Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 296 (5567): 548-550

Copyright © 2002 by the American Association for the Advancement of Science

Recruitment of a 19S Proteasome Subcomplex to an Activated Promoter

Fernando Gonzalez,* Agnes Delahodde,* Thomas Kodadek, Stephen Albert Johnstondagger

The 19S proteasome regulatory particle plays a critical role in cellular proteolysis. However, recent reports have demonstrated that 19S proteins play a nonproteolytic role in nucleotide excision repair and transcription elongation. We show by chromatin immunoprecipitation assays that proteins comprising the 19S complex are recruited to the GAL1-10 promoter by the Gal4 transactivator upon induction with galactose. This recruited complex does not contain proteins from the 20S proteolytic particle and includes a subset of the 19S proteins. This subset is also specifically retained from an extract by the Gal4 activation domain. These data indicate that in vivo, the base of the 19S complex functions independently of the larger complex and plays a direct, nonproteolytic role in RNA polymerase II transcription.

Center for Biomedical Inventions, University of Texas-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8573, USA.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: stephen.johnston{at}utsouthwestern.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Activation of a Novel Ubiquitin-Independent Proteasome Pathway when RNA Polymerase II Encounters a Protein Roadblock.
Y. Ban, C.-W. Ho, R.-K. Lin, Y. L. Lyu, and L. F. Liu (2013)
Mol. Cell. Biol. 33, 4008-4016
   Abstract »    Full Text »    PDF »
The C-terminal Residues of Saccharomyces cerevisiae Mec1 Are Required for Its Localization, Stability, and Function.
L. F. DaSilva, S. Pillon, J. Genereaux, M. J. Davey, G. B. Gloor, J. Karagiannis, and C. J. Brandl (2013)
g3 3, 1661-1674
   Abstract »    Full Text »    PDF »
Cks1 Enhances Transcription Efficiency at the GAL1 Locus by Linking the Paf1 Complex to the 19S Proteasome.
Y.-R. Pan, M. Sun, J. Wohlschlegel, and S. I. Reed (2013)
Eukaryot. Cell 12, 1192-1201
   Abstract »    Full Text »    PDF »
Synergistic effects of TOR and proteasome pathways on the yeast transcriptome and cell growth.
N. Zhang, Z. Quan, B. Rash, and S. G. Oliver (2013)
Open Bio 3, 120137
   Abstract »    Full Text »    PDF »
Functional Proteomic Analysis of Long-term Growth Factor Stimulation and Receptor Tyrosine Kinase Coactivation in Swiss 3T3 Fibroblasts.
K. Nagano, A. Akpan, G. Warnasuriya, S. Corless, N. Totty, A. Yang, R. Stein, M. Zvelebil, A. Stensballe, A. Burlingame, et al. (2012)
Mol. Cell. Proteomics 11, 1690-1708
   Abstract »    Full Text »    PDF »
The Ubiquitin-Proteasome System of Saccharomyces cerevisiae.
D. Finley, H. D. Ulrich, T. Sommer, and P. Kaiser (2012)
Genetics 192, 319-360
   Abstract »    Full Text »    PDF »
HIRA, a Conserved Histone Chaperone, Plays an Essential Role in Low-dose Stress Response via Transcriptional Stimulation in Fission Yeast.
M. Chujo, Y. Tarumoto, K. Miyatake, E. Nishida, and F. Ishikawa (2012)
J. Biol. Chem. 287, 23440-23450
   Abstract »    Full Text »    PDF »
Phosphorylation by p38 Mitogen-Activated Protein Kinase Promotes Estrogen Receptor {alpha} Turnover and Functional Activity via the SCFSkp2 Proteasomal Complex.
S. Bhatt, Z. Xiao, Z. Meng, and B. S. Katzenellenbogen (2012)
Mol. Cell. Biol. 32, 1928-1943
   Abstract »    Full Text »    PDF »
Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin.
F. Geng and W. P. Tansey (2012)
PNAS 109, 6060-6065
   Abstract »    Full Text »    PDF »
The RPT2 Subunit of the 26S Proteasome Directs Complex Assembly, Histone Dynamics, and Gametophyte and Sporophyte Development in Arabidopsis.
K.-H. Lee, A. Minami, R. S. Marshall, A. J. Book, L. M. Farmer, J. M. Walker, and R. D. Vierstra (2011)
PLANT CELL 23, 4298-4317
   Abstract »    Full Text »    PDF »
Distant positioning of proteasomal proteolysis relative to actively transcribed genes.
A. Scharf, P. N. Grozdanov, R. Veith, U. Kubitscheck, U. T. Meier, and A. von Mikecz (2011)
Nucleic Acids Res. 39, 4612-4627
   Abstract »    Full Text »    PDF »
Not4 E3 Ligase Contributes to Proteasome Assembly and Functional Integrity in Part through Ecm29.
O. O. Panasenko and M. A. Collart (2011)
Mol. Cell. Biol. 31, 1610-1623
   Abstract »    Full Text »    PDF »
New Suppressors of THO Mutations Identify Thp3 (Ypr045c)-Csn12 as a Protein Complex Involved in Transcription Elongation.
S. Jimeno, C. Tous, M. L. Garcia-Rubio, M. Ranes, C. Gonzalez-Aguilera, A. Marin, and A. Aguilera (2011)
Mol. Cell. Biol. 31, 674-685
   Abstract »    Full Text »    PDF »
Cks1, Cdk1, and the 19S Proteasome Collaborate To Regulate Gene Induction-Dependent Nucleosome Eviction in Yeast.
S. Chaves, C. Baskerville, V. Yu, and S. I. Reed (2010)
Mol. Cell. Biol. 30, 5284-5294
   Abstract »    Full Text »    PDF »
Paradoxical Instability-Activity Relationship Defines a Novel Regulatory Pathway for Retinoblastoma Proteins.
P. Acharya, N. Raj, M. S. Buckley, L. Zhang, S. Duperon, G. Williams, R. W. Henry, and D. N. Arnosti (2010)
Mol. Biol. Cell 21, 3890-3901
   Abstract »    Full Text »    PDF »
Cks1 Activates Transcription by Binding to the Ubiquitylated Proteasome.
R. Holic, A. Kukalev, S. Lane, E. J. Andress, I. Lau, C. W. H. Yu, M. J. Edelmann, B. M. Kessler, and V. P. C. C. Yu (2010)
Mol. Cell. Biol. 30, 3894-3901
   Abstract »    Full Text »    PDF »
Transcriptional Switches: Chemical Approaches to Gene Regulation.
L. W. Lee and A. K. Mapp (2010)
J. Biol. Chem. 285, 11033-11038
   Abstract »    Full Text »    PDF »
No Splicing, No Dicing: Non-proteolytic Roles of the Ubiquitin-Proteasome System in Transcription.
T. Kodadek (2010)
J. Biol. Chem. 285, 2221-2226
   Abstract »    Full Text »    PDF »
The hydrophobic patch of ubiquitin is required to protect transactivator-promoter complexes from destabilization by the proteasomal ATPases.
C. T. Archer and T. Kodadek (2010)
Nucleic Acids Res. 38, 789-796
   Abstract »    Full Text »    PDF »
The 19 S Proteasome Subcomplex Establishes a Specific Protein Interaction Network at the Promoter for Stimulated Transcriptional Initiation in Vivo.
S. Malik, A. Shukla, P. Sen, and S. R. Bhaumik (2009)
J. Biol. Chem. 284, 35714-35724
   Abstract »    Full Text »    PDF »
Non-proteolytic Regulation of p53-mediated Transcription through Destabilization of the Activator{middle dot}Promoter Complex by the Proteasomal ATPases.
Y.-C. Kim, S.-Y. Wu, H.-S. Lim, C.-M. Chiang, and T. Kodadek (2009)
J. Biol. Chem. 284, 34522-34530
   Abstract »    Full Text »    PDF »
A nonproteolytic proteasome activity controls organelle fission in yeast.
L. Hofmann, R. Saunier, R. Cossard, M. Esposito, T. Rinaldi, and A. Delahodde (2009)
J. Cell Sci. 122, 3673-3683
   Abstract »    Full Text »    PDF »
The Snf1 kinase and proteasome-associated Rad23 regulate UV-responsive gene expression.
S. L. Wade, K. Poorey, S. Bekiranov, and D. T. Auble (2009)
EMBO J. 28, 2919-2931
   Abstract »    Full Text »    PDF »
Subcomplexes of PA700, the 19 S Regulator of the 26 S Proteasome, Reveal Relative Roles of AAA Subunits in 26 S Proteasome Assembly and Activation and ATPase Activity.
D. Thompson, K. Hakala, and G. N. DeMartino (2009)
J. Biol. Chem. 284, 24891-24903
   Abstract »    Full Text »    PDF »
FACT and the Proteasome Promote Promoter Chromatin Disassembly and Transcriptional Initiation.
M. Ransom, S. K. Williams, M. L. Dechassa, C. Das, J. Linger, M. Adkins, C. Liu, B. Bartholomew, and J. K. Tyler (2009)
J. Biol. Chem. 284, 23461-23471
   Abstract »    Full Text »    PDF »
The Mdm2 Ubiquitin Ligase Enhances Transcriptional Activity of Human Papillomavirus E2.
N. Gammoh, D. Gardiol, P. Massimi, and L. Banks (2009)
J. Virol. 83, 1538-1543
   Abstract »    Full Text »    PDF »
Misfolding of Proteins with a Polyglutamine Expansion Is Facilitated by Proteasomal Chaperones.
E. Rousseau, R. Kojima, G. Hoffner, P. Djian, and A. Bertolotti (2009)
J. Biol. Chem. 284, 1917-1929
   Abstract »    Full Text »    PDF »
Regulation of Acetylation at the Major Histocompatibility Complex Class II Proximal Promoter by the 19S Proteasomal ATPase Sug1.
O. I. Koues, R. K. Dudley, A. D. Truax, D. Gerhardt, K. P. Bhat, S. McNeal, and S. F. Greer (2008)
Mol. Cell. Biol. 28, 5837-5850
   Abstract »    Full Text »    PDF »
Rice ROOT ARCHITECTURE ASSOCIATED1 Binds the Proteasome Subunit RPT4 and Is Degraded in a D-Box and Proteasome-Dependent Manner.
Y. Han, H. Cao, J. Jiang, Y. Xu, J. Du, X. Wang, M. Yuan, Z. Wang, Z. Xu, and K. Chong (2008)
Plant Physiology 148, 843-855
   Abstract »    Full Text »    PDF »
Depletion of 26S Proteasomes in Mouse Brain Neurons Causes Neurodegeneration and Lewy-Like Inclusions Resembling Human Pale Bodies.
L. Bedford, D. Hay, A. Devoy, S. Paine, D. G. Powe, R. Seth, T. Gray, I. Topham, K. Fone, N. Rezvani, et al. (2008)
J. Neurosci. 28, 8189-8198
   Abstract »    Full Text »    PDF »
Physical and Functional Interactions of Monoubiquitylated Transactivators with the Proteasome.
C. T. Archer, L. Burdine, B. Liu, A. Ferdous, S. A. Johnston, and T. Kodadek (2008)
J. Biol. Chem. 283, 21789-21798
   Abstract »    Full Text »    PDF »
Patterning of Inflorescences and Flowers by the F-Box Protein DOUBLE TOP and the LEAFY Homolog ABERRANT LEAF AND FLOWER of Petunia.
E. Souer, A. B. Rebocho, M. Bliek, E. Kusters, R. A.M. de Bruin, and R. Koes (2008)
PLANT CELL 20, 2033-2048
   Abstract »    Full Text »    PDF »
Activation Domain-dependent Monoubiquitylation of Gal4 Protein Is Essential for Promoter Binding in Vivo.
C. T. Archer, A. Delahodde, F. Gonzalez, S. A. Johnston, and T. Kodadek (2008)
J. Biol. Chem. 283, 12614-12623
   Abstract »    Full Text »    PDF »
Alg13p, the Catalytic Subunit of the Endoplasmic Reticulum UDP-GlcNAc Glycosyltransferase, Is a Target for Proteasomal Degradation.
N. Averbeck, X.-D. Gao, S.-I. Nishimura, and N. Dean (2008)
Mol. Biol. Cell 19, 2169-2178
   Abstract »    Full Text »    PDF »
Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-{kappa}B-dependent DNA methyltransferase activity in acute myeloid leukemia.
S. Liu, Z. Liu, Z. Xie, J. Pang, J. Yu, E. Lehmann, L. Huynh, T. Vukosavljevic, M. Takeki, R. B. Klisovic, et al. (2008)
Blood 111, 2364-2373
   Abstract »    Full Text »    PDF »
Dynamics of the Hypoxia-inducible Factor-1-Vascular Endothelial Growth Factor Promoter Complex.
P. Yu and T. Kodadek (2007)
J. Biol. Chem. 282, 35035-35045
   Abstract »    Full Text »    PDF »
Proteasome Activity Modulates Chromatin Modifications and RNA Polymerase II Phosphorylation To Enhance Glucocorticoid Receptor-Mediated Transcription.
H. K. Kinyamu and T. K. Archer (2007)
Mol. Cell. Biol. 27, 4891-4904
   Abstract »    Full Text »    PDF »
Identification of a Gastrin Response Element in the Vesicular Monoamine Transporter Type 2 Promoter and Requirement of 20 S Proteasome Subunits for Transcriptional Activity.
K. Catlow, H. L. Ashurst, A. Varro, and R. Dimaline (2007)
J. Biol. Chem. 282, 17069-17077
   Abstract »    Full Text »    PDF »
Identification of Rkr1, a Nuclear RING Domain Protein with Functional Connections to Chromatin Modification in Saccharomyces cerevisiae.
M. A. Braun, P. J. Costa, E. M. Crisucci, and K. M. Arndt (2007)
Mol. Cell. Biol. 27, 2800-2811
   Abstract »    Full Text »    PDF »
CCR4/NOT complex associates with the proteasome and regulates histone methylation.
R. N. Laribee, Y. Shibata, D. P. Mersman, S. R. Collins, P. Kemmeren, A. Roguev, J. S. Weissman, S. D. Briggs, N. J. Krogan, and B. D. Strahl (2007)
PNAS 104, 5836-5841
   Abstract »    Full Text »    PDF »
Retinoblastoma Protein Regulation by the COP9 Signalosome.
Z. Ullah, M. S. Buckley, D. N. Arnosti, and R. W. Henry (2007)
Mol. Biol. Cell 18, 1179-1186
   Abstract »    Full Text »    PDF »
The role of the proteasomal ATPases and activator monoubiquitylation in regulating Gal4 binding to promoters.
A. Ferdous, D. Sikder, T. Gillette, K. Nalley, T. Kodadek, and S. A. Johnston (2007)
Genes & Dev. 21, 112-123
   Abstract »    Full Text »    PDF »
Widespread, but Non-identical, Association of Proteasomal 19 and 20 S Proteins with Yeast Chromatin.
D. Sikder, S. A. Johnston, and T. Kodadek (2006)
J. Biol. Chem. 281, 27346-27355
   Abstract »    Full Text »    PDF »
Phosphorylation and Ubiquitination of the Transcription Factor Sterol Regulatory Element-binding Protein-1 in Response to DNA Binding.
T. Punga, M. T. Bengoechea-Alonso, and J. Ericsson (2006)
J. Biol. Chem. 281, 25278-25286
   Abstract »    Full Text »    PDF »
de FACTo Nucleosome Dynamics.
D. Reinberg and R. J. Sims III (2006)
J. Biol. Chem. 281, 23297-23301
   Abstract »    Full Text »    PDF »
Yeast homolog of a cancer-testis antigen defines a new transcription complex.
E. Kisseleva-Romanova, R. Lopreiato, A. Baudin-Baillieu, J.-C. Rousselle, L. Ilan, K. Hofmann, A. Namane, C. Mann, and D. Libri (2006)
EMBO J. 25, 3576-3585
   Abstract »    Full Text »    PDF »
Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1.
A. Hernandez-Hernandez, P. Ray, G. Litos, M. Ciro, S. Ottolenghi, H. Beug, and J. Boyes (2006)
EMBO J. 25, 3264-3274
   Abstract »    Full Text »    PDF »
Roles for APIS and the 20S proteasome in adenovirus E1A-dependent transcription.
M. Rasti, R. J. Grand, A. F. Yousef, M. Shuen, J. S. Mymryk, P. H. Gallimore, and A. S. Turnell (2006)
EMBO J. 25, 2710-2722
   Abstract »    Full Text »    PDF »
Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair.
T. G. Gillette, S. Yu, Z. Zhou, R. Waters, S. A. Johnston, and S. H. Reed (2006)
EMBO J. 25, 2529-2538
   Abstract »    Full Text »    PDF »
The nuclear ubiquitin-proteasome system.
A. von Mikecz (2006)
J. Cell Sci. 119, 1977-1984
   Abstract »    Full Text »    PDF »
Yeast Gal4: a transcriptional paradigm revisited.
A. Traven, B. Jelicic, and M. Sopta (2006)
EMBO Rep. 7, 496-499
   Abstract »    Full Text »    PDF »
Determinants of the Ubiquitin-mediated Degradation of the Met4 Transcription Factor.
A. Menant, P. Baudouin-Cornu, C. Peyraud, M. Tyers, and D. Thomas (2006)
J. Biol. Chem. 281, 11744-11754
   Abstract »    Full Text »    PDF »
The proteasomal ATPase complex is required for stress-induced transcription in yeast.
R. Sulahian, S. A. Johnston, and T. Kodadek (2006)
Nucleic Acids Res. 34, 1351-1357
   Abstract »    Full Text »    PDF »
Subcellular Distribution of Components of the Ubiquitin-Proteasome System in Non-diseased Human and Rat Brain.
C. Adori, P. Low, G. Moszkovkin, G. Bagdy, L. Laszlo, and G. G. Kovacs (2006)
Journal of Histochemistry & Cytochemistry 54, 263-267
   Abstract »    Full Text »    PDF »
A molecular link A molecular link between Hairless and Pros26.4, a member of the AAA-ATPase subunits of the proteasome 19S regulatory particle in Drosophila.
D. Muller, A. C. Nagel, D. Maier, and A. Preiss (2006)
J. Cell Sci. 119, 250-258
   Abstract »    Full Text »    PDF »
Inhibition of TRIP1/S8/hSug1, a component of the human 19S proteasome, enhances mitotic apoptosis induced by spindle poisons.
H. Y. Yamada and G. J. Gorbsky (2006)
Mol. Cancer Ther. 5, 29-38
   Abstract »    Full Text »    PDF »
Interactions with p300 enhance transcriptional activation by the PDZ-domain coactivator Bridge-1.
J. H Lee, J. L Volinic, C. Banz, K.-M. Yao, and M. K Thomas (2005)
J. Endocrinol. 187, 283-292
   Abstract »    Full Text »    PDF »
TFIID and Spt-Ada-Gcn5-Acetyltransferase Functions Probed by Genome-wide Synthetic Genetic Array Analysis Using a Saccharomyces cerevisiae taf9-ts Allele.
E. Milgrom, R. W. West Jr., C. Gao, and W.-C. W. Shen (2005)
Genetics 171, 959-973
   Abstract »    Full Text »    PDF »
Dynamic Combinatorial Networks in Nuclear Receptor-mediated Transcription.
C. Rochette-Egly (2005)
J. Biol. Chem. 280, 32565-32568
   Full Text »    PDF »
Cross Talk in Hormonally Regulated Gene Transcription through Induction of Estrogen Receptor Ubiquitylation.
M. Luo, M. Koh, J. Feng, Q. Wu, and P. Melamed (2005)
Mol. Cell. Biol. 25, 7386-7398
   Abstract »    Full Text »    PDF »
Ubp10/Dot4p Regulates the Persistence of Ubiquitinated Histone H2B: Distinct Roles in Telomeric Silencing and General Chromatin.
R. G. Gardner, Z. W. Nelson, and D. E. Gottschling (2005)
Mol. Cell. Biol. 25, 6123-6139
   Abstract »    Full Text »    PDF »
CD147 is a regulatory subunit of the {gamma}-secretase complex in Alzheimer's disease amyloid {beta}-peptide production.
S. Zhou, H. Zhou, P. J. Walian, and B. K. Jap (2005)
PNAS 102, 7499-7504
   Abstract »    Full Text »    PDF »
Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors.
H K Kinyamu, J Chen, and T K Archer (2005)
J. Mol. Endocrinol. 34, 281-297
   Abstract »    Full Text »    PDF »
H2B Ubiquitin Protease Ubp8 and Sgf11 Constitute a Discrete Functional Module within the Saccharomyces cerevisiae SAGA Complex.
K. Ingvarsdottir, N. J. Krogan, N. C. T. Emre, A. Wyce, N. J. Thompson, A. Emili, T. R. Hughes, J. F. Greenblatt, and S. L. Berger (2005)
Mol. Cell. Biol. 25, 1162-1172
   Abstract »    Full Text »    PDF »
Ubiquitination of Human T-Cell Leukemia Virus Type 1 Tax Modulates Its Activity.
J.-M. Peloponese Jr., H. Iha, V. R. K. Yedavalli, A. Miyazato, Y. Li, K. Haller, M. Benkirane, and K.-T. Jeang (2004)
J. Virol. 78, 11686-11695
   Abstract »    Full Text »    PDF »
Stable Ubiquitination of Human T-Cell Leukemia Virus Type 1 Tax Is Required for Proteasome Binding.
E. Chiari, I. Lamsoul, J. Lodewick, C. Chopin, F. Bex, and C. Pique (2004)
J. Virol. 78, 11823-11832
   Abstract »    Full Text »    PDF »
Elongation by RNA polymerase II: the short and long of it.
R. J. Sims III, R. Belotserkovskaya, and D. Reinberg (2004)
Genes & Dev. 18, 2437-2468
   Abstract »    Full Text »    PDF »
The Bipartite Nuclear Localization Sequence of Rpn2 Is Required for Nuclear Import of Proteasomal Base Complexes via Karyopherin {alpha}{beta} and Proteasome Functions.
P. Wendler, A. Lehmann, K. Janek, S. Baumgart, and C. Enenkel (2004)
J. Biol. Chem. 279, 37751-37762
   Abstract »    Full Text »    PDF »
TIP30 Interacts with an Estrogen Receptor {alpha}-interacting Coactivator CIA and Regulates c-myc Transcription.
C. Jiang, M. Ito, V. Piening, K. Bruck, R. G. Roeder, and H. Xiao (2004)
J. Biol. Chem. 279, 27781-27789
   Abstract »    Full Text »    PDF »
Physical and functional association of RNA polymerase II and the proteasome.
T. G. Gillette, F. Gonzalez, A. Delahodde, S. A. Johnston, and T. Kodadek (2004)
PNAS 101, 5904-5909
   Abstract »    Full Text »    PDF »
DNA and RNA Binding by the Mitochondrial Lon Protease Is Regulated by Nucleotide and Protein Substrate.
T. Liu, B. Lu, I. Lee, G. Ondrovicova, E. Kutejova, and C. K. Suzuki (2004)
J. Biol. Chem. 279, 13902-13910
   Abstract »    Full Text »    PDF »
Rapid Glucocorticoid Receptor Exchange at a Promoter Is Coupled to Transcription and Regulated by Chaperones and Proteasomes.
D. A. Stavreva, W. G. Muller, G. L. Hager, C. L. Smith, and J. G. McNally (2004)
Mol. Cell. Biol. 24, 2682-2697
   Abstract »    Full Text »    PDF »
Control of Yeast Filamentous-Form Growth by Modules in an Integrated Molecular Network.
S. Prinz, I. Avila-Campillo, C. Aldridge, A. Srinivasan, K. Dimitrov, A. F. Siegel, and T. Galitski (2004)
Genome Res. 14, 380-390
   Abstract »    Full Text »    PDF »
Functional and Physical Interaction of the Human ARF Tumor Suppressor with Tat-binding Protein-1.
A. Pollice, V. Nasti, R. Ronca, M. Vivo, M. L. Iacono, R. Calogero, V. Calabro, and G. La Mantia (2004)
J. Biol. Chem. 279, 6345-6353
   Abstract »    Full Text »    PDF »
Selective Estrogen Receptor Modulators 4-Hydroxytamoxifen and Raloxifene Impact the Stability and Function of SRC-1 and SRC-3 Coactivator Proteins.
D. M. Lonard, S. Y. Tsai, and B. W. O'Malley (2004)
Mol. Cell. Biol. 24, 14-24
   Abstract »    Full Text »    PDF »
Epigenetic Mechanisms in Early Mammalian Development.
D. SOLTER, T. HIIRAGI, A.V. EVSIKOV, J. MOYER, W.N. DE VRIES, A.E. PEASTON, and B.B. KNOWLES (2004)
Cold Spring Harb Symp Quant Biol 69, 11-18
   Abstract »    PDF »
Histone H2B Ubiquitylation and Deubiquitylation in Genomic Regulation.
N.C.T. EMRE and S.L. BERGER (2004)
Cold Spring Harb Symp Quant Biol 69, 289-300
   Abstract »    PDF »
The Co-repressor Hairless Protects ROR{alpha} Orphan Nuclear Receptor from Proteasome-mediated Degradation.
A. N. Moraitis and V. Giguere (2003)
J. Biol. Chem. 278, 52511-52518
   Abstract »    Full Text »    PDF »
The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity.
B. Burnett, F. Li, and R. N. Pittman (2003)
Hum. Mol. Genet. 12, 3195-3205
   Abstract »    Full Text »    PDF »
Transcription-dependent degradation controls the stability of the SREBP family of transcription factors.
A. Sundqvist and J. Ericsson (2003)
PNAS 100, 13833-13838
   Abstract »    Full Text »    PDF »
Changes in developmental state: demolish the old to construct the new.
W. P. Voth and D. J. Stillman (2003)
Genes & Dev. 17, 2201-2204
   Full Text »    PDF »
Use of RNA Interference and Complementation To Study the Function of the Drosophila and Human 26S Proteasome Subunit S13.
J. Lundgren, P. Masson, C. A. Realini, and P. Young (2003)
Mol. Cell. Biol. 23, 5320-5330
   Abstract »    Full Text »    PDF »
Impairment of the DNA Binding Activity of the TATA-binding Protein Renders the Transcriptional Function of Rvb2p/Tih2p, the Yeast RuvB-like Protein, Essential for Cell Growth.
H. Ohdate, C. R. Lim, T. Kokubo, K. Matsubara, Y. Kimata, and K. Kohno (2003)
J. Biol. Chem. 278, 14647-14656
   Abstract »    Full Text »    PDF »
Rpn6p, a Proteasome Subunit from Saccharomyces cerevisiae, Is Essential for the Assembly and Activity of the 26 S Proteasome.
P. G. Santamaria, D. Finley, J. P. G. Ballesta, and M. Remacha (2003)
J. Biol. Chem. 278, 6687-6695
   Abstract »    Full Text »    PDF »
Involvement of Proteasome in the Dynamic Assembly of the Androgen Receptor Transcription Complex.
Z. Kang, A. Pirskanen, O. A. Janne, and J. J. Palvimo (2002)
J. Biol. Chem. 277, 48366-48371
   Abstract »    Full Text »    PDF »
Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity.
H. Sakahira, P. Breuer, M. K. Hayer-Hartl, and F. U. Hartl (2002)
PNAS 99, 16412-16418
   Abstract »    Full Text »    PDF »
The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores.
T. Fischer, K. Strasser, A. Racz, S. Rodriguez-Navarro, M. Oppizzi, P. Ihrig, J. Lechner, and E. Hurt (2002)
EMBO J. 21, 5843-5852
   Abstract »    Full Text »    PDF »
Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes.
S. S. Hook, A. Orian, S. M. Cowley, and R. N. Eisenman (2002)
PNAS 99, 13425-13430
   Abstract »    Full Text »    PDF »
Mutational Analysis Reveals a Role for the C Terminus of the Proteasome Subunit Rpt4p in Spindle Pole Body Duplication in Saccharomyces cerevisiae.
H. B. McDonald, A. H. Helfant, E. M. Mahony, S. K. Khosla, and L. Goetsch (2002)
Genetics 162, 705-720
   Abstract »    Full Text »    PDF »
Proteasome Activity Is Required for Androgen Receptor Transcriptional Activity via Regulation of Androgen Receptor Nuclear Translocation and Interaction with Coregulators in Prostate Cancer Cells.
H.-K. Lin, S. Altuwaijri, W.-J. Lin, P.-Y. Kan, L. L. Collins, and C. Chang (2002)
J. Biol. Chem. 277, 36570-36576
   Abstract »    Full Text »    PDF »
Emerging Roles of Ubiquitin in Transcription Regulation.
R. C. Conaway, C. S. Brower, and J. W. Conaway (2002)
Science 296, 1254-1258
   Abstract »    Full Text »    PDF »
TRANSCRIPTION: Proteasome Parts at Gene Promoters.
S. Ottosen, F. J. Herrera, and S. J. Triezenberg (2002)
Science 296, 479-481
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882