, 159-165
   Abstract »    Full Text »    PDF »
Setting a Trap for Aging-Related Genes in Drosophila.
J. Tower (2002)
Sci. Aging Knowl. Environ. 2002, pe15-15
   Abstract »    Full Text »
Critical evaluation of the role of the Toll-like receptor 18-Wheeler in the host defense of Drosophila.
P. Ligoxygakis, P. Bulet, and J.-M. Reichhart (2002)
EMBO Rep. 3, 666-673
   Abstract »    Full Text »    PDF »
The Toll and Imd pathways are the major regulators of the immune response in Drosophila.
E. De Gregorio, P. T. Spellman, P. Tzou, G. M. Rubin, and B. Lemaitre (2002)
EMBO J. 21, 2568-2579
   Abstract »    Full Text »    PDF »
IMMUNOLOGY: Enhanced: Pathogen Surveillance--the Flies Have It.
R. S. Khush, F. Leulier, and B. Lemaitre (2002)
Science 296, 273-275
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882