Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 296 (5567): 553-555

Copyright © 2002 by the American Association for the Advancement of Science

A Thymic Precursor to the NK T Cell Lineage

Kamel Benlagha,1 Tim Kyin,1 Andrew Beavis,1 Luc Teyton,2 Albert Bendelac1*

CD1d-restricted autoreactive natural killer (NK1.1+) T cells function as regulatory cells in various disease conditions. Using improved tetramer tracking methodology, we identified a NK1.1- thymic precursor and followed its differentiation and emigration to tissues by direct cell transfer and in situ cell labeling studies. A major lineage expansion occurred within the thymus after positive selection and before NK receptor expression. Surprisingly, cytokine analysis of the developmental intermediates between NK- and NK+ stages showed a T helper cell TH2 to TH1 conversion, suggesting that the regulatory functions of NK T cells may be developmentally controlled. These findings characterize novel thymic and postthymic developmental pathways that expand autoreactive cells and differentiate them into regulatory cells.

1 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
2 Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA.
*   To whom correspondence should be addressed. E-mail: abendelac{at}

TopBP1 deficiency impairs V(D)J recombination during lymphocyte development.
J. Kim, S. Kyu Lee, Y. Jeon, Y. Kim, C. Lee, S. Ho Jeon, J. Shim, I.-H. Kim, S. Hong, N. Kim, et al. (2014)
EMBO J. 33, 217-228
   Abstract »    Full Text »    PDF »
Effective functional maturation of invariant natural killer T cells is constrained by negative selection and T-cell antigen receptor affinity.
R. Bedel, R. Berry, T. Mallevaey, J. L. Matsuda, J. Zhang, D. I. Godfrey, J. Rossjohn, J. W. Kappler, P. Marrack, and L. Gapin (2014)
PNAS 111, E119-E128
   Abstract »    Full Text »    PDF »
Essential Functions for ID Proteins at Multiple Checkpoints in Invariant NKT Cell Development.
M. Verykokakis, V. Krishnamoorthy, A. Iavarone, A. Lasorella, M. Sigvardsson, and B. L. Kee (2013)
J. Immunol. 191, 5973-5983
   Abstract »    Full Text »    PDF »
Combined Deletion of Id2 and Id3 Genes Reveals Multiple Roles for E Proteins in Invariant NKT Cell Development and Expansion.
J. Li, D. Wu, N. Jiang, and Y. Zhuang (2013)
J. Immunol. 191, 5052-5064
   Abstract »    Full Text »    PDF »
Differential Postselection Proliferation Dynamics of {alpha}{beta} T Cells, Foxp3+ Regulatory T Cells, and Invariant NKT Cells Monitored by Genetic Pulse Labeling.
L. Fohse, A. Reinhardt, L. Oberdorfer, S. Schmitz, R. Forster, B. Malissen, and I. Prinz (2013)
J. Immunol. 191, 2384-2392
   Abstract »    Full Text »    PDF »
Critical Role of TCR Specificity in the Development of V{gamma}1V{delta}6.3+ Innate NKT{gamma}{delta} Cells.
P. Pereira, C. Berthault, O. Burlen-Defranoux, and L. Boucontet (2013)
J. Immunol. 191, 1716-1723
   Abstract »    Full Text »    PDF »
Impaired Autophagy, Defective T Cell Homeostasis, and a Wasting Syndrome in Mice with a T Cell-Specific Deletion of Vps34.
V. V. Parekh, L. Wu, K. L. Boyd, J. A. Williams, J. A. Gaddy, D. Olivares-Villagomez, T. L. Cover, W.-X. Zong, J. Zhang, and L. Van Kaer (2013)
J. Immunol. 190, 5086-5101
   Abstract »    Full Text »    PDF »
Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells.
N. Zietara, M. Lyszkiewicz, K. Witzlau, R. Naumann, R. Hurwitz, J. Langemeier, J. Bohne, I. Sandrock, M. Ballmaier, S. Weiss, et al. (2013)
PNAS 110, 7407-7412
   Abstract »    Full Text »    PDF »
Role for lysosomal phospholipase A2 in iNKT cell-mediated CD1d recognition.
C. Paduraru, J. S. Bezbradica, A. Kunte, R. Kelly, J. A. Shayman, N. Veerapen, L. R. Cox, G. S. Besra, and P. Cresswell (2013)
PNAS 110, 5097-5102
   Abstract »    Full Text »    PDF »
TRIM28 mediates chromatin modifications at the TCR{alpha} enhancer and regulates the development of T and natural killer T cells.
X.-F. Zhou, J. Yu, M. Chang, M. Zhang, D. Zhou, F. Cammas, and S.-C. Sun (2012)
PNAS 109, 20083-20088
   Abstract »    Full Text »    PDF »
ATP-Binding Cassette Transporter G1 Intrinsically Regulates Invariant NKT Cell Development.
D. Sag, G. Wingender, H. Nowyhed, R. Wu, A. K. Gebre, J. S. Parks, M. Kronenberg, and C. C. Hedrick (2012)
J. Immunol. 189, 5129-5138
   Abstract »    Full Text »    PDF »
ZBTB7B (Th-POK) Regulates the Development of IL-17-Producing CD1d-Restricted Mouse NKT Cells.
A. Enders, S. Stankovic, C. Teh, A. P. Uldrich, M. Yabas, T. Juelich, J. A. Altin, S. Frankenreiter, H. Bergmann, C. M. Roots, et al. (2012)
J. Immunol. 189, 5240-5249
   Abstract »    Full Text »    PDF »
The transcription factor Th-POK negatively regulates Th17 differentiation in V{alpha}14i NKT cells.
I. Engel, M. Zhao, D. Kappes, I. Taniuchi, and M. Kronenberg (2012)
Blood 120, 4524-4532
   Abstract »    Full Text »    PDF »
Immature murine NKT cells pass through a stage of developmentally programmed innate IL-4 secretion.
N. Dickgreber, K. J. Farrand, N. van Panhuys, D. A. Knight, S. J. McKee, M. L. Chong, S. Miranda-Hernandez, A. G. Baxter, R. M. Locksley, G. Le Gros, et al. (2012)
J. Leukoc. Biol. 92, 999-1009
   Abstract »    Full Text »    PDF »
Role of Hepatocyte-Derived IL-7 in Maintenance of Intrahepatic NKT Cells and T Cells and Development of B Cells in Fetal Liver.
B. Liang, T. Hara, K. Wagatsuma, J. Zhang, K. Maki, H. Miyachi, S. Kitano, C. Yabe-Nishimura, S. Tani-ichi, and K. Ikuta (2012)
J. Immunol. 189, 4444-4450
   Abstract »    Full Text »    PDF »
Short Term High Fat Diet Challenge Promotes Alternative Macrophage Polarization in Adipose Tissue via Natural Killer T Cells and Interleukin-4.
Y. Ji, S. Sun, S. Xia, L. Yang, X. Li, and L. Qi (2012)
J. Biol. Chem. 287, 24378-24386
   Abstract »    Full Text »    PDF »
Activation of Natural Killer T Cells Promotes M2 Macrophage Polarization in Adipose Tissue and Improves Systemic Glucose Tolerance via Interleukin-4 (IL-4)/STAT6 Protein Signaling Axis in Obesity.
Y. Ji, S. Sun, A. Xu, P. Bhargava, L. Yang, K. S. L. Lam, B. Gao, C.-H. Lee, S. Kersten, and L. Qi (2012)
J. Biol. Chem. 287, 13561-13571
   Abstract »    Full Text »    PDF »
Lin28b Reprograms Adult Bone Marrow Hematopoietic Progenitors to Mediate Fetal-Like Lymphopoiesis.
J. Yuan, C. K. Nguyen, X. Liu, C. Kanellopoulou, and S. A. Muljo (2012)
Science 335, 1195-1200
   Abstract »    Full Text »    PDF »
MicroRNA miR-150 Is Involved in V{alpha}14 Invariant NKT Cell Development and Function.
Q. Zheng, L. Zhou, and Q.-S. Mi (2012)
J. Immunol. 188, 2118-2126
   Abstract »    Full Text »    PDF »
Human MAIT and CD8{alpha}{alpha} cells develop from a pool of type-17 precommitted CD8+ T cells.
L. J. Walker, Y.-H. Kang, M. O. Smith, H. Tharmalingham, N. Ramamurthy, V. M. Fleming, N. Sahgal, A. Leslie, Y. Oo, A. Geremia, et al. (2012)
Blood 119, 422-433
   Abstract »    Full Text »    PDF »
miR-150 regulates the development of NK and iNKT cells.
N. A. Bezman, T. Chakraborty, T. Bender, and L. L. Lanier (2011)
J. Exp. Med. 208, 2717-2731
   Abstract »    Full Text »    PDF »
IL-15 Regulates Homeostasis and Terminal Maturation of NKT Cells.
L. E. Gordy, J. S. Bezbradica, A. I. Flyak, C. T. Spencer, A. Dunkle, J. Sun, A. K. Stanic, M. R. Boothby, Y.-W. He, Z. Zhao, et al. (2011)
J. Immunol. 187, 6335-6345
   Abstract »    Full Text »    PDF »
Essential role of Mediator subunit Med1 in invariant natural killer T-cell development.
X. Yue, A. Izcue, and T. Borggrefe (2011)
PNAS 108, 17105-17110
   Abstract »    Full Text »    PDF »
IL-17-producing invariant NKT cells in lymphoid organs are recent thymic emigrants identified by neuropilin-1 expression.
P. Milpied, B. Massot, A. Renand, S. Diem, A. Herbelin, M. Leite-de-Moraes, M.-T. Rubio, and O. Hermine (2011)
Blood 118, 2993-3002
   Abstract »    Full Text »    PDF »
Tight Regulation of Diacylglycerol-Mediated Signaling Is Critical for Proper Invariant NKT Cell Development.
S. Shen, J. Wu, S. Srivatsan, B. K. Gorentla, J. Shin, L. Xu, and X.-P. Zhong (2011)
J. Immunol. 187, 2122-2129
   Abstract »    Full Text »    PDF »
IL-15R{alpha} of Radiation-Resistant Cells Is Necessary and Sufficient for Thymic Invariant NKT Cell Survival and Functional Maturation.
C.-L. Chang, Y.-G. Lai, M.-S. Hou, P.-L. Huang, and N.-S. Liao (2011)
J. Immunol. 187, 1235-1242
   Abstract »    Full Text »    PDF »
Notch-Hes1 pathway is required for the development of IL-17-producing {gamma}{delta} T cells.
K. Shibata, H. Yamada, T. Sato, T. Dejima, M. Nakamura, T. Ikawa, H. Hara, S. Yamasaki, R. Kageyama, Y. Iwakura, et al. (2011)
Blood 118, 586-593
   Abstract »    Full Text »    PDF »
T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse.
A. E. Moran, K. L. Holzapfel, Y. Xing, N. R. Cunningham, J. S. Maltzman, J. Punt, and K. A. Hogquist (2011)
J. Exp. Med. 208, 1279-1289
   Abstract »    Full Text »    PDF »
Proinflammatory Environment Dictates the IL-17-Producing Capacity of Human Invariant NKT Cells.
L. Moreira-Teixeira, M. Resende, M. Coffre, O. Devergne, J.-P. Herbeuval, O. Hermine, E. Schneider, L. Rogge, F. M. Ruemmele, M. Dy, et al. (2011)
J. Immunol. 186, 5758-5765
   Abstract »    Full Text »    PDF »
Differential requirements for the Ets transcription factor Elf-1 in the development of NKT cells and NK cells.
H.-J. Choi, Y. Geng, H. Cho, S. Li, P. K. Giri, K. Felio, and C.-R. Wang (2011)
Blood 117, 1880-1887
   Abstract »    Full Text »    PDF »
Epigenetic Reduction in Invariant NKT Cells following In Utero Vitamin D Deficiency in Mice.
S. Yu and M. T. Cantorna (2011)
J. Immunol. 186, 1384-1390
   Abstract »    Full Text »    PDF »
Diverse Endogenous Antigens for Mouse NKT Cells: Self-Antigens That Are Not Glycosphingolipids.
B. Pei, A. O. Speak, D. Shepherd, T. Butters, V. Cerundolo, F. M. Platt, and M. Kronenberg (2011)
J. Immunol. 186, 1348-1360
   Abstract »    Full Text »    PDF »
Temporal Differences in the Dependency on Phosphoinositide-Dependent Kinase 1 Distinguish the Development of Invariant V{alpha}14 NKT Cells and Conventional T Cells.
D. K. Finlay, A. P. Kelly, R. Clarke, L. V. Sinclair, M. Deak, D. R. Alessi, and D. A. Cantrell (2010)
J. Immunol. 185, 5973-5982
   Abstract »    Full Text »    PDF »
Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation.
E. F. Castillo, L. F. Acero, S. W. Stonier, D. Zhou, and K. S. Schluns (2010)
Blood 116, 2494-2503
   Abstract »    Full Text »    PDF »
NKT cells are necessary for maximal expression of allergic conjunctivitis1.
N. J. Reyes, E. Mayhew, P. W. Chen, and J. Y. Niederkorn (2010)
Int. Immunol. 22, 627-636
   Abstract »    Full Text »    PDF »
CD1d-Dependent NKT Cells Play a Protective Role in Acute and Chronic Arthritis Models by Ameliorating Antigen-Specific Th1 Responses.
A. Teige, R. Bockermann, M. Hasan, K. E. Olofsson, Y. Liu, and S. Issazadeh-Navikas (2010)
J. Immunol. 185, 345-356
   Abstract »    Full Text »    PDF »
PLZF Induces the Spontaneous Acquisition of Memory/Effector Functions in T Cells Independently of NKT Cell-Related Signals.
D. Kovalovsky, E. S. Alonzo, O. U. Uche, M. Eidson, K. E. Nichols, and D. B. Sant'Angelo (2010)
J. Immunol. 184, 6746-6755
   Abstract »    Full Text »    PDF »
Co-receptor choice by V{alpha}14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection.
I. Engel, K. Hammond, B. A. Sullivan, X. He, I. Taniuchi, D. Kappes, and M. Kronenberg (2010)
J. Exp. Med. 207, 1015-1029
   Abstract »    Full Text »    PDF »
Regulation of natural killer T-cell development by deubiquitinase CYLD.
A. J. Lee, X. Zhou, M. Chang, J. Hunzeker, R. H. Bonneau, D. Zhou, and S.-C. Sun (2010)
EMBO J. 29, 1600-1612
   Abstract »    Full Text »    PDF »
Retroviral infection in vivo requires an immune escape virulence factor encrypted in the envelope protein of oncoretroviruses.
G. Schlecht-Louf, M. Renard, M. Mangeney, C. Letzelter, A. Richaud, B. Ducos, I. Bouallaga, and T. Heidmann (2010)
PNAS 107, 3782-3787
   Abstract »    Full Text »    PDF »
Development of Promyelocytic Zinc Finger and ThPOK-Expressing Innate {gamma}{delta} T Cells Is Controlled by Strength of TCR Signaling and Id3.
E. S. Alonzo, R. A. Gottschalk, J. Das, T. Egawa, R. M. Hobbs, P. P. Pandolfi, P. Pereira, K. E. Nichols, G. A. Koretzky, M. S. Jordan, et al. (2010)
J. Immunol. 184, 1268-1279
   Abstract »    Full Text »    PDF »
Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development.
X. Feng, G. C. Ippolito, L. Tian, K. Wiehagen, S. Oh, A. Sambandam, J. Willen, R. M. Bunte, S. D. Maika, J. V. Harriss, et al. (2010)
Blood 115, 510-518
   Abstract »    Full Text »    PDF »
Generation of functional NKT cells in vitro from embryonic stem cells bearing rearranged invariant V{alpha}14-J{alpha}18 TCR{alpha} gene.
H. Watarai, A. Rybouchkin, N. Hongo, Y. Nagata, S. Sakata, E. Sekine, N. Dashtsoodol, T. Tashiro, S.-i. Fujii, K. Shimizu, et al. (2010)
Blood 115, 230-237
   Abstract »    Full Text »    PDF »
Aberrant Selection and Function of Invariant NKT Cells in the Absence of AP-1 Transcription Factor Fra-2.
V. J. Lawson, D. Maurice, J. D. Silk, V. Cerundolo, and K. Weston (2009)
J. Immunol. 183, 2575-2584
   Abstract »    Full Text »    PDF »
Cutting Edge: The Chemokine Receptor CXCR3 Retains Invariant NK T Cells in the Thymus.
M. B. Drennan, A.-S. Franki, P. Dewint, K. Van Beneden, S. Seeuws, S. A. van de Pavert, E. C. Reilly, G. Verbruggen, T. E. Lane, R. E. Mebius, et al. (2009)
J. Immunol. 183, 2213-2216
   Abstract »    Full Text »    PDF »
Dicer-Dependent MicroRNA Pathway Controls Invariant NKT Cell Development.
M. Fedeli, A. Napolitano, M. P. M. Wong, A. Marcais, C. de Lalla, F. Colucci, M. Merkenschlager, P. Dellabona, and G. Casorati (2009)
J. Immunol. 183, 2506-2512
   Abstract »    Full Text »    PDF »
Skin and Peripheral Lymph Node Invariant NKT Cells Are Mainly Retinoic Acid Receptor-Related Orphan Receptor {gamma}t+ and Respond Preferentially under Inflammatory Conditions.
J.-M. Doisne, C. Becourt, L. Amniai, N. Duarte, J.-B. Le Luduec, G. Eberl, and K. Benlagha (2009)
J. Immunol. 183, 2142-2149
   Abstract »    Full Text »    PDF »
Distinct Requirements for CD1d Intracellular Transport for Development of V{alpha}14 iNKT Cells.
F. C. M. Sille, M. Boxem, D. Sprengers, N. Veerapen, G. Besra, and M. Boes (2009)
J. Immunol. 183, 1780-1788
   Abstract »    Full Text »    PDF »
Wiskott-Aldrich Syndrome Protein Is Required for Homeostasis and Function of Invariant NKT Cells.
A. Astrakhan, H. D. Ochs, and D. J. Rawlings (2009)
J. Immunol. 182, 7370-7380
   Abstract »    Full Text »    PDF »
iNKT cell development is orchestrated by different branches of TGF-{beta} signaling.
J.-M. Doisne, L. Bartholin, K.-P. Yan, C. N. Garcia, N. Duarte, J.-B. Le Luduec, D. Vincent, F. Cyprian, B. Horvat, S. Martel, et al. (2009)
J. Exp. Med. 206, 1365-1378
   Abstract »    Full Text »    PDF »
Cutting Edge: CD28 Engagement Releases Antigen-Activated Invariant NKT Cells from the Inhibitory Effects of PD-1.
J. Wang, L. Cheng, Z. Wondimu, M. Swain, P. Santamaria, and Y. Yang (2009)
J. Immunol. 182, 6644-6647
   Abstract »    Full Text »    PDF »
Intrathymic proliferation wave essential for V{alpha}14+ natural killer T cell development depends on c-Myc.
M. Dose, B. P. Sleckman, J. Han, A. L. Bredemeyer, A. Bendelac, and F. Gounari (2009)
PNAS 106, 8641-8646
   Abstract »    Full Text »    PDF »
Allergic Airway Hyperresponsiveness-Enhancing {gamma}{delta} T Cells Develop in Normal Untreated Mice and Fail to Produce IL-4/13, Unlike Th2 and NKT Cells.
N. Jin, C. L. Roark, N. Miyahara, C. Taube, M. K. Aydintug, J. M. Wands, Y. Huang, Y.-S. Hahn, E. W. Gelfand, R. L. O'Brien, et al. (2009)
J. Immunol. 182, 2002-2010
   Abstract »    Full Text »    PDF »
The Adaptor Molecule Signaling Lymphocytic Activation Molecule-Associated Protein (SAP) Regulates IFN-{gamma} and IL-4 Production in V{alpha}14 Transgenic NKT Cells via Effects on GATA-3 and T-bet Expression.
O. Cen, A. Ueda, L. Guzman, J. Jain, H. Bassiri, K. E. Nichols, and P. L. Stein (2009)
J. Immunol. 182, 1370-1378
   Abstract »    Full Text »    PDF »
Critical role of ROR-{gamma}t in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation.
M.-L. Michel, D. Mendes-da-Cruz, A. C. Keller, M. Lochner, E. Schneider, M. Dy, G. Eberl, and M. C. Leite-de-Moraes (2008)
PNAS 105, 19845-19850
   Abstract »    Full Text »    PDF »
Importance of NKT Cells in Resistance to Herpes Simplex Virus, Fate of Virus-Infected Neurons, and Level of Latency in Mice.
B. Grubor-Bauk, J. L. Arthur, and G. Mayrhofer (2008)
J. Virol. 82, 11073-11083
   Abstract »    Full Text »    PDF »
Enhanced Early Expansion and Maturation of Semi-Invariant NK T Cells Inhibited Autoimmune Pathogenesis in Congenic Nonobese Diabetic Mice.
A. Ueno, J. Wang, L. Cheng, J. S. Im, Y. Shi, S. A. Porcelli, and Y. Yang (2008)
J. Immunol. 181, 6789-6796
   Abstract »    Full Text »    PDF »
Identification of CD25+ {gamma}{delta} T Cells As Fetal Thymus-Derived Naturally Occurring IL-17 Producers.
K. Shibata, H. Yamada, R. Nakamura, X. Sun, M. Itsumi, and Y. Yoshikai (2008)
J. Immunol. 181, 5940-5947
   Abstract »    Full Text »    PDF »
Congenic Analysis of the NKT Cell Control Gene Nkt2 Implicates the Peroxisomal Protein Pxmp4.
J. M. Fletcher, M. A. Jordan, S. L. Snelgrove, R. M. Slattery, F. D. Dufour, K. Kyparissoudis, G. S. Besra, D. I. Godfrey, and A. G. Baxter (2008)
J. Immunol. 181, 3400-3412
   Abstract »    Full Text »    PDF »
Thymic Emigration: When and How T Cells Leave Home.
M. A. Weinreich and K. A. Hogquist (2008)
J. Immunol. 181, 2265-2270
   Abstract »    Full Text »    PDF »
Invariant NKT Cells Regulate Experimental Autoimmune Encephalomyelitis and Infiltrate the Central Nervous System in a CD1d-Independent Manner.
L. T. Mars, A.-S. Gautron, J. Novak, L. Beaudoin, J. Diana, R. S. Liblau, and A. Lehuen (2008)
J. Immunol. 181, 2321-2329
   Abstract »    Full Text »    PDF »
Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population.
J. M. Coquet, S. Chakravarti, K. Kyparissoudis, F. W. McNab, L. A. Pitt, B. S. McKenzie, S. P. Berzins, M. J. Smyth, and D. I. Godfrey (2008)
PNAS 105, 11287-11292
   Abstract »    Full Text »    PDF »
Regulation of Thymic NKT Cell Development by the B7-CD28 Costimulatory Pathway.
J. A. Williams, J. M. Lumsden, X. Yu, L. Feigenbaum, J. Zhang, S. M. Steinberg, and R. J. Hodes (2008)
J. Immunol. 181, 907-917
   Abstract »    Full Text »    PDF »
Critical Role for the Chemokine Receptor CXCR6 in Homeostasis and Activation of CD1d-Restricted NKT Cells.
E. Germanov, L. Veinotte, R. Cullen, E. Chamberlain, E. C. Butcher, and B. Johnston (2008)
J. Immunol. 181, 81-91
   Abstract »    Full Text »    PDF »
In vitro induction of natural killer T cells from embryonic stem cells prepared using somatic cell nuclear transfer.
H. Wakao, R. Wakao, S. Sakata, K. Iwabuchi, A. Oda, and H. Fujita (2008)
FASEB J 22, 2223-2231
   Abstract »    Full Text »    PDF »
Innate-Like Effector Differentiation of Human Invariant NKT Cells Driven by IL-7.
C. de Lalla, N. Festuccia, I. Albrecht, H.-D. Chang, G. Andolfi, U. Benninghoff, F. Bombelli, G. Borsellino, A. Aiuti, A. Radbruch, et al. (2008)
J. Immunol. 180, 4415-4424
   Abstract »    Full Text »    PDF »
The vitamin D receptor is required for iNKT cell development.
S. Yu and M. T. Cantorna (2008)
PNAS 105, 5207-5212
   Abstract »    Full Text »    PDF »
The Tec Kinases Itk and Rlk Regulate NKT Cell Maturation, Cytokine Production, and Survival.
M. Felices and L. J. Berg (2008)
J. Immunol. 180, 3007-3018
   Abstract »    Full Text »    PDF »
A Critical Role of Costimulation during Intrathymic Development of Invariant NK T Cells.
Y. Chung, R. Nurieva, E. Esashi, Y.-H. Wang, D. Zhou, L. Gapin, and C. Dong (2008)
J. Immunol. 180, 2276-2283
   Abstract »    Full Text »    PDF »
S1P1 receptor expression regulates emergence of NKT cells in peripheral tissues.
M. L. Allende, D. Zhou, D. N. Kalkofen, S. Benhamed, G. Tuymetova, C. Borowski, A. Bendelac, and R. L. Proia (2008)
FASEB J 22, 307-315
   Abstract »    Full Text »    PDF »
Peripheral NK1.1- NKT Cells Are Mature and Functionally Distinct from Their Thymic Counterparts.
F. W. McNab, D. G. Pellicci, K. Field, G. Besra, M. J. Smyth, D. I. Godfrey, and S. P. Berzins (2007)
J. Immunol. 179, 6630-6637
   Abstract »    Full Text »    PDF »
Thymic emigration revisited.
T. M. McCaughtry, M. S. Wilken, and K. A. Hogquist (2007)
J. Exp. Med. 204, 2513-2520
   Abstract »    Full Text »    PDF »
A Y Chromosome-Linked Factor Impairs NK T Development.
J. D. Wesley, M. S. Tessmer, C. Paget, F. Trottein, and L. Brossay (2007)
J. Immunol. 179, 3480-3487
   Abstract »    Full Text »    PDF »
A Novel Mouse Model for Invariant NKT Cell Study.
H. Wakao, H. Kawamoto, S. Sakata, K. Inoue, A. Ogura, R. Wakao, A. Oda, and H. Fujita (2007)
J. Immunol. 179, 3888-3895
   Abstract »    Full Text »    PDF »
Multiple Constraints at the Level of TCR{alpha} Rearrangement Impact V{alpha}14i NKT Cell Development.
E. Hager, A. Hawwari, J. L. Matsuda, M. S. Krangel, and L. Gapin (2007)
J. Immunol. 179, 2228-2234
   Abstract »    Full Text »    PDF »
A Key Role for Itk in Both IFN{gamma} and IL-4 Production by NKT Cells.
B. B. Au-Yeung and D. J. Fowell (2007)
J. Immunol. 179, 111-119
   Abstract »    Full Text »    PDF »
The Pten/PI3K pathway governs the homeostasis of V{alpha}14iNKT cells.
H. Kishimoto, T. Ohteki, N. Yajima, K. Kawahara, M. Natsui, S. Kawarasaki, K. Hamada, Y. Horie, Y. Kubo, S. Arase, et al. (2007)
Blood 109, 3316-3324
   Abstract »    Full Text »    PDF »
Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency.
S. Porubsky, A. O. Speak, B. Luckow, V. Cerundolo, F. M. Platt, and H.-J. Grone (2007)
PNAS 104, 5977-5982
   Abstract »    Full Text »    PDF »
Mouse TCR{alpha}{beta}+CD8{alpha}{alpha} Intraepithelial Lymphocytes Express Genes That Down-Regulate Their Antigen Reactivity and Suppress Immune Responses.
T. L. Denning, S. Granger, D. Mucida, R. Graddy, G. Leclercq, W. Zhang, K. Honey, J. P. Rasmussen, H. Cheroutre, A. Y. Rudensky, et al. (2007)
J. Immunol. 178, 4230-4239
   Abstract »    Full Text »    PDF »
Streptococcus agalactiae GAPDH Is a Virulence-Associated Immunomodulatory Protein.
P. Madureira, M. Baptista, M. Vieira, V. Magalhaes, A. Camelo, L. Oliveira, A. Ribeiro, D. Tavares, P. Trieu-Cuot, M. Vilanova, et al. (2007)
J. Immunol. 178, 1379-1387
   Abstract »    Full Text »    PDF »
Dissociation of the Genetic Loci Leading to B1a and NKT Cell Expansions from Autoantibody Production and Renal Disease in B6 Mice with an Introgressed New Zealand Black Chromosome 4 Interval.
C. Loh, Y.-C. Cai, G. Bonventi, G. Lajoie, R. MacLeod, and J. E. Wither (2007)
J. Immunol. 178, 1608-1617
   Abstract »    Full Text »    PDF »
Slamf1, the NKT Cell Control Gene Nkt1.
M. A. Jordan, J. M. Fletcher, D. Pellicci, and A. G. Baxter (2007)
J. Immunol. 178, 1618-1627
   Abstract »    Full Text »    PDF »
Sensitivity of NK1.1-Negative NKT Cells to Transgenic BATF Defines a Role for Activator Protein-1 in the Expansion and Maturation of Immature NKT Cells in the Thymus.
A. J. Zullo, K. Benlagha, A. Bendelac, and E. J. Taparowsky (2007)
J. Immunol. 178, 58-66
   Abstract »    Full Text »    PDF »
GATA-3 Regulates the Development and Function of Invariant NKT Cells.
P. J. Kim, S.-Y. Pai, M. Brigl, G. S. Besra, J. Gumperz, and I.-C. Ho (2006)
J. Immunol. 177, 6650-6659
   Abstract »    Full Text »    PDF »
Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases.
S. D. Gadola, J. D. Silk, A. Jeans, P. A. Illarionov, M. Salio, G. S. Besra, R. Dwek, T. D. Butters, F. M. Platt, and V. Cerundolo (2006)
J. Exp. Med. 203, 2293-2303
   Abstract »    Full Text »    PDF »
Rapid Development of a Gamma Interferon-Secreting Glycolipid/CD1d-Specific V{alpha}14+ NK1.1- T-Cell Subset after Bacterial Infection.
M. Emoto, I. Yoshizawa, Y. Emoto, M. Miamoto, R. Hurwitz, and S. H. E. Kaufmann (2006)
Infect. Immun. 74, 5903-5913
   Abstract »    Full Text »    PDF »
A unique lymphotoxin {alpha}beta-dependent pathway regulates thymic emigration of V{alpha}14 invariant natural killer T cells.
A. S. Franki, K. Van Beneden, P. Dewint, K. J. L. Hammond, S. Lambrecht, G. Leclercq, M. Kronenberg, D. Deforce, and D. Elewaut (2006)
PNAS 103, 9160-9165
   Abstract »    Full Text »    PDF »
DOCK2 Is Required in T Cell Precursors for Development of V{alpha}14 NK T Cells.
Y. Kunisaki, Y. Tanaka, T. Sanui, A. Inayoshi, M. Noda, T. Nakayama, M. Harada, M. Taniguchi, T. Sasazuki, and Y. Fukui (2006)
J. Immunol. 176, 4640-4645
   Abstract »    Full Text »    PDF »
Long-Term Retention of Mature NK1.1+ NKT Cells in the Thymus.
S. P. Berzins, F. W. McNab, C. M. Jones, M. J. Smyth, and D. I. Godfrey (2006)
J. Immunol. 176, 4059-4065
   Abstract »    Full Text »    PDF »
T-bet concomitantly controls migration, survival, and effector functions during the development of V{alpha}14i NKT cells.
J. L. Matsuda, Q. Zhang, R. Ndonye, S. K. Richardson, A. R. Howell, and L. Gapin (2006)
Blood 107, 2797-2805
   Abstract »    Full Text »    PDF »
A Cell-Type Specific CD1d Expression Program Modulates Invariant NKT Cell Development and Function.
M. I. Zimmer, A. Colmone, K. Felio, H. Xu, A. Ma, and C.-R. Wang (2006)
J. Immunol. 176, 1421-1430
   Abstract »    Full Text »    PDF »
Targeted Expression of Human CD1d in Transgenic Mice Reveals Independent Roles for Thymocytes and Thymic APCs in Positive and Negative Selection of V{alpha}14i NKT Cells.
J. Schumann, P. Pittoni, E. Tonti, H. R. MacDonald, P. Dellabona, and G. Casorati (2005)
J. Immunol. 175, 7303-7310
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882